The preferred embodiment of the disclosed invention comprises rotary actuators that move one or more x-ray attenuating plates in the x-y plane (ie. image plane). These x-ray attenuating plates attenuate the x-ray beam with thin metal sheets or plates that contain one or more apertures, which fully exposes the desired region of interest (ROI) while filtering the rest of the image, reducing the radiation exposure for the procedure. The devices will typically have a selection of many attenuation profiles. A small aperture or low attenuation profile region will result in a higher total exposure reduction and a large aperture or large attenuation profile will result in a smaller exposure reduction. The x-ray attenuating plate can be rotated to select an attenuation profile using a detent wheel.

Patent
   9991014
Priority
Sep 23 2014
Filed
Sep 22 2015
Issued
Jun 05 2018
Expiry
Dec 05 2035
Extension
74 days
Assg.orig
Entity
Small
2
84
currently ok
1. An X-ray dose reduction device comprising:
a plurality of rotary electromagnetic actuators; and
a set of fixed attenuation profiles;
wherein said plurality of rotary electromagnetic actuators select and position one or more of said set of fixed attenuation profiles anywhere in an image area.
2. A method for reducing a radiation level used when an X-ray image is created, said method comprising the steps of:
selecting an area-of-interest in said X-ray image;
exposing said area-of-interest using a fixed attenuation profile;
wherein exposing said area-of-interest using a fixed attenuation profile comprises selecting said fixed attenuation profile from a set of fixed attenuation profiles using one or more rotary electromagnetic actuators;
positioning said fixed attenuation profile such that a lowest attenuating region overlaps said area-of-interest using the one or more rotary electromagnetic actuators.
3. The method for reducing a radiation level used when an X-ray image is created as in claim 2, wherein selecting the fixed attenuation profile from a set of fixed attenuation profiles using one or more rotary electromagnetic actuators and positioning the fixed attenuation profile comprise selecting and positioning said fixed attenuation profile with the one or more rotary electromagnetic actuators.
4. The method for reducing a radiation level used when an X-ray image is created as in claim 2, wherein said fixed attenuation profile comprises at least one region that does not attenuate an X-ray beam.
5. The method for reducing a radiation level used when an X-ray image is created as in claim 2, wherein said fixed attenuation profile comprises a higher attenuating region and a lower attenuating region, and said lower attenuating region is at least as large as the area-of-interest.
6. The method for reducing a radiation level used when an X-ray image is created as in claim 2, wherein the area-of-interest is exposed using the fixed attenuation from a set of fixed attenuation profiles at a first refresh rate and said fixed attenuation profile from a set of fixed attenuation profiles is removed from the full image area at a second refresh rate slower than said first refresh rate.

The invention is in the medical field, in particular in X-Ray dose reduction.

X-Ray imaging is important for diagnostic and interventional procedures, but comes with many risks to the patient and staff. The medical industry is striving to find solutions to minimize radiation exposure during such procedures. One of the best ways to minimize the radiation exposure is to filter the x-ray beam outside of the region of interest (ROI). X-Ray attenuation filters are usually made of thin metal plates, such as lead, steel or aluminum.

Salient features such as anatomical features or tool tips will move during any procedure. If the filtering mechanism has a static aperture, the user requires a longer exposure to reposition the patient table.

An x-ray image benefits from high levels of radiation exposure for several reasons. High energy level x-ray beams are less likely to be attenuated by hard tissue, allowing tissue such as bone to be imaged. A higher X-ray beam energy greatly reduces signal-to-noise ratio in low exposure images. The contrast and image exposure is also reduced in low energy x-ray images, making it difficult to discern features. Background regions, ie. regions that do not contain salient features, do not need to have the same image quality and, therefore, the user can sacrifice the image quality to reduce their exposure to harmful ionizing radiation.

There are three types of x-ray attenuation devices that are designed to select an area of interest. The first type has a continuously variable attenuation profile with a continuously variable position. An example of this method is demonstrated in U.S. Pat. No. 8,693,628. This type is typically expensive to build and requires many heavy moving parts. The second type has a fixed size with a variable position, such as U.S. Pat. No. 5,278,887 and US Application 2015/0023466. This second type cannot typically be adjusted in terms of shape and size, limiting the ability of these devices to reduce radiation exposure. The third type has a variable aperture size, but cannot vary the position. These are the most common types of collimators and attenuation devices, examples are U.S. Pat. Nos. 5,881,127, 4,868,843 and 4,489,426. All three types typically limit the user to one aperture shape, such as a rectangle or a circle.

The disclosed invention a method of reducing radiation exposure using a set of fixed of apertures or filters with varying attenuation profiles. The preferred embodiment selects one of the fixed apertures or filters and positions it in the image area using rotary actuators. This method provides the flexibility of multiple attenuation profile shapes and sizes, while also allowing the user to position the attenuation profile around an area of interest. Another advantage of this invention is that the mechanism is sufficiently fast enough to repeatedly change position and attenuation profiles within one medical procedure, which is typically not possible with modern collimators, such as the type three devices described above.

The preferred embodiment of the disclosed invention comprises rotary actuators that move one or more x-ray attenuating plates in the x-y plane (ie. image plane). These plates attenuate the x-ray beam with thin metal sheets or plates that contain one or more apertures, which fully exposes the desired ROI while filtering the rest of the image, reducing the radiation exposure for the procedure. The devices will typically have a selection of many attenuation profiles. A small aperture or low attenuation profile region will result in a higher total exposure reduction and a large aperture or large attenuation profile will result in a smaller exposure reduction. The x-ray attenuating plate can be rotated to select an attenuation profile using a detent wheel.

FIG. 1 is a schematic description of the preferred embodiment.

FIG. 2 shows the magnetic circuit that drives the device.

FIGS. 3 A through 4 F are image layouts that can be acquired using the device.

FIGS. 4 A through 4 F are plots showing example attenuation profiles.

FIG. 5 is an exploded view of the selection mechanism in the apparatus.

Referring to FIG. 1, the X-ray beam attenuation is controlled by one or more X-ray attenuating plates 1 in the direct path of the X-ray beam in the field of view 2. The preferred embodiment of the X-ray attenuating plate 1 has at least one hole 3 that allows the X-ray beam to pass through the metal encasement 5 without attenuating or less attenuation that the surrounding areas. This X-ray attenuating plate 1 has creates attenuation profiles that can be used to selectively filter regions that contain little interesting or salient features, while maintaining high image quality in the ROI. An attenuation profile is a feature of the X-ray device which provides different levels of filtering that may vary in within the field of view 2 of an X-ray device. As the total X-ray attenuation in an attenuation profile increases, the radiation exposure decreases. In the preferred embodiment, X-ray attenuating plate 1 comprises a set of fixed attenuation profiles, one of which is selected and positioned over the field of view 2 at any given time during operation. FIG. 1 depicts the X-ray attenuating plate 1 as a solid piece of thin metal, but it is possible that it is made of several components. The entire X-ray attenuating plate 1 can be removed by over-extending arms 4 away from the field of view 2 in metal encasement 5, which allows the entire image to be unattenuated. Rotary actuators are used to move the over-extending arms 4 and position the hole 3. The actuator comprises a over-extending arm 4 carrying a coil 6 rotating on bearing 7. The torque rotating the over-extending arms 4 is created by the interaction of the electric current in coil 6 with the magnetic field of magnets 8. The attenuation profile can be selected by rotating the X-ray attenuating plate 1 using a detent wheel 9. This configuration is very fast and can be used to select, position and/or remove an attenuation profile between X-ray pulses; often a time span of less than 20 ms. This allows the attenuation profile to appear stationary for each image, but move and potentially track an area-of-interest over time.

There are foreseeable circumstances where the user may want the x-ray attenuating plate 1 to move during an x-ray pulse, ie. while an image is being captured. This could be used, for example, to create a supplementary attenuation profile that is dependent on time and position as well as the fixed profile provided by x-ray attenuating plate 1.

The magnetic circuit of the actuator is shown in FIG. 2. The magnetic path is completed by the metal encasement 5, made of steel, and top plate 19, also made of steel. The magnetic design shown in FIG. 2 is well known as it is used in computer hard-drives. The magnetization of magnets 8 and 8′ reverses in the middle of the magnet in order to keep the force on both parts of coil 6 acting in the same direction. The magnetic flux is shown by 10.

FIGS. 3A-F show the possible image 11 configurations resulting from an X-ray exposure using the disclosed x-ray device. The grey regions indicate the X-ray beam was attenuated by the X-ray attenuating plate 1 in said grey regions. The preferred usage of the disclosed invention is exemplified in FIG. 3F. In each of these images, the image 11 comprises a background 12 (the area exposed to X-ray beam attenuated by X-ray attenuating plate 1), and a ROI 13 (the area in an image that is either attenuated with a hole 3 in X-ray attenuating plate 1 or the area in an image 11, where the X-ray beam passes through a hole 3). FIGS. 3B and 3C show the image 11 can be modified by changing the x-y position of the X-ray attenuating plate 1 or rotating the X-ray attenuating plate 1 to select another hole 3 respectively. Rotating the X-ray attenuating plate 1 results in an images such as FIG. 3C, where ROI 13′ is a different size. There are circumstances that the user would remove the x-ray attenuating plate 1, FIG. 3D, to expose the entire field of view 2 without attenuating the X-ray beam. Similarly, the user may select a region of X-ray attenuating plate 1 that does not contain any hole 3, and therefore filter the entire field of view 2 of the X-ray beam, FIG. 3E. FIG. 3F depicts a non-uniform attenuation profile surrounding the hole 3 or background 12 of low attenuation. The tapering attenuation region 18 has a decreasing attenuation as it approaches the ROI 13. The tapering attenuation in region 18 can be accomplished with decreasing the thickness of X-ray attenuating plate 1 as it approaches the ROI 13, for example. In the preferred embodiment, ROI 13 is typically made by cutting a hole 3 in X-ray attenuating plate 1 to form an aperture, however other ways to create ROI 13 are by incorporating a second material with a lower attenuation characteristic or carrying the thickness of the X-ray attenuating plate 1.

FIGS. 4 A-F are graphs that depict attenuation profiles that correspond to FIGS. 3 A-F, respectively. In FIGS. 4 A-C, high attenuating areas comprise the background 12 and low attenuating areas encompass the ROIs 13 and 13′. FIG. 4 D is the attenuation profile with the x-ray attenuating plate 1 out of the image 11 and FIG. 4E is the attenuation profile with a uniform x-ray attenuating plate 1 in the image 11. FIG. 4 F is an example of a non-binary or non-uniform attenuation profile with a tapering attenuation region 18 near the ROI 13.

It is foreseeable that other configurations can be used to create an attenuation profile, and this disclosure covers all possibilities of such configurations. Some examples of other configurations are that can be used to create attenuation profiles:

The hole selection mechanism in the preferred embodiment is show in FIG. 5. The selection mechanism comprises the X-ray attenuating plate 1, a selected hole 3 and one or more inactive holes 3′. The X-ray-attenuating plate 1 is fixed to a detent wheel 9 which is held in an x-y position with over-extending arms 4. The detent wheel 9 can spin freely in joint 14 and is held in place during normal operation with detent spring 15. The X-ray attenuating plate 1 is rotated by over-extending arm 4 towards the fixed pin 16, such that fixed pin 16 connects with groove 17 and forces detent wheel 9 to rotate. The detent wheel 9 and X-ray attenuating plate 1 rotate until detent spring 15 latches with the desired groove 17, holding the detent wheel 9 in position. It can be foreseen that the desired holes 3 or X-ray attenuating plates 1 may be switched with a different selection mechanism. This invention covers such alternative configurations. The different attenuators are compensated by electronic processing, typically by adding gain to the attenuated image areas.

Note that we refer to the attenuator as a “thin metal plate”, however, the attenuator can be made of many different materials and is not limited to one material or configuration. In the preferred embodiment, the x-ray attenuating plate 1 is made of a material which partially attenuates or absorbs an X-ray beam. Copper or titanium are example materials that commonly used to filter or partially attenuate an X-ray beam. A more radio-opaque material, such as lead, could also be used. In some modes of operation, the x-ray device has one or more x-ray attenuating plates 1, such as lead, that can be moved out of the field of view 2 at high speeds, similar to our previous patents (U.S. Pat. No. 7,983,391 and U.S. patent application Ser. No. 13/986,157), effectively creating a dual-mode x-ray attenuating shutter.

There are two methods to determine the x-y position of the hole 3. First, angular position sensors can be used on the rotary actuators, and the x-y coordinate of the over-extending arm 4 end can be calculated from this measurement. Since the two over-extending arms 4 are connected at the distal ends, a unique solution can be found. Another option is to measure the x-y position directly by installing an x-y position sensor on the x-ray attenuating plate 1. Such sensing technology is well known; an example an absolute optical linear encoder sensing the position of an optical scale or grating. This can be either a transparent or reflective optical scale.

The exposure reduction is depended on the size of hole 3 and the thickness of x-ray attenuating plate 1. Typical use of the disclosed x-ray device will result in about 60% exposure reduction, however, it is reasonable to see exposure reductions as high as 80%. Removal of the x-ray attenuating plate 1 from the field of view 2 would result in 0% exposure reduction.

A material that has a higher attenuation will reduce or absorb more of an X-ray beam than a material with a lower attenuation.

The preferred embodiment of the invention can operate without rotating the attenuation profile and hole 3, however, in cases where a different rotational configuration is desired, the detent wheel 9 can be used to rotate said attenuation profile and the actuators can move the attenuation profile in the field of view 2. The angular resolution of the attenuation profile is dependent on the number of grooves 17 on the detent wheel 9.

The selected attenuation profile and position of said profile can be determined by a user interface such as a touch screen or joystick. Automatic tracking can also be used to determine the position and shape/size of the attenuation profile. This can be done, for example, by tracking a tool tip. Methods of tracking are well known in industry. Examples given are U.S. Pat. No. 5,278,887 (Chiu) and U.S. Pat. No. 8,693,628 (Machan), both of which are incorporated by reference.

Definitions of terms used in this specification:

We typically refer to projection of the area of the image on to the device plane as the image area or field of view 2.

The term attenuation and absorption both refer to a material property that results in a reduction of intensity when an x-ray beam passes through it. When we refer to low attenuation, this could mean also mean negligible or no attenuation.

Tracking can refer to either manual selection and positioning of the attenuation profile or automatic methods that use user sensors or image processing techniques.

Region-of-interest and area-of-interest can be used interchangeably.

Gelbart, Daniel

Patent Priority Assignee Title
10714227, Jun 06 2016 LORAM TECHNOLOGIES, INC Rotating radiation shutter collimator
11051772, Apr 08 2016 Rensselaer Polytechnic Institute Filtration methods for dual-energy X-ray CT
Patent Priority Assignee Title
4277685, Jun 12 1978 PICKER INTERNATIONAL, INC Adjustable collimator
4399550, Feb 27 1981 General Electric Company Spinning filter for X-ray apparatus
4489426, Dec 23 1981 General Electric Company Collimator with adjustable aperture
4686695, Feb 05 1979 COOPERSURGICAL ACQUISITION CORP Scanned x-ray selective imaging system
4744099, Nov 03 1983 Siemens Aktiengesellschaft X-ray diagnostic apparatus comprising radiation filters
4859849, Oct 16 1984 Fuji Photo Film Co., Ltd. Radiation image recording and read-out apparatus
4868843, Sep 10 1986 VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC Multileaf collimator and compensator for radiotherapy machines
4896037, Apr 24 1984 Fuji Photo Film Co., Ltd. High-speed image recording apparatus for energy subtraction processing
4969174, Sep 06 1989 General Electric Company Scanning mammography system with reduced scatter radiation
5081660, Jun 06 1990 High resolution X-ray imaging system with energy fluctuation restricting filters
5107529, Oct 03 1990 Thomas Jefferson University Radiographic equalization apparatus and method
5131022, Jun 03 1988 Canon Kabushiki Kaisha Exposure method and apparatus
5204888, Dec 14 1989 Aloka Co., Ltd. Bone mineral content measuring apparatus
5278887, Jun 29 1992 Siemens Corporate Research, Inc Apparatus and method for reducing X-ray dosage during a fluoroscopic procedure
5282254, Jun 29 1992 Siemens Corporate Research, Inc Method for locating an edge portion of an aperture in a filter member in X-ray fluoroscopy apparatus
5369678, Jun 29 1992 Siemens Corporate Research, Inc Method for tracking a catheter probe during a fluoroscopic procedure
5396532, Oct 19 1992 Siemens Aktiengesellschaft X-ray diagnostics installation having means for forming a transparency signal
5396889, Sep 07 1992 Hitachi Medical Corporation Stereotactic radiosurgery method and apparatus
5568533, May 26 1992 KUMAZAKI, TATSUO; YAMANOUCHI PHARMACEUTICAL CO , LTD K-filter for serial high-speed rotatography and apparatus for the rotatography
5572037, Feb 03 1995 University of Massachusetts Medical Center Digital imaging using a scanning mirror apparatus
5661774, Jun 27 1996 Analogic Corporation Dual energy power supply
5680434, Feb 27 1995 U.S. Philips Corporation X-ray examination apparatus comprising a collimator unit
5689544, Nov 21 1994 U.S. Philips Corporation X-ray examination apparatus comprising a beam diaphragm
5881127, Jan 19 1996 The Regents of the University of California Automatic x-ray beam equalizer
5991362, Nov 15 1996 Hologic, Inc Adjustable opening X-ray mask
6036362, Jul 09 1997 Siemens Aktiengesellschaft Radiation diaphragm with filter indicator
6094474, Nov 03 1997 Octostop, Inc.; OCTOSTOP, INC, Hyper-transparency compensating device for a gantry mounting radiography apparatus
6118848, Jan 14 1998 REIFFEL TECHNOLOGIES, LLC System to stabilize an irradiated internal target
6148062, Nov 03 1997 GE Medical Systems, S.A. X-ray beam-shaping filter and X-ray imaging machine incorporating such a filter
6226352, Sep 08 1998 VERITAS PHARMACEUTICALS, INC System and method for radiographic imaging of tissue
6301334, Apr 19 2000 Analogic Corporation Backlash-resistant drive assembly for collimator in a CT scanner
6389108, Feb 03 1999 ALAYNA ENTERPRISES CORPORATION Moving collimator system
6396902, Jul 31 2000 Analogic Corporation X-ray collimator
6501828, Oct 21 1999 Siemens Healthcare GmbH Method and apparatus for influencing X-rays in a beam path
6597758, May 06 2002 Agilent Technologies, Inc.; Agilent Technologies, Inc Elementally specific x-ray imaging apparatus and method
6614878, Jan 23 2001 Fartech, Inc.; FARTECH, INC X-ray filter system for medical imaging contrast enhancement
6633627, Sep 28 2000 GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC, X-ray CT system, gantry apparatus, console terminal, method of controlling them, and storage medium
6851854, Jan 18 2002 Siemens Healthcare GmbH X-ray apparatus with interchangeable filter and area dose measuring device
7050544, Aug 18 2003 SIEMENS HEALTHINEERS AG X-ray diagnostic device with filters and a beam sighting mirror mounted on a common rotatable disk
7092490, Jan 30 2003 GE Medical Systems Global Technology Company, LLC Filter system for radiological imaging
7120222, Jun 05 2003 General Electric Company CT imaging system with multiple peak x-ray source
7132674, Nov 23 2001 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Collimator for high-energy radiation and program for controlling said collimator
7254216, Jul 29 2005 General Electric Company Methods and apparatus for filtering a radiation beam and CT imaging systems using same
7263171, Oct 15 2004 GE Medical Systems Global Technology Company, LLC Beam diaphragm and X-ray imaging apparatus
7330535, Nov 10 2005 General Electric Company X-ray flux management device
7343003, Dec 09 2004 GE Medical Systems Global Technology Company, LLC X-ray diaphragm, X-ray irradiator, and X-ray imaging apparatus
7380986, May 11 2004 Siemens Aktiengesellschaft X-ray apparatus and mammographic x-ray apparatus with an indicator
7386097, Oct 28 2004 Bruker AXS, Inc Analytical instrument with variable apertures for radiation beam
7463715, Feb 20 2007 Siemens Healthcare GmbH System and method for real time dual energy x-ray image acquisition
7483518, Sep 12 2006 Siemens Medical Solutions USA, Inc Apparatus and method for rapidly switching the energy spectrum of diagnostic X-ray beams
7508918, Sep 22 2005 Nuctech Company Limited; Tsinghua University Collimator for adjusting X-ray beam
7539284, Feb 11 2005 FOREVISION IMAGING TECHNOLOGIES LLC Method and system for dynamic low dose X-ray imaging
7636413, Apr 16 2002 General Electric Company Method and apparatus of multi-energy imaging
7649981, Oct 15 2003 Varian Medical Systems, Inc Multi-energy x-ray source
7680249, May 11 2007 GE Medical Systems Global Technology Company, LLC Filter unit, X-ray tube unit, and X-ray imaging system
7723690, Mar 30 2007 General Electric Company Adjustable slit collimators method and system
7742568, Jun 09 2007 Leidos, Inc Automobile scanning system
7783007, Jul 27 2006 DEUTSCHES KREBSFORSCHUNGSZENTRUM Irradiation device and collimator
7831023, Apr 24 2007 Siemens Aktiengesellschaft X-ray diaphragm
7852990, Dec 03 2007 Siemens Healthcare GmbH Beam admission unit, beam generation device and tomography device
7869862, Oct 15 2003 Varian Medical Systems, Inc Systems and methods for functional imaging using contrast-enhanced multiple-energy computed tomography
7983388, Oct 08 2008 incoatec GmbH X-ray analysis instrument with adjustable aperture window
7983391, Apr 27 2009 IKOMED TECHNOLOGIES INC System for reduction of exposure to X-ray radiation
8009807, Jun 17 2005 Siemens Healthcare GmbH Radiation screen for an x-ray device
8077830, Sep 28 2009 Varian Medical Systems, Inc. Beam filter positioning device
8130901, Mar 19 2007 Planmeca Oy Limiting an X-ray beam in connection with dental imaging
8284903, Jan 24 2009 GE Medical Systems Global Technology Company, LLC Filter and X-ray imaging system
8445878, Mar 16 2011 CONTROLRAD SYSTEMS, INC Radiation control and minimization system and method
8565378, May 06 2005 Deutsches Krebsforschungszentrum Stiftung Des Oeffentlichen Rechts Method and device for defining a beam of high-energy rays
8571178, Sep 25 2009 FUJIFILM Corporation Radiation imaging apparatus and imaging control device controlling a filter based on subject information
8693628, Apr 27 2009 IKOMED TECHNOLOGIES INC X-ray system
8731142, May 01 2012 ACCUTHERA INC. X-ray collimator
8824638, Aug 17 2011 General Electric Company Systems and methods for making and using multi-blade collimators
8890100, Aug 15 2012 Varian Medical Systems, Inc. Internally mounted collimators for stereotactic radiosurgery and stereotactic radiotherapy
9014341, Nov 27 2012 GE Medical Systems Global Technology Company LLC CT collimator and CT system including the CT collimator
9050028, Mar 16 2011 ControlRad Systems, Inc. Radiation control and minimization system and method using collimation/filtering
9125572, Jun 22 2012 University of Utah Research Foundation Grated collimation system for computed tomography
9254109, Oct 18 2012 SIEMENS HEALTHINEERS AG Selection of a radiation shaping filter
9406411, Feb 08 2011 MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT Automatic calibration for device with controlled motion range
9480443, Feb 26 2014 SIEMENS HEALTHINEERS AG Method for selecting a radiation form filter and X-ray imaging system
9504439, Oct 07 2013 Samsung Electronics Co., Ltd. X-ray imaging apparatus and control method for the same
9592014, Mar 03 2012 CONTROLRAD SYSTEMS INC X-ray reduction system
20140294146,
20150023466,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Jan 24 2022REM: Maintenance Fee Reminder Mailed.
Feb 09 2022M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Feb 09 2022M2554: Surcharge for late Payment, Small Entity.


Date Maintenance Schedule
Jun 05 20214 years fee payment window open
Dec 05 20216 months grace period start (w surcharge)
Jun 05 2022patent expiry (for year 4)
Jun 05 20242 years to revive unintentionally abandoned end. (for year 4)
Jun 05 20258 years fee payment window open
Dec 05 20256 months grace period start (w surcharge)
Jun 05 2026patent expiry (for year 8)
Jun 05 20282 years to revive unintentionally abandoned end. (for year 8)
Jun 05 202912 years fee payment window open
Dec 05 20296 months grace period start (w surcharge)
Jun 05 2030patent expiry (for year 12)
Jun 05 20322 years to revive unintentionally abandoned end. (for year 12)