A compact apparatus and method for applying hot-melt size in a properly fluid state to a plurality of textile yarns. The apparatus comprises an internally heated rotating cylinder made of heat-conducting material, with deep grooves formed around it, one groove for each yarn strand. The size is preferably applied by urging a block of solid size against the grooves of the hot cylinder. From the point of application the molten size is carried by the rotation of the cylinder to a zone where each moving yarn strand passes briefly through a corresponding size-filled groove, essentially tangentially to the cylinder, and then moves away coated with an optimum amount of size. The method of application is unique in its capacity for placing a quick-setting, high molecular weight, film-forming melt size on yarn at high speed.

Patent
   RE29287
Priority
Feb 13 1976
Filed
Feb 13 1976
Issued
Jul 05 1977
Expiry
Feb 13 1996
Assg.orig
Entity
unknown
3
8
EXPIRED
5. A combination for applying sizing to a plurality of textile strands comprising:
a roller having a plurality of grooves therein extending circumferentially about the peripheral closed surface thereof,
a solid block of sizing material,
means for heating said roller,
means for receiving a solid block of sizing and holding a portion of said block in contact with said closed surface of said roller so that a portion of said sizing is melted by the heated roller and is lodged in said grooves, and
means for rotating said roller so that said sizing in said grooves is applied to textile strands each moving past said roller, and travelling for at least a short distance in a groove so as to pick up at least a portion of the sizing in that groove.
4. An apparatus for applying sizing to a plurality of textile strands comprising:
a roller having a plurality of grooves therein, extending circumferentially about the peripheral closed surface there,
means for receiving sizing and applying the received sizing to said roller so that sizing is lodged in said grooves, including means for heating said roller and means for holding a solid block of sizing material and urging that block against said heated roller so that portions thereof are melted and lodged in said grooves,
means for rotating said roller so that said sizing in said grooves is applied to textile strands each moving past said roller, and traveling for at least a short distance in a groove so as to pick up at least a portion of the sizing in that groove.
1. An apparatus for applying sizing material to a plurality of textile strands of given diameter, the sizing material initially being in solid form, comprising :
a roller having a plurality of grooves therein extending circumferentially about the peripheral closed surface thereof, each of said grooves having a depth greater than the given diameter of a textile strand cooperating therewith,
means for melting the sizing material and means for applying the sizing material to said roller from the exterior of said roller so that sizing is lodged in said grooves thereof of said roller, and
means for rotating said roller so that sizing in said grooves is applied to textile strands each moving past said roller, and travelling for at least a short distance in a groove immersed in sizing in said groove so as to pick up at least a portion of the sizing in that groove.
2. An apparatus as in claim 1 wherein said means for receiving sizing includes means for heating said roller.
3. An apparatus as in claim 1 wherein said grooved roller is aluminum.
6. Apparatus as recited in claim 1 wherein the depth of each of said grooves is at least three to five times the diameter of a textile strand cooperating therewith.
7. Apparatus as recited in claim 1 further comprising means for cleaning the grooves in said roller after immersion of textile strands therein.

The invention relates to a method and apparatus for applying molten size to a plurality of textile strands.

In the process given length of applicator cylinder as possible, close spacing is desirable. The hairiness of the yarn-- a function of fiber type, staple length, presense presence or absence of twist, and other parameters-- is the chief factor setting a limit on the closeness of the grooves. In general, the more hairy the yarn, the greater should be the spacing between the grooves, especially if the yarn be fine and weak and easily subject to breakage in either sizing or subsequent conversion to fabric, should a fiber from one yarn become pulled over and entangled in an adjacent yarn line. There is no true upper limit upon how far apart the grooves can be, about 10 to 20 grooves per inch (or more, with twisted non-hairy yarns) being particularly suitable, and about 10 per inch being most preferred in yarns of average hairiness.

It is believed that groove widths substantially equal to the diameter of the yarn being sized are generally preferred. Wider grooves, however, are also satisfactory, through perhaps not quite so effective in laying the fibers and fiber ends protruding from the body of the yarn. Groove widths of 10- 15 mils, with depths of 50 mils, have been used with notable success with a variety of yarns.

The shape of the grooves may be varied to advantage from substantially parallel to slightly tapered walls, all preferably preferably with rounded bottoms. Grooves 50 mils deep, with polished walls tapering from about 15 mils apart at the surface of the cylinder to 10 mils at their rounded bottoms, have proved particularly effective and adaptable to a variety of yarn types and sizes, and these are preferred. The tapering appears to assist in two ways: promoting flow of size toward the bottom of the groove, and flexing and rolling the yarn as it is squeezed into and out of the gently constricting walls as it enters and leaves the groove.

Although the essentially open-shell structure for providing the grooved cylindrical surface is preferred for its versatility and relative ease of construction, other cylindrical grooved structures and means of constructing them will be readily apparent to those of ordinary skill. Suitable grooved applicators made by other means are considered to fall within the scope of the invention.

FIGS. 1-4 all depict means for applying solid size 6 to the applicator cylinder 1, at one of the convenient points for the operation, in this case at approximately the 3 o'clock position for 12 o'clock yarn contact and counter-clockwise cylinder rotation as viewed in FIG. 4. A block of size, typically 13.5 inches wide, one-half inch thick, and 12 inches long, is placed on a fixed platform 12 fitted with a free-rolling pusher 7, the latter being forced against the edge of the melt block by the pressure supplied by a piston and cylinder 11. The rate of melting of size is controlled by a combination of factors including the temperature and speed of the applicator cylinder, melting point of the size, and pressure against the size block. In practice the pressure on the block and the speed of the cylinder are the most easily adjusted variables in determining the weight of size added to the yarn.

To assist in pushing the size down into the grooves, as well as to keep the outer surface of the applicator as clear as possible of accumulations of size and loose fibers, a close-fitting doctor blade 8 is placed at a downstream point, conveniently at 3 o'clock as shown in FIG. 4. The position of the doctor blade is not critical, except that is should be between the points of addition and pick-up of the size.

When the process is to be set in motion, doctor blade 8 is placed in position, rotation of cylinder 1 (heated to the appropriate temperature) is started, pusher 7 is moved to press size block 6 against the applicator, and as soon as all are working smoothly comb 2 is lowered so that yarns 3 drop into grooves 9, the latter action being simultaneous with starting of the wind-up drive. The process is easily interrupted by raising comb 2 and turning off the wind-up.

The arrangement of the components depicted in FIG. 2 is particularly convenient when used in conjunction with optional but preferred size levelling and groove-cleaning accessory 13, depicted in longitudinal, part section in FIG. 5 and in end view in FIG. 6. This accessory comprises a series of Mylar (DuPont polyethylene terephthalate film) washers 14, 5- 10 mils thick, spindled alternately with a series of metal, preferably aluminum, spacers 15 (which my may be of other construction such as plastic) onto a drive shaft 16 and held in place by cylindrical end pieces 17 and threaded nuts 17'. The Mylar washers are typically about one-fourth inch larger than the spacers. In use cleaner 13 is set, preferably opposite the size block, conveniently at the 2 o'clock position as shown in FIG. 2 parallel to size application cylinder 1 so that the plastic washers align perfectly within the grooves of cylinder. (To achieve this perfect alignment the aluminum spacers 15 must be made about 0.5 percent thicker than calculated, to allow for the differential thermal expansions of the heated cylinder and the cooler cleaner unit.) The shaft is mounted in end bearings and rotated at, for example, about 90 rpm, the effect being for the protruding plastic washers, reaching substantially to the bottoms of the grooves, to exert a rubbing and scraping action in the grooves to prevent accumulation and packing down of loose fiber lint which gradually becomes separated from the yarn and otherwise may cause stoppages for cleaning the cylinder. The lint either scatters from the surface of the plastic washers or, being kept stirred up, keeps continually entrained with the molten size and is carried along with the ongoing yarn.

It has been found advantageous, when using the cleaner as depicted, to supplement doctor blade 8 at 3 o'clock of FIG. 4 with an optional second doctor blade 8' before the size application point, such as at 4 o'clock, for example. The function of this second blade is essentially only to clean.

Besides the rotating cleaner just described, other cleaning means as may be known in the art may be used. Further, a very simple cleaning process at the end of the operating period is to place a tray of water 28 at the 6 o'clock position, and turn the hot drum through it until flushed clean.

Another convenient position for applying the size to the applicator is on the side opposite the 3 o'clock position illustrated in FIG. 4, i.e., the size is melted on at the 9 o'clock position, and the doctor blade is set at around 3 o'clock.

The specific positions cited for the various accessories are to be regarded as only exemplary. Other positions, both absolute and relative to each other, will readily be apparent to one of ordinary skill in the art.

To demonstrate the large-scale utilization of the invention, 140 packages of 22/1,65 percent polyester/35 percent rayon yarn were positioned on a yarn creel. The 140 yarn ends were pulled through an eyeboard in front of the creel and then through 140 1-inch 20-gauge tricot bar guides which were positioned one-half inch from the surface of a grooved aluminum roll. The 140 yarn ends were laid into every other slot of the bar guide. Each end was passed through its corresponding groove across the top arc of the aluminum applicator roll. The grooves, 15 mils wide at their tops, tapering to 10 mils at their rounded bottoms, were cut 10 grooves per inch. The surface temperature of the roll was 180°C, and the yarn speed was 300 ypm.

A large 60/40 melt blend of the Polymer C polyester of our copending application and adipic acid was cast as a 1/2 × 8 × 14-inch slab. The edge of the slab, at room temperature, was pushed against the face of the hot roll at a position of approximately 9 o'clock of FIG. 4, (180° from the location depicted and with scraper 8' omitted), at constant pressure, with the roll turning clockwise at 21/4 rpm, in the direction of yarn travel. Excess hot melt was wiped off at approximately 3 o'clock with a Teflon doctor blade. Only a few feet from the roll the yarn no longer felt tacky showing that the size had quickly solidified at least on its surface. The yarn was then passed over an over-oiler 18, which applied about 1 percent of oil, and from there through separating bar and a comb 21 to draw the yarn shed down to 20 ends per inch. Takeup was on a 7-inch tricot beam located approximately 20 feet from the melt applicator. Multiple 7-inch tricot beams were combined to make a warp suitable for knitting or weaving.

The yarn, on examination, was found to have greatly improved fiber lay, a size level of 9 percent and increased tensile strength and abrasion resistance.

The hereinbefore described preferred process for applying size to the grooved cylinder by pressure of the solid size block is attractively simple, and superior to others which have been investigated, particularly for sizes having any tendency to thermal degradation when held long in a molten state. Other means of applying the size to the applicator, such as by doctoring it on as a melt, or extruding it in various ways, as from a wide nozzle placed axially across the line of grooves, are regarded to fall within the scope of the invention.

As mentioned above, the novel embodiments of the invention hereinbefore described find particular utility in connection with water-soluble hot-melt size compositions of the type described in the copending Malpass et al application, although other suitable hot-melt sizes can be used. While the embodiment detailed has 141 grooves around the circumference of the cylinder, it will be understood that any reasonable number of grooves can be employed, and it is contemplated that in a full-scale machine, at least 500- 600 grooves, each for receiving and applying sizing material to a strand, will be employed on each cylinder, and that any reasonable number of cylinders in parallel can be employed to apply size at the same time to warp strands passing the machine.

Many other changes and modifications in the above-described embodiments of the invention can, of course, be made without departing from the scope of the invention. Accordingly the scope is intended to be limited only by the scope of the appended claims.

Conklin, Delano M., Illman, Walter F., Malpass, Robert C.

Patent Priority Assignee Title
4253840, Mar 20 1979 BURLINGTON INDUSTRIES, INC Hot-melt size compositions and process for textiles
4401782, May 06 1980 BURLINGTON INDUSTRIES, INC Hot melt size and yarns sized therewith
4540610, Sep 30 1982 BURLINGTON INDUSTRIES, INC Hot melt size applying
Patent Priority Assignee Title
2022854,
2438084,
3345172,
3479988,
3625735,
3732603,
439916,
DT1,088,196,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 13 1976Burlington Industries, Inc.(assignment on the face of the patent)
Sep 03 1987BURLINGTON INDUSTRIES, INC BURLINGTON INDUSTRIES, INC ASSIGNMENT OF ASSIGNORS INTEREST 0048210756 pdf
Sep 03 1987BI MS HOLDS I INC BURLINGTON INDUSTRIES, INC MERGER SEE DOCUMENT FOR DETAILS 0048270512 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Jul 05 19804 years fee payment window open
Jan 05 19816 months grace period start (w surcharge)
Jul 05 1981patent expiry (for year 4)
Jul 05 19832 years to revive unintentionally abandoned end. (for year 4)
Jul 05 19848 years fee payment window open
Jan 05 19856 months grace period start (w surcharge)
Jul 05 1985patent expiry (for year 8)
Jul 05 19872 years to revive unintentionally abandoned end. (for year 8)
Jul 05 198812 years fee payment window open
Jan 05 19896 months grace period start (w surcharge)
Jul 05 1989patent expiry (for year 12)
Jul 05 19912 years to revive unintentionally abandoned end. (for year 12)