An urban mass transportation system is disclosed which makes use of storage battery powered vehicles. In view of the specific use which implies preestablished routing of the vehicles and preestablished stops at frequent intervals, the capacity of the batteries installed in each vehicle is commensurate to the capability of running for a limited distance. The vehicles are further provided with contact means, such as trolleys, for performing a fast recharge of the batteries at the stop stations, without removing the batteries. The stop stations are equipped with devices mating with the contact means and suitable for allowing a fast recharge. electrical power is taken from an electrical distribution network independently from the routing of the vehicles.

Patent
   RE29994
Priority
Feb 15 1973
Filed
Nov 01 1977
Issued
May 15 1979
Expiry
Nov 01 1997
Assg.orig
Entity
unknown
41
3
EXPIRED
7. A method of operating an urban mass passenger transportation system including a plurality of electric traction vehicles, each vehicle having battery means and a plurality of recharge stop stations for loading and unloading passengers, said stop stations being other than terminals and being separated by stretches, each recharge stop station having contact means for connecting one of said vehicles to an electric power line, comprising the steps of:
energizing one of said vehicles from the energy stored in said battery means for movement along one of said stretches between two of said recharge stop stations;
rapidly connecting said vehicle to said contact means as it stops at a stop station; and
recharging said battery means with at least the same energy consumed while driving said vehicle over the preceding stretch with a fast recharge operation over a relatively short stop time of the order of tens of seconds, normally not exceeding one minute, while said vehicle is stopped at said stop station by drawing recharging current which is of the order of several tens times the nominal loading current of said battery means, including as much as the order of 100 times said nominal loading current, from said power line.
1. A vehicle for an electrical traction passenger transportation network having a plurality of stop stations for loading and unloading passengers, said stop stations being other than terminals, at least some of said stop stations being recharge stop stations provided with contact means for connecting a vehicle to an electric power line, and stretches between successive recharge stop stations, said vehicle stopping a relatively short stop time of the order of tens of seconds, normally not exceeding 1 minute, at each recharge stop station and consuming an amount of energy while running each stretch in between successive recharge stop stations, said vehicle comprising:
electric motor traction means;
storage battery means having a storage capacity sufficient to store the maximum amount of energy required to drive said vehicle over a stretch between successive recharge stop stations, said battery means having a nominal loading current; and
circuit means, including fast connection means for connecting said storage battery means to said contact means at a recharge stop station with a connection time permitting fast recharging of said battery means for substantially all of said stop time, for providing said battery means with fast recharging current from said power line which is of the order of several tens times the magnitude of said nominal current, including as much as the order of 100 times said nominal current, and of sufficient magnitude that said maximum amount of energy will be stored in said battery means during said relatively short stop time.
2. An electric traction transportation system, comprising:
at least one vehicle as claimed in claim 1; and
a plurality of said stop stations, at least some of which are said recharge stop stations provided with said contact means for cooperating with said fast connection means for connecting said vehicle to said electric power line.
3. An electrical traction transportation system as claimed in claim 2, wherein said contact means comprises an aerial feeding bar and a ground feeding plate.
4. A vehicle as claimed in claim 1, further comprising means for automatically connecting said fast connection means to said contact means at the recharge stop stations.
5. A vehicle as recited in claim 1, wherein said fast connection means operates to connect said vehicle to said contact means while said vehicle is coming to a stop and to disconnect said vehicle from said contact means after said vehicle starts into motion so that all of said stop time and two short movement intervals are available for charging said battery means.
6. A vehicle as recited in claim 1, wherein said contact means comprises an overhead contact bar and a ground contact plate and said fast connection means includes a trolley for contacting said overhead contact bar and means responsive to engagement of said trolley with said overhead contact bar for lowering into contact with said contact plate.

The instant invention deals with land transportation means in which such means operates over relatively short stretches between one stop and the following one. In particular, this invention deals with mass transportation systems, such as the urban transportation systems, where many intermediate stops at determined places must be effected. Considering, by way of example, urban transportation means, which practically have not been subjected to changes in the last half century, it is possible to distinguish: transportation means having a rigidly constrained path, which derive from the urbanized railway, such as trams (trolley-cars), underground vehicles, monorail vehicles, and like; transportation means having a free path, such as motorbuses; and transportation means having a semi-constrained path, such as trolley-buses.

Of these transportation means, the tram is declining in usage by reason of its rigidly constrained path which makes it unable to overcome any hindrance on its way, missing the agility and flexibility which is required in the modern traffic. The motorbus, which is mainly diesel motor powdered, is the most common and widespread transportation means by reason of its path freedom. However, its propulsive system has a serious disadvantage: air pollution caused by exhaust gases of internal combustion engines. In addition, the pollution is increased by the fact that during the service the engine remains in operation even at the stops. Other disadvantages are the wasting of energy due to the low efficiency of the engine and its noise. The trolley-bus, being free from rail constraints, thus not having a rigidly constrained path, was expected to replace trolley cars as well as motorbuses. In fact, it has the non-polluting, noiseless, and nimbleness advantages of electric traction. In spite of these advantages, use of the trolley bus has not spread as expected due to other disadvantages, such as: cost and complexity in building up the two pole electrical aerial power line; very high maintenance cost of the aerial lines; the impossibility for the vehicle to deviate to paths which are not provided with electrical power lines; and the limited transverse freedom allowed by the trolley, which is subject to disjunction from the line, if the trolley-bus, in order to avoid encumbrances, deviates transversely too much conference Conference" which reports 8 succession of motion cycles, interrupted by stops, more or less short, at the stop stations, to allow the entrance and exit of the passengers. Authoritative international commissions for the study of urban transportation means have determined that the average time for running a stretch between two stops is generally less than 1 minute and increases to 2 minutes in severe traffic. The stop time at the stations is normally between 5 and 15 seconds. From these observations it may be deduced that for urban vehicles of today the stop time is, on the average, one-tenth of the effective running time and usually becomes one-twentieth. If the motion of such vehicles is further considered, it may be observed that the traction work is never applied continuously along the whole stretch, but rather there are segments which normally are run by inertia and the always present segment corresponding to the last portion of the stretch, before each stop, which is effected with braking. This means that traction energy is applied generally for a time which does not exceed 10 times the stop interval.

The present invention is founded on these considerations and exploits the capability, recently verified in certain types of storage batteries, to accept intermittently, without damage, and many times. but during short intervals of application, very strong recharging currents, for instance in the order of many tens times the nominal discharging current. Universally known and followed recommendations prescribe long recharging times for storage batteries, generally in the order of many hours, with maximum current in the order of the nominal discharging current and this is made to avoid damage to the plates and excessive electrolyte heating with consequent gas generation. However, it has been found that, in certain kinds of storage batteries, such phenomena occur in response to currents much stronger than the nominal current, only after a certain time interval. That is, such phenomena practically do not occur if the application of a normally high current is contained in a limited number of seconds, which incidentally is the duration of the stop time at the stations for an urban vehicle. In fact, at the actual status of the art, certain kinds of batteries, such as, for instance, nickel-cadmium batteries can be quickly recharged by virtue of their low internal resistance which reduces heat development and priming of the above mentioned phenomena. Performed tests, supported by wide reports, show clearly that such batteries can be recharged at about 90 percent of their capacity in times of the order of 30 minutes. Also, it has been found that the same batteries can supply very strong discharging currents and in the regular way, without damage. Currents may be in the order of 100 times the nominal current (nominal current is by standard one-fifth of the value which represents the capacity in Amp.-hours) provided such discharges are limited to short times in the order of 1 minute. It has also been found that batteries of this type may be charged without damage with charging currents of the same order of magnitude (100 times nominal current) for times in the order of some tens of seconds if suitable control procedures for the charging voltage are followed. Such procedures are, for instance, described in THE ELECTRO-CHEMICAL SOCIETY CONVENTION-FALL JOINT REPORT-CLEVELAND-OHIO-- Oct. 3/7, 1971. Such capability of fast partial recharge, alternated with discharge periods or rest periods, provides feasibility for an electrical traction vehicle particularly suitable for the above described urban service and leads to the transportation system which is the object of the present invention. For such kind of service, in fact, a battery powered electrical vehicle may receive, during stops and by effect of a fast recharge, the same energy amount used for running a stretch. As will be presently described in greater detail, the battery powered vehicles of the transportation system of the present invention are connected rapidly and automatically to an electric power network at each of a plurality of recharge stop stations. The power network supplies charging current to the batteries carried by the vehicle with a current having a magnitude which is much greater than the nominal current of the batteries. In particular, very strong recharging currents of the order of many tens times the nominal discharging current are provided to the batteries and may indeed be as large as currents of the order of 100 times the nominal current. This high recharging current is supplied for the relatively brief period of time the vehicle is located at a recharge stop station, which time will be of the order of tens of seconds and in normal operation will be less than 1 minute.

For example, let us consider a vehicle having performance equivalent to that of a normal trolley-bus. The continuous electrical installed power for this vehicle averages 70 Kwatt. During start, the used power is greater than normal power in the order of 100 Kwatt. Such power is requested during the acceleration phase for a period of about 10 seconds. The remainder of the stretch, till the next stop, is with an average power used of 25 Kwatt, which is required to maintain the movement. This portion of the stretch, requires an average of 25 seconds. In the terminal phase of the stretch, it is normally considered that during braking the kinetic energy is recovered and converted by the same motor-generator to electrical energy. In spite of that, and in order to make the example simpler, we will assume that no recovery devices are provided and that the whole kinetic energy is wasted. By this assumption the energy required to run a stretch is:

ETot = Es + Em

where

Es = Start Energy

Em = maintenenace energy.

Therefore: ##EQU1## Such energy may be easily provided to a storage battery carried by the vehicle, by means of a fast recharge operation. Assuming the voltage used by the transportation system is 500 V. and that the available recharge time is 14 seconds, the recharging current which must be adopted to supply again the used energy, with a recharge efficiency of 0.7 is about 340 A. To have a ratio between charging current and storage capacity equal to 10, which ratio has been proved to be fully acceptable for a fast recharge, an installed capacity of 34 Amp.-hours is required. Related to the adopted voltage, this means a capacity of 17 Kwatt-hours. Since the capacity available from presently manufactured alkaline nickel-cadmium batteries is at 25 Watt-hours per each installed kilogram and 50 Watt-hours per each cubic decimeter of volume, a storage battery of about 650 kilograms and a volume of about 0.32 M3 is required to meet the desired capacity. Such values are fully acceptable for a vehicle whose dead weight is about 8000 kg.: the total weight of the batteries and the motor, is slightly greater than the weight of a diesel engine and related apparatus. Since the nominal current is equal to one-fifth the battery capacity in Amp.-hours, the 34 Amp.-hours capacity in the above example corresponds with a nominal current of 6.8 A. Thus, in this example, the recharging current of 340 A. has a magnitude which is 50 times the nominal current. In addition, it has to be remarked that the above installed capacity allows the vehicle to run at least 10 to 15 stretches without any recharge and therefore it offers an extremely high safety margin to allow the most complete mobility of the vehicle in the urban area even if, for any reason, it is impossible to effect the fast recharge in one or more subsequent recharging stations. In addition, since the stop at the terminals are generally longer, it is eventually possible to complete the energy recovery in such places, and it may be concluded that it is not required that all the stop stations be provided with recharging devices (for instance, auxiliary stops).

The stations enabled for the fast recharge operation must not demand any particular operation by the driver. They must be suitably equipped so as to allow an automatic connection, quick and reliable, of the vehicle to the recharging line, thus providing the maximum exploitation of the stop time available. By way of example, in FIGS. 1 and 2 is shown an arrangement which satisfies the requirements above: 1 indicates a conductive rod, which can be made suitably heavy and rigid in order to sustain a certain thrust by the vehicle body 12, and suitably long so as to allow the connection of more than one vehicle. The rod, connected to a pole of the electrical distribution network 10, is supported by posts 2 (which at the same time may support a shelter) at a suitable distance from the street edge and at the standard height for trolley-lines. Under the rod, perpendicularly and for the same length, a metallic plate 3 is embeded in the street. The plate is connected to the other grounded pole of the distribution network.

The unipolar contacting device 4, which may be a simple rod trolley or a pantograph trolley, carries on the top a sufficiently long and transversely disposed contact bar 5. When, during the braking phase, the vehicle slips beneath the contacting rod 1, the bar 5 touches the tapered portion of the rod 1 and, sliding in contact with it, is lowered and commands the fast descent of a sliding shoe or contacting wheel 6 down onto the plate 3 so that the recharge circuit closes. The command may be obtained through a switch 8 which is switched by the lowering of the trolley 4. The switch may command a servosystem 9 (which may be electrical, hydraulic or pneumatic) which establishes the contact between sliding shoe 6 and plate 3. The same movements and commands are inversely performed at the start of the vehicle so that the recharging time may be increased in respect to the effective stop time by the addition of two short movement intervals it is it provided that the recharging operation occurs automatically, for the whole time in which the electrical contact is established.

In addition, since it is possible to have a wide contacting surface, of at least 2 cm2 no resistance problems arise, and the current intensity may be kept within acceptable limits. A power line, completely independent from the vehicle's path, connects the stations. The isolation of this line, may be made in a conventional way with better and cheaper results than that obtainable with contacting lines from trolley-buses or trolley-cars.

Furthermore, a station may be used contemporaneously for many lines so that a whole urban mass transportation system may be arranged with a limited number of stations, still leaving the maximum freedom to the lines' routes. FIG. 3 shows schematically such a feature. The routes are represented with solid lines. Each station is represented by a small circle. Some of them, indicated by the letter S are provided with fast recharging devices and are connected to a feeding line. The electrical feeding line 10 for such devices is represented with dotted lines and is connected to a power station 11. Clearly, the electrical feeding network may be connected to more power stations. Looking at FIG. 3, it may be seen that the electrical feeding network is completely independent from the routes of the vehicles. Therefore, it may be arranged according to minimum cost criteria, maximum efficiency or other factors which may be completely free from the routing requirements, except for what concerns the recharging stations. In other words it may be said that, while conventional transportation systems are based on a network structure, and therefore on a rigid structure, the transportation system according to the invention is based on a junction structure (recharging stations) which allows the same flexibility till now provided by motor-transportation systems. It must be further pointed out that the distribution network 10 may be conveniently of the bipolar type, so that ground current returns are not needed and damaging leakage currents are prevented.

The urban transportation system described above considers the utilization of free routing vehicles, but it is clear that the invention may be applied also to rail vehicles, such as trolley-cars, underground vehicles, suburban railways, and, by suitable modifications, also to transportation systems using boats having predetermined docking points as well as to private internal transportation systems employing electrical trucks and elevators.

Bossi, Oscar

Patent Priority Assignee Title
10112498, Jul 01 2008 PROTERRA OPERATING COMPANY, INC Overhead charging systems for electric vehicles
10220717, Nov 13 2015 NIO TECHNOLOGY ANHUI CO , LTD Electric vehicle emergency charging system and method of use
10232724, Dec 23 2009 PROTERRA OPERATING COMPANY, INC Electric vehicles and charging stations
10259327, Jul 30 2014 Kabushiki Kaisha Toshiba Vehicle system and control method therefor
10384553, Apr 26 2010 PROTERRA OPERATING COMPANY, INC Systems and methods for charging an electric vehicle at a charging station
10396533, Feb 22 2018 Smart Wires Inc. Containerized power flow control systems
10518656, Dec 23 2009 PROTERRA OPERATING COMPANY, INC Charging stations for electric vehicles
10632852, Nov 13 2015 NIO TECHNOLOGY ANHUI CO , LTD Electric vehicle optical charging system and method of use
10696174, Nov 13 2012 PROTERRA OPERATING COMPANY, INC Electric vehicle charging interface
10723231, Apr 26 2010 PROTERRA OPERATING COMPANY, INC Systems and methods for charging an electric vehicle at a charging station
10756542, Jan 26 2018 SMART WIRES INC Agile deployment of optimized power flow control system on the grid
10770870, Feb 22 2018 Smart Wires Inc. Containerized power flow control systems
10875411, Dec 23 2009 PROTERRA OPERATING COMPANY, INC Electric vehicles and charging stations
11247568, Apr 26 2010 PROTERRA OPERATING COMPANY, INC Systems and methods for charging an electric vehicle at a charging station
11345245, Jul 01 2008 PROTERRA OPERATING COMPANY, INC Overhead charging systems for electric vehicles
11453299, Dec 23 2009 PROTERRA OPERATING COMPANY, INC Electric vehicles and charging stations
5323098, Sep 13 1990 Daifuku Co., Ltd. Power-charging system for transporter cart
5488676, Jan 10 1992 Checkmate Electronics, Inc. Miniature MICR document reader with power management and motorized conveyance
5566256, Jan 10 1992 Checkmate Electronics, Inc. Miniature MICR document reader with power management and motorized conveyance
5573090, May 05 1994 H R ROSS INDUSTRIES, INC Raodway-powered electric vehicle system having onboard power metering and communication channel features
5669470, May 05 1994 H R ROSS INDUSTRIES, INC Roadway-powered electric vehicle system
6294886, Aug 28 1998 Alstom Transport SA Supply system for an electric traction vehicle
6421600, May 05 1994 H R ROSS INDUSTRIES, INC Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features
7791292, Feb 07 2002 SIEMENS MOBILITY AUSTRIA GMBH Vehicle comprising a battery drive and a method for operating a vehicle of this type
7984774, Aug 17 2006 SEQUOIA AUTOMATION S R L Quick-recharging energy feeding system for means of transport with electric traction
8138718, Nov 27 2007 GED PATENTS LTD Docking bay for conditionally supplying battery recharging energy to a vehicle utilizing non plug-in electrical contact between a pair of docking bay contacts and a pair of vehicle contacts
8232671, Dec 20 2006 Lohr Industrie System for sporadic supply and tapping of electrical energy especially for an urban vehicle used for public transport
8307967, Jul 04 2007 GREEN DOT TRANSPORTATION INC Widely deployable charging system for vehicles
8324858, Jul 01 2008 PROTERRA OPERATING COMPANY, INC Charging stations for electric vehicles
8465303, Dec 22 2008 CONDUCTIX WAMPFLER FRANCE Electrical coupling system for an electrical charging device
8627906, Dec 22 2008 CONDUCTIX WAMPFLER FRANCE Connection system for charging an electric vehicle
8829853, Jul 01 2008 PROTERRA OPERATING COMPANY, INC Methods and systems for charging vehicles
8978852, Mar 29 2010 Lohr Industrie Upper lateral structure for the occasional or continuous collection of main-drive or auxiliary electrical power by a land vehicle
9037335, Apr 17 2009 BÄR AUTOMATION GMBH Method for operating an automated guided, mobile assembly and/or material transport unit and automated guided, mobile assembly and/or material transport unit therefor
9352658, Dec 23 2009 PROTERRA OPERATING COMPANY, INC Charging of electric vehicles
9446672, Jul 01 2008 PROTERRA OPERATING COMPANY, INC Charging systems for electric vehicles
9764653, Apr 26 2010 PROTERRA OPERATING COMPANY, INC Systems and methods for charging an electric vehicle at a charging station
9908435, Jul 01 2008 PROTERRA OPERATING COMPANY, INC Electric vehicle overhead charging system
9925887, Nov 13 2012 PROTERRA OPERATING COMPANY, INC Electric vehicle charging interface
9969299, Apr 12 2013 MITSUBISHI HEAVY INDUSTRIES, LTD Traffic system and power supply method
9975444, Apr 26 2010 PROTERRA OPERATING COMPANY, INC Systems and methods for charging an electric vehicle at a charging station
Patent Priority Assignee Title
3169733,
3816806,
894333,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events


Date Maintenance Schedule
May 15 19824 years fee payment window open
Nov 15 19826 months grace period start (w surcharge)
May 15 1983patent expiry (for year 4)
May 15 19852 years to revive unintentionally abandoned end. (for year 4)
May 15 19868 years fee payment window open
Nov 15 19866 months grace period start (w surcharge)
May 15 1987patent expiry (for year 8)
May 15 19892 years to revive unintentionally abandoned end. (for year 8)
May 15 199012 years fee payment window open
Nov 15 19906 months grace period start (w surcharge)
May 15 1991patent expiry (for year 12)
May 15 19932 years to revive unintentionally abandoned end. (for year 12)