A hydraulic actuator for producing translational movement over a long distance having two jack cylinders with pistons mounted for reciprocal movement and connected to a worm wheel through a worm gear. When a piston is driving, the worm gear acts as a rack to turn the worm wheel and when a piston is being returned to its starting position the worm gear rotates. Means are provided to alternately switch from one cylinder to the other.
|
6. A linear actuator comprising a body structure having a first and a second end and defining a first cylinder and a second cylinder; a first annular piston disposed in said first cylinder and a second annular piston disposed in said second cylinder; a first duct means for continuously communicating a first chamber defined by said first end and said first piston with a relatively high pressure source; a second duct means for continuously communicating a second chamber defined by said second end and second piston with a relatively low pressure source; changeover valve means controlling the admission and exhaust of relatively high pressure fluid to and from a third chamber defined between said first and second pistons in a manner causing said pistons to reciprocate through power and return strokes with the power stroke of one piston alternating with that of the other and with substantially no time delay between successive power strokes; a shaft extending co-axially through said pistons in threaded engagement therewith, means for preventing rotation of the shaft and motor means connected to rotate each piston during its return stroke so that upon admitting high pressure to said third chamber said second piston causes axial movement of the shaft in the direction of the second end and the motor means rotates the first piston such as to cause its movement relative to the shaft and the body structure in the direction of the first end, while upon venting said third chamber, said first piston causes axial movement of the shaft in the direction of the second end and the motor means rotates the second piston such as to cause its movement relative to the shaft and the body structure in the direction of the first end.
1. A hydraulic actuator comprising a body structure defining two jack cylinders and ducts for the supply of pressurized hydraulic fluid to, and exhaust of fluid from, said jack cylinders, tow pistons disposed one in each cylinder, each having a helicoidal portion in the form of a screw thread co-acting with a mating portion of an actuator, changeover valve means controlling the admission and exhaust of fluid to and from said cylinders in a manner causing said pistons to reciprocate through power and return strokes with the power stroke of one piston alternating with that of the other and with substantially no time delay between successive power strokes, and means to rotate a selective piston to enable it to move back to its staring position while the other piston drives said mating portion.
2. An actuator as claimed in
3. An actuator as claimed in
4. An actuator as claimed in
5. A hydraulic actuator comprising:
a. a body structure defining two jack cylinders and ducts for the supply and exhaust of pressurized fluid to and from said cylinders, b. two pistons disposed one in each cylinder, each having a screw threaded portion, c. power transmission means threadingly engaging the screw threaded portion of each piston, d. means to rotate a selective piston to enable it to move back to its starting position while the other piston drives said power transmission means, and e. changeover valve means controlling the admission and exhaust of fluid to and from said cylinders in a manner causing said pistons to reciprocate through power and return strokes with the power stroke of one piston alternating with that of the other and with substantially no time delay between successive power strokes.
7. The actuator of
|
This invention relates to actuators for the movement of substantial loads through substantial distances.
Actuators of the kind to which the invention relates may be used, for example, for the lifting or hauling of heavy loads, the straining of pre-stressing cables in concrete structures, the rotation of machine elements against the effects of heavy restraining torques and the like.
Many relatively simple actuators are known for the shifting of heavy loads through short distances, for example, mechanical or hydraulic jacks, but prior known actuators for producing translational motion over a long distance or continuous rotary motion have been elaborate and therefore expensive.
An object of the present is to provide an actuator of the kind under discussion which is relatively simple in construction and, therefore, inexpensive to manufacture.
The invention achieves that object by the provision of two hydraulic jack cylinders which work in concert and which are effective to move a load in increments with one jack cylinder taking over from the other at the end of each increment to provide substantially continuous motion.
Thus, the invention consists in an actuator comprising a body structure defining two jack cylinders and ducts for the supply of pressurized hydraulic fluid to, and exhuast of fluid from, said jack cylinders, two pistons disposed one in each cylinder, changeover valve means controlling the admission and exhaust of fluid to and from said cylinders in a manner causing said pistons to reciprocate through power and return strokes with the power stroke of one piston alternating with that of the other and with substantially no time delay between successive power strokes, and power transmission means which drive-connect each said piston to a load to be moved during the piston's power stroke but release each piston from the load during the piston's return stroke.
According to the invention the power transmission means comprises a helicoidal element, such as a nut or a worm which engages a co-acting loaded element, such as a threaded shaft or a worm-wheel, together with means to rotate the helicoidal element during the return stroke of its associated piston to permit the helicoidal element to move translationally relative to the loaded element. On the other hand, during the power stroke of its associated piston the helicoidal element is not rotated and, thus, translational movement imparted to it by its associated piston causes the required motion of the loaded element, which is thereby transmitted to the load to be moved.
The invention is applicable to the rotation of a load in either direction in a controlled and irreversible manner. For example, it may be incorporated in the drive for slewing a large crane, turning a winch drum or similar application. It is also applicable to providing a continuous linear motion on a long shaft.
Certain embodiments of the invention will now be described with reference to the accompanying drawings in which:
FIG. 1 shows, in front elevation and partly in section, an actuator adapted for rotary motion,
FIG. 2 shows, in end elevation and partly in section, a view along the line 2--2 of FIG. 1,
FIG. 3 shows, in front elevation and partly in section, an actuator adapted for translational motion, valve previously being energized in response to the movements of the previously described microswitch 16, at each end of the stroke of the worm 12. The movements of this automatic valve cause the duct A to alternate between the pressure supply from the pump 33 and the discharge to the reservoir 40.
According to a second embodiment of the invention a linear actuator is provided, as shown in FIGS. 3 and 4.
In this instance, the two jack pistons may be in the form of nuts 19 and 20 on a threaded shaft 21, being the helicoidal member to which the load to be moved is connected, wherein the load prevents rotation of the shaft 21.
The body structure 22 surrounds the threaded shaft which extends co-axially through the two jack cylinders 23 and 24. The jack cylinders may be opposite end portions of a single cylindrical cavity and both jack pistons may have respective axially extending skirts 25 and 26 thereon which project through sealing glands at the outer ends of the cylindrical cavity. Furthermore, the jack pistons may have inwardly direct skirts thereon, slidable telescopically within the housing 22, and each having respective annular fluid seals 28 and 29 to prevent leakage of fluid from the cylinders to the screw-threaded shaft.
Each jack piston may have a respective spur gear 30 and 31 fixed to its outwardly projecting skirt outside the jack cylinder space and said spur gears may mesh respectively with pinions such as 32 driven by return motors as described in the first embodiment of the invention.
As in the first embodiment, duct A leads to the space between the two pistons, duct B leads to one closed end of the cylinder and Duct C leads to the other closed end of the cylinder.
The double acting micro switch 27 or other triggering mechanism (see FIG. 5) for the automatic valve may be operated at the ends of the strokes of the first piston as previously described in the first example of the invention.
As described in the first embodiment the two return motors may be replaced by a single motor, rotating the two pistons on their return strokes, through differential gearing.
The operation is similar to that described for the first embodiment and the duct arrangment is identical to that shown in FIG. 1. Duct A is at high pressure when the pistons are closest together and at low pressure when the pistons are furthest apart. When duct A is at high pressure, the opposite face of the first piston is at low pressure and the piston thrusts the screwed shaft axially; the opposite face of the second piston is at high pressure, so there is no pressure difference and the piston is rotated, screwing along the shaft against the stop, until the first piston triggers the switch. Duct A now changes to low pressure, causing the second piston to thrust on the shaft and allowing the first piston to rotate, screwing along the shaft until it triggers the switch to repeat the cycle of operation.
Where several rotary actuators, as described in the first embodiment, or several linear actuators as described in the second embodiment, are required to operate in parallel and in phase with one another, it is preferred to employ solenoid operated automatic valves, with micro switches triggered by the movements of both jack pistons. In this case the micro switches of each actuator are connected in series pairs and these pairs for all actuators are connected in series, to operate a single automatic valve, or any number of automatic valves. This ensures that all jack pistons operate over their full stroke and that the separate actuators remain in phase with one another, regardless of loading differences, within the limits of one piston stroke.
Ifield, Richard J., Ifield, William R.
Patent | Priority | Assignee | Title |
8616080, | Feb 23 2009 | Parker Intangibles, LLC | Shuttle stop force limiter |
9279483, | Mar 11 2011 | TIMOTION TECHNOLOGY CO., LTD. | High-load linear actuator |
Patent | Priority | Assignee | Title |
2808033, | |||
2970574, | |||
2979034, | |||
3000357, | |||
3090360, | |||
3179015, | |||
3187592, | |||
3414693, | |||
3425285, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 21 1974 | R. J. Ifield & Sons Pty. Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Oct 12 1979 | 4 years fee payment window open |
Apr 12 1980 | 6 months grace period start (w surcharge) |
Oct 12 1980 | patent expiry (for year 4) |
Oct 12 1982 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 12 1983 | 8 years fee payment window open |
Apr 12 1984 | 6 months grace period start (w surcharge) |
Oct 12 1984 | patent expiry (for year 8) |
Oct 12 1986 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 12 1987 | 12 years fee payment window open |
Apr 12 1988 | 6 months grace period start (w surcharge) |
Oct 12 1988 | patent expiry (for year 12) |
Oct 12 1990 | 2 years to revive unintentionally abandoned end. (for year 12) |