magnetic disk recording apparatus including a pair of magnetic transducers contacting the opposite sides of a magnetic disk and each carried by a swingable arm. The arms are interconnected together so that the swinging movement of one of the arms is transmitted to the other arm to cause an opposite swinging movement of the other arm for simultaneously moving the transducers away from the magnetic disk. An electro-magnet actuates one of the arms so as to thereby also move the other arm.
|
12. A magnetic transducer carriage assembly for use with a moving magnetic medium, comprising:
a carriage adapted to be moved transversely of a moving magnetic medium, a pair of transducers for magnetic action on the opposite sides of the medium, first and second swing arms each carrying one of said transducers, a swing mounting for said first arm with respect to said carriage, a swing mounting for said second arm with respect to said carriage, an arm portion fixed with respect to said second swing arm adjacent to its swing mounting with said carriage and extending toward said first swing arm, and an arm portion fixed with respect to said first swing arm adjacent to its swing mounting with said carriage and extending toward said second swing arm to form a power transmitting connection with said arm portion of said second swing arm so as to swing said transducer carried by said second swing arm away from said transducer carried by said first swing arm and thereby away from a magnetic medium positioned between said transducers when said first swing arm is swung about its swing mounting with said carriage to move said transducer carried thereby away from said other transducer and thereby away from a magnetic medium positioned between said transducers.
1. magnetic recording apparatus comprising a magnetic medium having opposite sides both of which have a magnetic surface, a pair of transducers for magnetic action on the opposite sides of said medium, means for moving said magnetic medium so that a track or path is described by each of said transducers on a side of said medium, first and second swing arms each carrying one of said transducers, a carriage, a swing mounting for said first arm with respect to said carriage, a swing mounting for said second arm with respect to said carriage, means for moving said carriage and thereby said arms and said transducers in a direction at angles to said track so that the transducers traverse the magnetic medium on other tracks of the magnetic medium, an arm portion fixed with respect to said second swing arm adjacent to its swing mounting with said carriage and extending toward said first swing arm, and an arm portion fixed with respect to said first swing arm adjacent to its swing mounting with said carriage and extending toward said second swing arm to form a power transmitting connection with said arm portion of said second swing arm so as to swing said second swing arm and said transducer carried thereby away from said medium when said first swing arm is swung about its swing mounting with said carriage to move said first swing arm and said transducer carried thereby away from said medium.
9. magnetic recording apparatus comprising a magnetic medium having opposite sides both of which have a magnetic surface, a pair of transducers for magnetic action on the opposite sides of said medium, means for moving said magnetic medium so that a track or path is described by each of said transducers on a side of said medium, a pair of swing arms each carrying one of said transducers, a carriage, means for swingingly mounting said arms on said carriage, means for moving said carriage and thereby said arms and said transducers in a direction at angles to said track so that the transducers traverse the magnetic medium on other tracks of the magnetic medium, and means interconnecting a first one of said arms with a second one of said arms so that when said first arm is swung to move said transducer carried thereby away from said medium the other arm is thereby swung also to move its transducer away from said medium, said medium being a magnetic disk and said means for moving said medium constituting a shaft extending through the center of the disk on which the disk is mounted, said means interconnecting said arms including a relatively thin flexure section which extends between and is integral with said arms, said flexure section being of relatively flexible material so that when said first arm is swung to move its transducer away from said disk the other of said arms is swung likewise to move its transducer away from said disk with bending of said flexure section.
8. magnetic recording apparatus comprising a magnetic medium having opposite sides both of which have a magnetic surface, a pair of transducers for magnetic action on the opposite sides of said medium, means for moving said magnetic medium so that a track or path is described by each of said transducers on a side of said medium, a pair of swing arms each carrying one of said transducers, a carriage, means for swingingly mounting said arms on said carriage, means for moving said carriage, and thereby said arms and said transducers in a direction at angles to said track so that the transducers traverse the magnetic medium on the other tracks of the magnetic medium, means interconnecting a first one of said arms with a second one of said arms so that when said first arm is swung to move said transducer carried thereby away from said medium the other arm is thereby swung also to move its transducer away from said medium, said medium being a magnetic disk and said means for moving said medium constituting a shaft extending through the center of the disk on which the disk is mounted, said means for swingingly mounting said arms on said carriage including a pivot shaft extending through each of said arms about which the arm may pivot, and springs extending around said shafts and in contact with the associated swing arm in and with said carriage for yieldably moving said swing arms toward each other so as to bring said transducers into data transferring relationship with respect to said disk.
7. magnetic recording apparatus comprising a magnetic medium having opposite sides both of which have a magnetic surface, a pair of transducers for magnetic action on the opposite sides of said medium, means for moving said magnetic medium so that a track or path is described by each of said transducers on a side of said medium, a pair of swing arms each carrying one of said transducers, a carriage, means for swingably mounting said arms on said carriage, means for moving said carriage and thereby said arms and said transducers in a direction at angles to said track so that the transducers traverse the magnetic medium on other tracks of the magnetic medium, means interconnecting a first one of said arms with a second one of said arms so that when said first arm is swung to move said transducer carried thereby away from said medium the other arm is thereby swung also to move its transducer away from said medium, said medium being a magnetic disk and said means for moving said medium constituting a shaft extending through the center of the disk on which the disk is mounted, said means for swingingly mounting said arms on said carriage including a leaf flexure spring for each of said arms and having one end embedded in the arm and having its opposite end fixed to said carriage at a point of attachment, and a leaf return spring for each of said arms fixed to said carriage at a said point of attachment and extending to an exterior surface of the arm whereby to return the arm to a position in which its said transducer is in data transferring position with respect to said disk.
2. magnetic recording apparatus as set forth in
3. magnetic recording apparatus as set forth in
4. magnetic recording apparatus as set forth in
5. magnetic recording apparatus as set forth in
6. magnetic recording apparatus as set forth in
10. magnetic recording apparatus as set forth in
11. magnetic recording apparatus as set forth in
13. A magnetic transducer carriage assembly as set forth in
14. A magnetic transducer carriage assembly as set forth in
15. A magnetic transducer carriage assembly as set forth in
16. A magnetic transducer carriage assembly as set forth in
said leaf flexure spring for each of said arms having one end embedded in the arm and having its opposite end fixed to said carriage at a point of attachment, and a leaf return spring for each of said arms fixed to said carriage at said point of attachment for this arm and extending to an exterior surface of the arm whereby to return the arms to positions in which their said transducers are in close proximity and are in data transferring position
with respect to a magnetic medium between said arms. 17. A magnetic transducer carriage assembly as set forth in claim 12; said power transmitting connection between said arm portions including a relatively thin flexure section which extends between and is integral with said arm portions; said flexure section being of relatively flexible material so that, when said first arm is swung, it causes the other of said arms to swing likewise but in an opposite direction so as to separate said transducers with bending of said flexure section. 18. magnetic recording apparatus for utilizing a magnetic disk both sides of which have a magnetic surface, said apparatus comprising: a pair of transducers for magnetic action on the opposite sides of the disk, rotary driving means for drivingly rotating the disk about its center, first and second swing arms each carrying one of said transducers, a carriage, a swing mounting for said first arm with respect to said carriage, a swing mounting for said second arm with respect to said carriage, means for moving said carriage and thereby said arms and said transducers in a direction generally toward said driving means so that the transducers traverse across concentric tracks on the disk, an arm portion fixed with respect to said second swing arm adjacent to its swing mounting with said carriage and extending toward said first swing arm, and an arm portion fixed with respect to said first swing arm adjacent to its swing mounting with said carriage and extending toward said second swing arm to form a power transmitting connection with said arm portion of said second swing arm so as to swing said second swing arm and thereby move its said transducer away from said transducer carried by said first swing arm and from a disk disposed between said transducers when said first swing arm is swung about its swing mounting with said carriage to move its said transducer in a direction away from said other transducer. 9. magnetic recording apparatus as set forth in claim 18 and including: power means for swinging said first swing arm in a direction to move its said transducer away from said other transducer to separate said transducers, and spring means for restoring said spring arms to initial positions in which said transducers are in close proximity for a data transferring relationship with respect to a disk therebetween. 20. magnetic recording apparatus as set forth in claim 18, said arm portion fixed with respect to said first swing arm underlying said arm portion fixed with respect to said second swing arm so that, as said first swing arm is swung about its swing mounting with said carriage to move its said transducer away from said other transducer, said arm portion on said first swing arm bears against said arm portion of said second swing arm and swings said second swing arm concomitantly with said first swing arm to separate said transducers. 21. magnetic recording apparatus as set forth in
22. magnetic recording apparatus as set forth in
|
78 74 is thus swung about the pivot edge 70a by the action of the spring 76, and the lever 74 in this swinging movement likewise moves the arm 10 against the action of the spring 26. The spring 20 acts as a flexure joint and allows this movement of the arm 10, which is counterclockwise as seen in FIG. 1 about the spring 20 acting as a joint. The slider portion 34 of the arm 10 underlies the slider portion 36 of the arm 12, and the slider portion 34 in pivoting with the rest of the arm 10 acts on the slider portion 36 of the arm 12 and causes a similar pivoting action of the arm 12. The arm 12 pivots about the spring 22, which functions also as a flexure joint similarly to the spring 20 for the arm 10; and the arm 12 pivots in a clockwise direction as seen in FIG. 1 about the spring 22 acting as a flexure joint. The transducers 42 and 44 move along with the arms 10 and 12 and thus respectively pivot in the counterclockwise and clockwise directions to separate from the disk 14. The disk 14 may then be replaced as desired. The electromagnet 68 is energized to swing the lever 74 about the pivot edge 70a back into its FIG. 2 position in order to allow the spring 26 and 28 to return the arms 10 and 12 and the transducers 42 and 44 back into their positions of FIGS. 1 and 2 in which the transducers 42 and 44 engage the disk 14.
The form of the invention illustrated in FIG. 4 is basically the same as that illustrated in the preceding figures, but the arms 10a and 12a corresponding to the arms 10 and 12 are pivotally mounted on the carriage 18a corresponding to the carriage 18 instead of being mounted by means of cantilever leaf springs. More specifically, the arms 10a and 12a are pivotally mounted on the carriage 18a by means of pivot shafts 80 and 82. Torsion springs 84 and 86 extend around the shafts 80 and 82 and bear against the arms 10a and 12a for the purpose of forcing the arms 10a and 12a together. The torsion springs 84 and 86 are used in lieu of the leaf springs 26 and 28 in the first embodiment.
The embodiment shown in FIGS. 5 and 6 is basically the same as that shown in FIGS. 1-3, the principal difference between the FIGS. 5 and 6 embodiment and the first described embodiment being that a thin section flexure 90 is substituted for the slider portions 34 and 36. The arms 10b and 12b corresponding to the arms 10 and 12 in the first described embodiment are molded along with the flexure 90 in one piece, being of a plastic which at least in thin sections is quite flexible. It will be noted that the flexure 90 as seen in FIG. 5 simply constitutes a relatively thin upwardly bowed portion which is integral with the arms 10b and 12b and connects with these arms at points 90a and 90b. The carriage 18b which is slideably mounted on the guide rods 23 and which corresponds with the carriage 18 in the first described embodiment has a pair of upstanding rails 92 and 94 molded on it, and the arms 10b and 12b have grooves 96 and 97 molded into them which fit on the rails 92 and 94. The rails 92 and 94 and the grooves 96 and 97 are semicircular in cross sectional shape so that the arms 10b and 12b may easily swing on the rails 92 and 94. The centers of these rails and grooves are substantially equidistant from the attachment points 90a and 90b. The arms 10b and 12b may together be slid onto the rails 92 and 94 in assembling the FIG. 5 form of the invention, and the arms 10b and 12b may be held by any suitable means, such as "C" clips (not shown), from sliding off of the rails 92 and 94. A pair of leaf springs 98 and 100 are fixed with respect to the carriage 18b and bear on the arms 10b and 12b for the purpose of holding the arms 10b and 12b against the stops 38 and 40 so that the transducers 42 and 44 bear with pressure on the disk 14.
The embodiment of FIGS. 5 and 6 operates basically the same as the first described embodiment. The springs 98 and 100 hold the transducers 42 and 44 against the surfaces of the disk 14 for a magnetic reading or writing action. When the electromagnet 68 is de-energized, the lever 74 pulls the arm 10b so as to rotate the arm 10b in the counterclockwise direction as seen in FIG. 5 about the rail 92, moving the transducer 42 away from the disk 14. The flexure 90 transmits a force in the upward direction as the parts are shown in FIGS. 5 and 6 from the arm 10b to the arm 12b, causing the arm 12b to rotate in the clockwise direction and moving the transducer 44 away from the disk 14 at the same time as the transducer 42 is moved away from the disk 14. The arms 10b and 12b are shown fragmentarily in FIG. 6 in their positions in which the transducers 42 and 44 are separated from the disk 14, and it will be observed that under these conditions the flexure 90 not only transmits an upward force to the arm 12b at the attachment point 90b, but the flexure 90 has also elongated in order to compensate for the increased dimension A measured between the attachment points 90a and 90b.
The various forms of the invention above described provide two-sided recording on the magnetic disk 14 for increased capacity. They load both of the transducers 42 and 44 on the disk 14 at the same time so that both of the transducers 42 and 44 may be simultaneously effective for reading or writing magnetically on the disk 14, assuming that the electrical connections to both of the transducers 42 and 44 are completed at the same time for either a reading action or a writing action. In all forms of the invention, the two arms, the arms 10 and 12 in the first described form and the corresponding arms in the other forms of the invention, move simultaneously due to the connection from one arm to the other arm; and, therefore, only the single electromagnet 68 is necessary in order to cause movement of the two arms in each form of the invention. All forms of the invention are relatively simple and may be manufactured at relatively low cost. No particular pivots are needed for the arms 10 and 12 in the first described embodiment, since the cantilever leaf spring flexures 20 and 22 provide all of the pivoting action needed. The form of the invention illustrated in FIGS. 5 and 6 is considered particularly economical of manufacture, since the arms 10b and 12b along with the flexure 90 are integral parts--only one molding operation is thus necessary for producing the three parts 10b, 12b and 90.
Wheeler, Stephen E., Wentink, William S., Castrodale, Daniel O., Steele, Steven G.
Patent | Priority | Assignee | Title |
4209813, | Jan 18 1979 | PerSci, Inc. | Dual magnetic head mounting and loading |
4275426, | Mar 12 1979 | EXXON ENTERPRISES | Floppy disc drive |
4309732, | Oct 05 1979 | Nortronics Company, Inc. | Transducer supporting assembly for double sided floppy disk |
4310865, | Feb 10 1979 | EMTEC Magnetics GmbH | Cable positioner for a scanning head |
4315292, | Oct 05 1979 | Nortronics Company, Inc. | Beveled magnetic heads for floppy disk |
4315293, | Oct 05 1979 | Nortronics Company, Inc. | Transducer protection guide for diskette insertion and removal |
4343025, | Oct 05 1979 | Nortronics Company, Inc. | Transducer arm assembly for floppy disk |
4359763, | Mar 12 1979 | EXXON ENTERPRISES | Floppy disc drive |
4393424, | Jun 21 1979 | Sycor, Inc. | Pressure arm assembly for disc recorders |
4423449, | Oct 09 1980 | Mitsubishi Denki Kabushiki Kaisha | Movable magnetic head block assembly for a double sided flexible disk storage device |
Patent | Priority | Assignee | Title |
3018152, | |||
3646536, | |||
3702997, | |||
3713121, | |||
3731006, | |||
3751603, | |||
3768083, | |||
3855622, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 20 1976 | International Business Machines Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Aug 30 1980 | 4 years fee payment window open |
Mar 02 1981 | 6 months grace period start (w surcharge) |
Aug 30 1981 | patent expiry (for year 4) |
Aug 30 1983 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 30 1984 | 8 years fee payment window open |
Mar 02 1985 | 6 months grace period start (w surcharge) |
Aug 30 1985 | patent expiry (for year 8) |
Aug 30 1987 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 30 1988 | 12 years fee payment window open |
Mar 02 1989 | 6 months grace period start (w surcharge) |
Aug 30 1989 | patent expiry (for year 12) |
Aug 30 1991 | 2 years to revive unintentionally abandoned end. (for year 12) |