A surgical cutting instrument includes an electrically heated cutting edge and a power supply system for maintaining the cutting edge at a constant high temperature for sterilizing the blade, cutting tissue, and cauterizing the incised tissue to reduce hemorrhage from the cut surfaces of the tissues (hemostasis).

Patent
   RE29088
Priority
Nov 09 1967
Filed
Oct 28 1975
Issued
Dec 28 1976
Expiry
Dec 28 1993
Assg.orig
Entity
unknown
89
11
EXPIRED
10. A method of cutting tissue with simultaneous hemostasis comprising:
conducting current along a plurality of substantially parallel current paths oriented laterally across a supported tissue cutting edge;
dissipating power in regions of said tissue cutting edge responsive to selective cooling of said regions by reason of contact with tissue; thereby maintaining said tissue cutting edge at a selected temperature range.
9. The method of cutting tissue with simultaneous hemostasis comprising the steps of:
contacting the tissue to be cut with a tissue cutting edge at an elevated temperature;
establishing the elevated temperature by conducting current along a plurality of substantially parallel current paths located along said tissue cutting edge; and
increasing power dissipation in regions of the edge which are selectively cooled upon contact with tissue for maintaining the temperature of the edge within a selected range.
1. A surgical instrument for cutting tissue with simultaneous hemostasis, the instrument comprising:
insulating support means having as a portion thereof a tissue-cutting edge and including thereon region and including in physical contact with said support means an electrically-heatable element of electrically-conductive material disposed on said edge region defining a cutting edge to contact tissue and to conduct electrical current along a plurality of parallel current paths for directly heating the cutting edge in response to electrical signal applied thereto; and
connection means on said instrument providing electrical connections to said element for supplying electrical signal thereto to be conducted along a plurality of parallel current paths.
2. A surgical instrument as in claim 1 wherein said electrically-heatable element includes a substantially continuous conductive layer disposed adjacent the cutting edge; and
said connection means includes a pair of electrodes which are disposed in spaced relationship on opposite sides of said support means and which are connected to said conductive layer on opposite sides of the cutting edge for conducting current along a plurality of parallel current paths oriented substantially laterally across the cutting edge.
3. A surgical instrument as in claim 1 wherein:
said electrodes are disposed on opposite sides of said support means; and
the electrically-heatable element includes a plurality of discrete electrically-heatable elements disposed to traverse the cutting edge of said support means and connected at the ends thereof to electrodes on opposite sides of said support means.
4. A surgical instrument as in claim 1 wherein:
said electrically-heatable element on said support means is formed of electrically-conductive material which has positive-temperature coefficient of resistance; and
said connection means includes a source of substantially constant voltage connected to said pair of electrodes for maintaining the voltage across the element substantially constant as portions of said element contact tissue. 5. A hemostatic surgical cutting blade comprising:
a cutting blade having a tissue cutting edge;
an electrically heatable element of electrically conductive material thermally connected to and at least extending along the area of the cutting edge such that said edge may be maintained within a predetermined temperature range; and
two or more electrodes disposed in spaced relationship on the cutting blade and connected to said electrically conductive material for conducting current along a plurality of parallel current paths. 6. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrodes are disposd in lateral spacial relationship on opposite sides of said cutting edge for conducting current along a plurality of parallel current paths oriented substantially laterally across the cutting edge.
7. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrically heatable element is further defined as comprising a plurality of discrete electrically heatable elements.
8. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrically heatable element is formed from a material having a positive-temperature coefficient.
11. A method of hemostatic surgery as in claim 9 wherein:
current is conducted along a plurality of substantially parallel current paths which are discrete.
12. A method of hemostatic surgery according to claim 9 wherein:
the resistance of the parallel current paths increases with increasing temperature thereof.
13. A method of hemostatic surgery according to claim 12 wherein:
a constant voltage is impressed upon the current paths.

This application is a reissue of Pat. 3,768,482 which matured from application 295,879 filed October 10, 1972 and which is a continuation of continuation-in-part of U.S. Pat. Application Ser. No. 63,645 filed August 13, 1970, now abandoned, which is a continuation of U.S. Pat. Application Ser. No. 681,737 filed Nov. 9, 1967, now abandoned.

The control of bleeding during surgery accounts for a major portion of the total time involved in an operation. The bleeding that occurs when tissue is incised obscures the surgeon's vision, reduces his precision and often dictates slow and elaborate procedures in surgical operations. Each bleeding vessel must be grasped in pincer-like clamps to stop the flow of blood and the tissue and vessel within each clamp must then be tied with pieces of fine thread. These ligated masses of tissue die and decompose and thus tend to retard healing and promote infection.

Accordingly, the present invention provides a surgical cutting instrument having a cutting edge which is electrically heated to a constant high temperature for sterilizing the blade, cutting the tissue and cauterizing the surfaces of the incision, thereby allowing surgery to be more rapidly performed. This is accomplished in accordance with the illustrated embodiment of this invention by providing electrically heated elements disposed to form the cutting edge of the blade and by providing a common constant voltage source which operates to maintain the cutting edge at a high substantially constant temperature during its use. The hot cutting edge according to the present invention decreases the amount of tissue that is damaged and reduces the tendency of the instrument to stick to the heated tissue in the incision. In one embodiment, the material used in the electrically heated cutting edge has a positive temperature coefficient of resistance. The temperature at which the cutting edge of the blade is maintained depends upon such factors as the nature of the tissue to be cut, the speed of cutting desired, the degree of tissue coagulation desired, and the non-adherence of the blade to the incised tissue and generally is maintained between 300°-1,000° Centigrade for typical incisions in typical human tissue. The cutting edge includes many parallel current paths in a conductive material connected between the terminals of a constant-voltage power source. The operating temperature of the cutting edge is controlled by altering the voltage between the terminals.

The handle of the cutting instrument is thermally insulated from the blade to permit comfortable use of the instrument and the handle and blade with its electrically-heated cutting edge are detachable for easy replacement and interchangeability with blades having cutting edges of various shapes and sizes determined by the nature of the incision to be made and the tissue to be cut.

FIGS. 1 and 2 are pictorial views of embodiments of cutting instruments according to the present invention; and

FIG. 3 is an end sectional view of the embodiment of FIG. 1 showing the heater element disposed as the cutting edge of the blade between electrodes on opposite sides thereof.

Referring now to FIGS. 1 and 3 of the drawing, there is shown the surgical cutting instrument 9 including a thin ceramic card 63 in the desired shape of a surgical cutting blade which is detachable from the handle or holder 10. An electrical heating element 61 is disposed in the region of, i.e. on or about, the cutting edge 62 of ceramic card 63 between electrodes 65 and 67 which are electrically connected to a constant voltage source through the cable 14 and the connectors 71 and 73. The element 61 may be a continuous conductive film attached to the card 63, for example, using conventional vapor-deposition processes. The material used for the element 61 may be tantalum nitride or other similar material having a positive temperature coefficient of resistance. Thus, as a portion of the element cools when in contact with tissue, the resistance of such portion of the element decreases and draws increased current from the constant voltage source 75. This localizes the portion of the element 61 in which additional power is dissipated to the portion cooled on contact with tissue. The temperature of such portions of the element may thus be maintained substantially constant as the cutting edge comes in contact with tissue being cut. Other suitable materials having positive temperature coefficients of resistance for use as the element 61 include tungsten, nickel, platinum, chromium, alloys of such metals, and the like.

In the embodiment of the present invention illustrated in FIGS. 1 and 3, the heating element 61 is laterally disposed across the cutting edge 62 of the blade-like support card 63 to form a continuum of current-conducting paths along the length of the cutting edge. These current-conducting paths of heating element 61 are all parallel-connected between the contact electrodes 65 and 67 and which are disposed on opposite sides of the support card 63. These contact electrodes may be formed of a material such as platinum or tungsten, or the like, which makes good contact with the heating element material and which does not readily oxidize at elevated operating temperatures. Alternatively, the heating element 61 may also be arranged to traverse the cutting edge 62 as discrete, closely-spaced elements 69 that are all parallel-connected between opposite-side electrodes 65 and 67 on the card 63, as shown in FIG. 2. Such discrete elements are connected on one side of the card 63 to the electrode 67 and on the other side of the card to electrode 65. In the limit, the heating elements 69, as shown in FIG. 2, may be sufficiently closely located along the cutting edge 62 in parallel connection between the opposite-side electrodes 65 and 67, as to perform substantially as a continuous conductive film, as shown in FIG. 1.

In each of the illustrated embodiments, the electrodes 65 and 67 and heating elements 61 or 69 may be conductive material which is vapor-deposited in the desired interconnected patterns on a suitable electrically-insulating ceramic card 63. Alternatively, the electrodes and heater elements may be etched to shape on a card 63 whose side surfaces and edges are coated with the selected conductive materials.

In each of these embodiments, the electrodes 65, 67 are connected through conductors 14 and suitable electrical connectors 71, 73 mounted in the handle 10 to a source 75 of substantially constant voltage. This source 75 may be a conventional, well-regulated power supply or other low-output impedance supply which is capable of delivering the total current required by all portions of heating element 61 (or by all discrete elements 69) while maintaining the voltage between electrodes 65 and 67 substantially constant. In this way, each portion of heating element 61 (or discrete element 69) which cools down when placed in contact with tissue during surgical use decreases in resistance between electrodes (for positive temperature coefficient of resistance). With constant voltage applied to the electrodes, the cooled regions draw correspondingly more current and dissipate more power in the cooled region, thereby tending to maintain the heating element all along the cutting edge at the preselected operating temperature. The operating temperature of the cutting edge is thus selected by altering the value of the constant voltage supplied by source 75. To assure substantially uniform operating temperature over the length of the cutting edge 62, the heating element 61 (or the discrete elements 69 closely spaced about the edge) may have substantially uniform resistance per unit area. The ceramic card 63 may be formed of high thermal conductivity material such as aluminum oxide, or the like, to assure more uniform operating temperature along the length of the cutting edge.

Shaw, Robert F.

Patent Priority Assignee Title
10034687, Dec 06 2010 SURGIGYN, INC Apparatus for treating a portion of a reproductive system and related methods of use
10149712, Apr 17 2009 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
10213247, Apr 17 2009 Domain Surgical, Inc. Thermal resecting loop
10299770, Jun 01 2006 MAQUET CARDIOVASCULAR LLC Endoscopic vessel harvesting system components
10357306, May 14 2014 DOMAIN SURGICAL, INC Planar ferromagnetic coated surgical tip and method for making
10405914, Apr 17 2009 Domain Surgical, Inc. Thermally adjustable surgical system and method
10441342, Apr 17 2009 Domain Surgical, Inc. Multi-mode surgical tool
10507012, Nov 17 2000 MAQUET CARDIOVASCULAR LLC Vein harvesting system and method
10639089, Apr 17 2009 Domain Surgical, Inc. Thermal surgical tool
11123127, Apr 17 2009 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
11134835, Jun 01 2006 MAQUET CARDIOVASCULAR LLC Endoscopic vessel harvesting system components
11141055, Jun 01 2006 MAQUET CARDIOVASCULAR LLC Endoscopic vessel harvesting system components
11266459, Sep 13 2011 Domain Surgical, Inc. Sealing and/or cutting instrument
11627990, Dec 06 2010 GYRUS ACMI, INC Apparatus for treating a portion of a reproductive system and related methods of use
11701160, May 14 2014 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
4232676, Nov 16 1978 Corning Glass Works Surgical cutting instrument
4248231, Nov 16 1978 Corning Glass Works Surgical cutting instrument
4314559, Dec 12 1979 Corning Glass Works Nonstick conductive coating
4333467, Dec 12 1979 Corning Glass Works Nonstick conductive coating
4492832, Dec 23 1982 BIRTCHER CORPORATION, THE Hand-controllable switching device for electrosurgical instruments
4534347, Apr 08 1983 RESEARCH CORPORATION TECHNOLOGIES, INC , A NOT-FOR-PROFIT, NON-STOCK CORPORATION OF DE Microwave coagulating scalpel
4640279, Aug 08 1985 Hemostatic Surgery Corporation Combination surgical scalpel and electrosurgical instrument
4793346, Sep 04 1986 Process and apparatus for harvesting vein
5373840, Oct 02 1992 Cardiothoracic Systems, Inc Endoscope and method for vein removal
5693052, Sep 01 1995 Megadyne Medical Products, Inc. Coated bipolar electrocautery
5766166, Mar 07 1995 Atricure, Inc Bipolar Electrosurgical scissors
5772576, Dec 11 1995 MAQUET CARDIOVASCULAR LLC Apparatus and method for vein removal
5843080, Oct 16 1996 Megadyne Medical Products, Inc. Bipolar instrument with multi-coated electrodes
6071232, Dec 11 1995 MAQUET CARDIOVASCULAR LLC Apparatus for vein removal
6179837, Mar 07 1995 Atricure, Inc Bipolar electrosurgical scissors
6350264, Mar 07 1995 Atricure, Inc Bipolar electrosurgical scissors
6391029, Mar 07 1995 Atricure, Inc Bipolar electrosurgical scissors
6428468, Dec 11 1995 MAQUET CARDIOVASCULAR LLC Apparatus and method for vein removal
6464701, Mar 07 1995 Atricure, Inc Bipolar electrosurgical scissors
6506200, Jul 13 1995 MAQUET CARDIOVASCULAR LLC Tissue separation cannula and method
7001404, Jul 13 1995 MAQUET CARDIOVASCULAR LLC Tissue separation cannula and method
7066875, Dec 11 1995 MAQUET CARDIOVASCULAR LLC Apparatus and method for vein removal
7214180, Aug 10 1999 MAQUET CARDIOVASCULAR LLC Method for cardiac restraint
7264587, Aug 10 1999 MAQUET CARDIOVASCULAR LLC Endoscopic subxiphoid surgical procedures
7288096, Jan 17 2003 Origin Medsystems, Inc. Apparatus for placement of cardiac defibrillator and pacer
7384423, Jul 13 1995 MAQUET CARDIOVASCULAR LLC Tissue dissection method
7398781, Aug 10 1999 MAQUET CARDIOVASCULAR LLC Method for subxiphoid endoscopic access
7526342, Aug 10 1999 MAQUET CARDIOVASCULAR LLC Apparatus for endoscopic cardiac mapping and lead placement
7597698, Aug 10 1999 MAQUET CARDIOVASCULAR LLC Apparatus and method for endoscopic encirclement of pulmonary veins for epicardial ablation
7867163, Jun 22 1998 MAQUET CARDIOVASCULAR LLC Instrument and method for remotely manipulating a tissue structure
7938842, Aug 12 1998 MAQUET CARDIOVASCULAR LLC Tissue dissector apparatus
7972265, Jun 22 1998 MAQUET CARDIOVASCULAR LLC Device and method for remote vessel ligation
7981133, Jul 13 1995 MAQUET CARDIOVASCULAR LLC Tissue dissection method
8241210, Jun 22 1998 MAQUET CARDIOVASCULAR LLC Vessel retractor
8292879, Apr 17 2009 DOMAIN SURGICAL, INC Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
8292888, Apr 20 2001 Covidien LP Bipolar or ultrasonic surgical device
8323278, Dec 06 2010 SURGIGYN, INC Apparatus for treating a portion of a reproductive system and related methods of use
8372066, Apr 17 2009 DOMAIN SURGICAL, INC Inductively heated multi-mode surgical tool
8377052, Apr 17 2009 DOMAIN SURGICAL, INC Surgical tool with inductively heated regions
8414569, Apr 17 2009 DOMAIN SURGICAL, INC Method of treatment with multi-mode surgical tool
8419724, Apr 17 2009 DOMAIN SURGICAL, INC Adjustable ferromagnetic coated conductor thermal surgical tool
8425503, Apr 17 2009 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
8430870, Apr 17 2009 DOMAIN SURGICAL, INC Inductively heated snare
8460331, Aug 12 1998 Maquet Cardiovascular, LLC Tissue dissector apparatus and method
8491578, Apr 17 2009 DOMAIN SURGICAL, INC Inductively heated multi-mode bipolar surgical tool
8506561, Apr 17 2009 DOMAIN SURGICAL, INC Catheter with inductively heated regions
8523850, Apr 17 2009 DOMAIN SURGICAL, INC Method for heating a surgical implement
8523851, Apr 17 2009 DOMAIN SURGICAL, INC Inductively heated multi-mode ultrasonic surgical tool
8523852, Apr 17 2009 DOMAIN SURGICAL, INC Thermally adjustable surgical tool system
8523890, Apr 20 2001 Covidien LP Bipolar or ultrasonic surgical device
8608738, Dec 06 2010 SURGIGYN, INC Apparatus for treating a portion of a reproductive system and related methods of use
8617151, Apr 17 2009 DOMAIN SURGICAL, INC System and method of controlling power delivery to a surgical instrument
8845665, Apr 20 2001 Covidien LP Bipolar or ultrasonic surgical device
8858544, May 16 2011 DOMAIN SURGICAL, INC Surgical instrument guide
8915909, Apr 08 2011 DOMAIN SURGICAL, INC Impedance matching circuit
8932279, Apr 08 2011 DOMAIN SURGICAL, INC System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
8986335, Aug 12 1998 MAQUET CARDIOVASCULAR LLC Tissue dissector apparatus and method
9078655, Apr 17 2009 DOMAIN SURGICAL, INC Heated balloon catheter
9107666, Apr 17 2009 DOMAIN SURGICAL, INC Thermal resecting loop
9131977, Apr 17 2009 DOMAIN SURGICAL, INC Layered ferromagnetic coated conductor thermal surgical tool
9149321, Apr 08 2011 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
9220557, Apr 17 2009 Domain Surgical, Inc. Thermal surgical tool
9265553, Apr 17 2009 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
9265554, Apr 17 2009 Domain Surgical, Inc. Thermally adjustable surgical system and method
9265555, Apr 17 2009 Domain Surgical, Inc. Multi-mode surgical tool
9265556, Apr 17 2009 DOMAIN SURGICAL, INC Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
9320560, Apr 17 2009 Domain Surgical, Inc. Method for treating tissue with a ferromagnetic thermal surgical tool
9526558, Sep 13 2011 Domain Surgical, Inc. Sealing and/or cutting instrument
9549774, Apr 17 2009 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
9662514, Apr 20 2001 Covidien LP Bipolar or ultrasonic surgical device
9700398, Aug 12 1998 MAQUET CARDIOVASCULAR LLC Vessel harvester
9730749, Apr 17 2009 DOMAIN SURGICAL, INC Surgical scalpel with inductively heated regions
9730782, Aug 12 1998 MAQUET CARDIOVASCULAR LLC Vessel harvester
RE36043, Jan 11 1996 MAQUET CARDIOVASCULAR LLC Endoscope and method for vein removal
Patent Priority Assignee Title
1735271,
1794296,
1930214,
2012938,
2917614,
3234356,
3526750,
3584190,
3648001,
3662755,
3826263,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events


Date Maintenance Schedule
Dec 28 19794 years fee payment window open
Jun 28 19806 months grace period start (w surcharge)
Dec 28 1980patent expiry (for year 4)
Dec 28 19822 years to revive unintentionally abandoned end. (for year 4)
Dec 28 19838 years fee payment window open
Jun 28 19846 months grace period start (w surcharge)
Dec 28 1984patent expiry (for year 8)
Dec 28 19862 years to revive unintentionally abandoned end. (for year 8)
Dec 28 198712 years fee payment window open
Jun 28 19886 months grace period start (w surcharge)
Dec 28 1988patent expiry (for year 12)
Dec 28 19902 years to revive unintentionally abandoned end. (for year 12)