The present invention relates to the development of a unique inflorescence bearing mutant plant type lli/lli (LEAF-LESS INFLORESCENCE). Further the present invention relates to the development of a unique inflorescence bearing mutant plant type lli/lli (LEAF-LESS INFLORESCENCE) through chemical mutagenesis. The present invention relates to the development of a new and distinct plant type for floricultural usage. The new type is a monogenic Mendelian recessive stable mutant plant of Catharanthus roseus with a novel leafless inflorescence architecture with increased flower frequency. This distinct plant of Catharanthus roseus was developed through chemical mutagenesis followed by salt tolerance selection.
|
|
Latin name: Catharanthus roseus.
Varietal denomination: lli.
The present invention relates to the development of a unique inflorescence bearing mutant plant type lli/lli (LEAF-LESS INFLORESCENCE). Further the present invention relates to the development of a unique inflorescence bearing mutant plant type lli/lli (LEAF-LESS INFLORESCENCE) through chemical mutagenesis. The present invention relates to the development of a new and distinct plant type for floricultural usage. The new type is a monogenic Mendelian recessive stable mutant plant of Catharanthus roseus with a novel leafless inflorescence architecture with increased flower frequency. This distinct plant of Catharanthus roseus was developed through chemical mutagenesis followed by salt tolerance selection.
The Madagascar periwinkle Catharanthus roseus (L.) G. Don, a tropical plant of the family Apocynaceae, is a plant that is displayed indoors in all kinds of geographical locations, especially the temperate locations and grown in gardens in semi-temperate to tropical locations on account of its ability to produce flowers all round the year, small size and perenniality.
The species Catharanthus roseus enjoys pantropical distribution as its plants grow well under tropical and sub-tropical environments, It is rarely encountered in temperate environments as low winter temperatures inhibit growth. The characteristic of wide adaptability to all types of soils facilitates its geographically spread distribution in India. Water logged and highly alkaline solis are not suitable for this plant species.
The genus Catharanthus is comprised of eight species of small annual or perennial shrubs and herbs, predominantly indigenous to Madagascar: C. ovalis, C. trichophyllous, C. longifolius, C. coriaceous, C. lanceous and C. scitulus. The species C. pusillus has origin in India and C. roseus has now naturalized throughout tropics, including tropical and subtropical areas of India. The common features of species in the genus Catharanthus include the following: Leaves sessile or short petaloid, entire; Flowers terminal or axillary, solitary or in 2-4 flowers terminated cymes, almost sessile or with very short pedical; Bracts absent; Calyx 5 parted, sepals free almost to the base, narrow, equal without signamellae on the inside; Corolla small to large, salver shaped, rose or white; tube cylindric, slender, externally swollen at the mouth; lobes 5, broad, spreading, overlapping to the left; Stamens 5, attached to the middle of the corolla tube, included Anthers free from stigma and dorsifixed; Pollen ellipsoid, smooth, colporate; Nectary disc represented by two scales, much longer than broad, alternatively with carpels; Carpels 2, distinct, ovules numerous about 10-30 in two series in each carpel; Style long, clavuncle shortly cylindric, truncate at the base; Fruit folliclular, seed numerous non-arrilate, with the hilum in a longitudinal depression on one side, blackish, muriculate, the surface minutely reticulate.
The beauty of this floricultural plant will get furthered if the species is genetically improved to bear higher number of flowers per plant and inflorescence where flowers are borne becomes leafless. Catharanthus roseus is also a source of pharmaceutically important terpenoid indole alkaloids (TIAs). Among a spectrum of the secondary metabolites such as alkaloids, anthocyanins, flavonoids, glycosides, saponins, terpenes, essential oils, coumarins and anthraquinones synthesized in many plants, the TIA biosynthesis pathway of Catharanthus roseus is of considerable interest on account of its several products that are valuable pharmaceuticals. Whole plant and cell, organ and tissue culture studies have shown that alkaloid biosynthesis in Catharanthus roseus responds to stressful conditions. The response of plants to stress apparently is correlated with the hyper-expression of secondary metabolism or pathway(s). The contents of the pharmaceutically important alkaloids in the different organs of Catharanthus roseus vary but are low. There is need for developing whole plant and/or single cell genotypes that hyper-synthesize and accumulate anticancerous and/or, cardiotonic TIAs. Hybridization and selection procedures have been used to develop floricultural types in Catharanthus roseus. Besides, a variety of approaches have been applied towards the genetic improvement of Catharanthus roseus for economic production of its alkaloids. In this regard, the genetic resources from the wild and induced mutants have been examined to identify accessions whose characters can be combined for obtaining desired genotypes. Certain cell cultures and hairy root lines have also been developed in which synthesis of the commercial alkaloids occurs at high levels constitutively or under induced conditions. It appears that genetical investigations on the response to stress may reveal signal pathway(s) shared by the stress responsive genes, and alkaloid biosynthetic pathway genes and/or growth and developmental pathway genes. This approach could be a means to develop improved plant types with better stress response and improved floricultural value and/or higher concentrations of accumulated alkaloids.
Considerable progress has been made in Arabidopsis thaliana and other well worked plant systems such as barley, tomato, tobacco, soybean and maize in the analysis of genes concerned with sensitivity and tolerance to salt stress. In order to be able to use this knowledge and material generated in these heterologous systems, it was considered necessary to develop mutants in Catharanthus roseus corresponding to those available in other systems, but with above hypothesis in view. Planned efforts were made to obtain salt tolerant genotype(s) having altered plant architectures. The present invention relates to a salt tolerant mutant with distinct morphology called lli (LEAF-LESS INFLORESCENCE) in ‘Nirmal’ variety of periwinkle Catharanthus roseus. This mutant genotype bears more flowers, and flowers borne on leafless inflorescence stalks and thus offers growers floricultural advantage.
The main objective is to develop a novel variety of Catharanthus roseus having distinct morphological features related to salinity tolerance;
Another objective is to develop a novel mutant having hyper-branching associated with improved horticultural/floricultural character in terms of higher levels of flowering.
Yet another objective is to develop a plant type in which flowers are borne on the nodes free of leaves stem stalks that arise from leaf axils.
Still another objective of the invention is to develop unique plant features which can be combined easily with other characters of the Catharanthus roseus.
In accordance with these objectives, herein below are described isolation and characteristics of inflorescence and plant architecture in a recessive Mendelian mutant of Catharanthus roseus. The main shoot and branches after initial vegetative growth continued to produce branches that bore determinate leafless racemes, while retaining the perennial growth characteristics of the species. The mutant produced more flowers on plant on account of profuse branching. The flowers are produced on nodes on stalks free of leaves. This phenotype is in sharp contrast to the wild type in which the main shoot and branches continue to grow indeterminately producing flowers in the axil of each of the alternate leaves. In comparison to the existing genetic resources, the new mutant displays flowers in larger numbers that are visualized unhindered by leaves.
The present invention relates to the development of a unique inflorescence bearing mutant plant type lli/lli (LEAF-LESS INFLORESCENCE) through chemical mutagenesis with ethyl methane sulphonate followed by rigorous selection for tolerance to 250 mM NaCl in selfed seed progeny of the familiar fungal resistant variety ‘Nirmal’ of Catharanthus roseus. The mutant lli allele is monogenically recessive to the wild type allele LLI, in Mendelian fashion. The lli mutation is responsible for a pleiotropic phenotype such that the main shoot and branches after initial vegetative growth continue to produce branches bearing functionally determinate leafless inflorescences. Thus in the mutant the number of inflorescence bearing branches is high. One or two flowers are formed on each flowering node. Whole plant-wise, the number of flowers at any time in lli/lli is more than in plant having LLI allele. Leaves being largely absent in the inflorescence of the mutant, the flower display on the plant appears prominent. Because of 75% cross pollination, the mutant characteristics can be maintained by vegetative propagation, or by production of selfed seeds. The vegetative propagation can be by means of cutting, budding, layering and multiple shoot cultures. The lli/lli plants have been maintained vegetatively and by use of selfed seeds for more than 10 cycles. All the morphological plant attributes in lli/lli plants are firmly fixed genetically so as to give a guarantee for pleiotropic morphological characteristics. The pleiotropic characteristic of lli/lli can be combined with any flower colour and plant habit so as to cause improvement in horticultural value.
The invention provides a new and distinct Catharanthus roseus plant, developed through mutagenesis possessing the following combination of characters:
The mutant plant ‘lli’ can grow on a large variety of soils, including mildly saline soils. Best growth is obtained on sandy loam soil added with farm yard manure/wormicompost. Plant grows well at new Delhi in summer (March to June) and mansoon (July to October) seasons and when temperatures may range from 20° C. to 45° C. However, lower winter temperatures (in December to February) inhibit plant growth. Plant requires periodic irrigation.
The applicant used the seeds of Catharanthus roseus cv ‘Nirmal’ for mutagenesis. About 20,000 seeds were soaked for 8 h in 0.1% (v/v) ethyl methane sulphonate solution in water, then washed in running water for 4 h. The mutagenized seeds were sown in earthen pans filled with 1:1 mixture of soil and farmyard manure. About one month old M1 seedlings were transplanted in the field to obtain M2 seeds. The M2 and control seeds were screened for germination in the presence of high concentrations of NaCl. It had been already shown that control seeds did not germinate in a medium containing more than 150 mM NaCl. To conduct the germination test, the M2 seeds were first surface sterilized using 0.1% HgCl2 (w/v) for one minute, washed thoroughly with sterile distilled water and blotted dry. These were then transferred to petridishes over Whatman no. 1 filter paper circles irrigated with 200 mM NaCl solution, under sterile conditions. The germination test was performed in a culture room at 25±2° C. in a 16 h/8 h light dark cycle. Out of 21,500 M2 seeds, one seedling was found to have germinated in the presence of NaCl. The selected seedling was transplanted over soil and farmyard manure mixture and 6 weeks later to the field. The mutant was observed to have a defective flowering pattern. The M3 selfed seeds were harvested and seeds were tested for resistance to 250 mM NaCl and plants raised from them for the altered inflorescence character to confirm the true breeding behaviour of the mutant. The mutation has now been maintained in pure state in the background of cv. ‘Nirmal’ for 12 generations. Since the mutant was observed to produce flowers on determinate leafless racemose inflorescences, the wild type allele of the mutant was called as lli for LEAF-LESS INFLORESCENCE and wild type phenotype as LLI for leafy indeterminate racemose inflorescence. The mutant plants appeared to be bushy and short statured because of multibranching character. The comparative growth parameters of the wild type and mutant plants are given in the Table 1, and as follows:
The mutant plants produced more branches, flowers and siliquae and smaller number of leaves than the wild type plants.
TABLE 1
Morphological characteristics of the wild type and lli/lli
mutant plants of Catharanthus roseus cv Nirmal
S1.
Mutant
no.
Charactersa
Wild type
‘lli’
1.
Plant height (cm)
63.4 ± 2.3
54.3 ± 2.1
2.
Main stem diameter (mm)b
12.0 ± 0.9
13.2 ± 0.4
3.
Internodal length (cm)
2.1 ± 0.1
1.9 ± 0.2
4.
Number of branches/plantc
27 ± 2
45 ± 3
5.
Number of leaves/plant
496 ± 18
392 ± 21
6.
Length of petiole
0.7 ± 0.1
0.8 ± 0.1
7.
Leaf length (cm)
4.7 ± 0.2
3.5 ± 0.2
8.
Leaf width (cm)
2.3 ± 0.1
2.0 ± 0.1
9.
Leaf area (cm2)d
8.9 ± 0.1
6.4 ± 0.1
10.
Leaf biomass (g/plant)
43 ± 2
38 ± 2
11.
Total leaf alkaloids (%)
1.3 ± 0.6
1.9 ± 0.4
12.
Number of flowers/leaf node
1.5 ± 0.5
10.2 ± 2.1
13.
Number of flowers/flowering node
1.5 ± 0.5
1.5 ± 0.7
14.
Number of flowers/plant
162 ± 25
423 ± 45
15.
Length of corolla tube (cm)e
2.9 ± 0.1
2.5 ± 0.1
16.
Length of petal (cm)
2.3 ± 0.1
2.1 ± 0.1
17.
Length of sepal (cm)
0.4 ± 0.2
0.3 ± 0.2
18.
Pollen size (μm)
62 ± 4
60 ± 2
19.
Pollen fertility (%)f
87 ± 3
82 ± 5
20.
Length of pods (cm)
2.8 ± 0.1
1.5 ± 0.1
21.
Average number of seeds/siliquae
16 ± 1
12 ± 1
22.
Weight of 100 seeds (mg)
81 ± 1
80 ± 1
aall the quantitative observations were taken in 8 months old plants and seeds produced on them;
bmain stem diameter was measured in the middle of land surface and site of emergence of first branch;
ctotal number of branches were counted;
dleaf area was measured by using leaf area meter;
efloral morphology was studied by examination of flower under desecting microscope
fSpollen fertility was assessed using acetocarmine and fluorochromatic reaction tests (Heslop-Ranson et al., 1970)
TABLE 2
Behaviour of filial generations in crosses involving lli/lli mutant
and wild type in Catharanthus roseus
Number of plants
S1.
mutant
no.
Crosses and parentsa
Generation
wild type
type
X2 testb
1.
Wild type
P
21d
0
2.
Mutant
P
0
12
3.
Wild type X mutant
F1
32c
0
4.
″
F2
49
18d
0.12
5.
Mutant X wild type
F1
35c
0
6.
″
F2
35
10d
0.18
athe parents were homozygous mutant and wild type plants;
bx2 was calculated on an expected ratio of 3:1; x2 P > 0.05;
cthe F1 seeds were salt sensitive
dthe selfed seeds borne on these plants were salt tolerant
Multiple shoot cultures are induced from the young apical portions of branches from lli plant. The cultures are initiated, using individual nodes carrying pieces of stem after their sterilization with 0.1% HgCl2 (mercuric chloride) for one minute, on Murashige-Skoog medium supplemented with 3% sucrose solidified with 0.6% agarose with combination of 1 mg/l benzyladenine (BA) and 0.1 mg/l NAA (naphthalene acetic acid). Inoculated tubes are incubated in florescent light of 3000 lux for 16 h/day at ±25° C. After 10 to 15 days of inoculation a number of shoots originate from each node. These new shoots are separated after 4 weeks and sub-cultured for one month in the same medium. When roots have originated from the shoots, the clones are hardened and planted into soil in pots.
In the wild type, the vegetatively growing main shoot and its branches after some growth became indeterminate inflorescence(s), and their apical meristem continued to grow indefinitely. The shoot apical meristem (SAM) in the vegetative phase of the wild type and lli grew to add metamers that comprised of stem, two opposite leaves at a node and in axils of each leaf secondary shoot meristems. Whereas in the wild type, with the onset of reproductive phase the SAM turned into inflorescence apical meristem (IAM) and thereupon produced at each stem node a pair of opposite leaves and in axil of one of them one or two floral meristem(s), the IAM of lli mutant plants grew into a raceme bearing 10-14 flowers, one or two at each node and there were no leaves formed on the raceme nodes. Besides, additional 1 to 2 racemes developed from the axil of one of the last pair of leaves formed by the SAM. The lli plants flowered later in time than wild type plants. Morphology-wise the lli plants appeared to be bushy and short statured as compared to the wild type plants.
The wild type variety ‘Nirmal’ from which the mutant lli was generated is resistant to the die back disease caused by Pythium sp. The lli plants were also die back disease resistant. The lli mutant was found slightly more susceptable to the twig blight caused by Rhizoctonia solani than wild type. No major pests, other than oleander hawk moth were seen.
PCR conditions: A set of 40 deca-nucleotide primers obtained from Operon Technologies, Inc. (USA) were used for PCR amplification. Polymerase chain reactions (PCR) were carried out in Eppendorf tubes; each reaction mixture contained 25 ng of DNA, 0.2 units of taq DNA polymerase, 100 μM each of the dNTPs, 2 mM MgCl2 and 5 p moles of the primer. The amplification was carried out using DNA Engine ‘i cycler (3.021 version)’ BioRad. The cycling parameters were the following: cycle 1 (1×) 94° C. for 1 min, 36° C. for 0.30 min., 72° C. for 1 min; cycle 2 (45×) 94° C. for 0.05 min, 36° C. for 0.15 min, 72° C. for 1 min; and cycle 3 (1×) 72° C. for 7 min followed by cycle 4° C. for ∞. The products generated by PCR amplification were separated by electrophoresis in 1.2% agarose gel containing 0.5 g ml−1 ethidium bromide. The gel was run with TBE (tris-borate-EDTA buffer) at 60 v for about 4-5 h. In each case 1 Kb λ-DNA ladder digested with EcoRI and Hind III was included to serve as a molecular weight marker and the gel was photographed using Gel Doc System (Alphaimager Tm 2200).
Catharanthus roseus is planted in gardens and kept indoor in pots on account of its characteristic year round bearing of flowers. The plant looks pretty and its varieties bear flowers of different colours, including white. There are many plant species in which flower bearing inflorescence give a view unhindered by leaves, such as in cereals and brassicas. However, in Catharanthus roseus natural genetic resources do not demonstrate such character. Therefore it was desired to induce a mutant in Catharanthus roseus whose flowers will be displayed prominently unhindered by leaves. Further in Catharanthus roseus genetic resources only two flowers are formed per flowering leaf node. In order that the plant will produce more flowers it was desired to induce a mutant which will produce more than two flowers per flowering leaf node and flowers will be visualized unhindered by leaves. Both these goals were achieved by the isolation of lli/lli mutant in Catharanthus roseus. As a result of the present work the lli/lli plants of Catharanthus roseus of 4 months or more age produce 25 to 400% more flowers displayed prominently as compared to the parental varieties. The lli/lli Catharanthus roseus represent significant advance in the floricultural value of the species.
Floricultural advantages
The lli/lli mutant plants of Catharanthus roseus retain constant flower bearing, short stature and perenniality characteristics of the species. They bear several to many flowers on stalks that arise from the axils of leaves at the top of branches, unlike in the existing genetic resources where one or two flowers are produced in the axils of leaves. The mutant plants bear more branches and therefore 25 to 400% more flowers than the existing genetic resources in plants of ages varying from 4 to 18 month. The canopy of the mutant is spreading in nature while being erect in habit like the parent variety. The lli/lli plants are relatively more tolerant to salt/drought than the parental variety(ies). Therefore, lli/lli mutants of Catharanthus roseus represent genetically improved plant type with several floricultural features absent in the existing genetic resources.
Kumar, Sushil, Srivastava, Suchi, Singh, Digvijay, Mishra, Raghvendra Kumar, Rai, Shashi Pandey, Kumar, Sanjay Rai
Patent | Priority | Assignee | Title |
10212908, | Oct 29 2015 | Ball Horticultural Company | Male sterility in catharanthus |
Patent | Priority | Assignee | Title |
6548746, | Mar 21 2000 | Council of Scientific and Industrial Research; Counsel of Scientific and Industrial Research | `Dhawal`, a high alkaloid producing periwinkle plant |
20050251887, | |||
PP15894, | Jun 07 2004 | Nuflora International Pty. Ltd. | Argyranthemum plant named ‘Supacrest’ |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 04 2004 | Council of Scientific and Industrial Research | (assignment on the face of the patent) | / | |||
Oct 29 2004 | KUMAR, SUSHIL | Council of Scientific and Industrial Research | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016154 | /0654 | |
Oct 29 2004 | SRIVASTAVA, SUCHI | Council of Scientific and Industrial Research | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016154 | /0654 | |
Oct 30 2004 | RAI, SASHI PANDEY | Council of Scientific and Industrial Research | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016154 | /0654 | |
Oct 30 2004 | RAI, SANJAY KUMAR | Council of Scientific and Industrial Research | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016154 | /0654 | |
Nov 05 2004 | MISHRA, RAGHVENDRA KUMAR | Council of Scientific and Industrial Research | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016154 | /0654 | |
Nov 06 2004 | SINGH, DIGVIJAY | Council of Scientific and Industrial Research | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016154 | /0654 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |