A cable television signal distribution system provides a plurality of television programs and radio programs which are transmitted in frequency multiplex to a plurality of subscriber drop lines. A data receiver and logic control unit, after decoding suitable supplied codes, control the operation of a plurality of high frequency switches by which the received programs can be switched and/or jammed from a remote locate to selectively provide subscribers the desired program.

Patent
   RE29997
Priority
Dec 24 1974
Filed
Oct 03 1977
Issued
May 15 1979
Expiry
Oct 03 1997
Assg.orig
Entity
unknown
60
6
EXPIRED
1. A signal distribution means for use with a cable television network having a supply line in which a plurality of tv programs are transmitted in frequency multiplex to a plurality of subscriber drop lines, said means including a data receiver connected to the supply line a logic control unit connected to said data receiver, a plurality of high frequency switches controlled by said logic control unit, and a jamming oscillator connected to each high frequency switch, said high frequency switches responding to control signals from said data receiver and logic control unit to provide jamming signals from designated oscillators to said subscriber drop lines to prevent clear reception of designated tv programs.
7. signal distribution means for use with a cable television network having a supply line on which a plurality of tv programs are transmitted in frequency multiplex to a plurality of subscriber drop lines, said means including a connection from the supply line to each subscriber, a data receiver connected to the supply line, a logic control unit connected to said data receiver, and a plurality of high frequency switches controlled by said logic control unit, each high frequency switch including a low frequency oscillator for variably tuning said high frequency switch, said high frequency switches responding to control signals from said data receiver and logic control unit to prevent clear reception of designated programs.
2. The means of claim 1 further characterized by and including attenuation means connected between each oscillator and its associated high frequency switch.
3. The means of claim 1 further characterized in that each high frequency switch includes three unidirectionally connected diodes, the junctions on each side of the center diode being connected to ground by the series combination of a diode and capacitor.
4. The means of claim 3 further characterized in that the cathode of one series diode is connected to the cathode of the center diode with the anode of the other series diode being connected to the anode of the center diode.
5. The means of claim 4 further characterized by and including capacitors connected to the cathode of the first of said three unidirectionally directed diodes and to the anode of the third of said three unidirectionally connected diodes.
6. The means of claim 5 further characterized by and including a series resistive circuit shunting said center diode.
8. The means of claim 7 further characterized by and including a jamming oscillator connected in series with each high frequency switch.
9. The means of claim 7 further characterized in that each high frequency switch includes a parallel circuit of an inductance and a variable capacitance, said low frequency oscillator being connected to said variable capacitance.

The invention relates to a signal distribution device for a cable television network having a supply line, by which a plurality of television programs and radio programs are transmitted in frequency multiplex to a plurality of subscriber drop lines. Such a signal distribution device is known in practice.

In the known cable television networks subscribers are usually connected with the aid of signal distribution devices to a supply or ring line distributing in frequency-multiplex a plurality of television programs and radio programs to the relevant subscribers. A certain number of subscribers in such a system is connected to each distribution device.

A disadvantage connected with said system, is that during the installation of said cable television network only those subscribers can be connected to the distribution devices, who previously have indicated that they wanted to be connected to the system. Upon a later subscription a technician has to connect the residence of said subscriber to a related distribution device which is costly and time-consuming. Upon both a termination and a non-payment a technician has also to deconnect the subscriber from the distribution device.

With the system indicated in the introduction it is therefore not always possible to deny already connected subscribers the reception of certain programs.

It is an object of the invention to supply a signal distribution device, whereby already during the installation of the television network each residence is connected to the distribution device, such that by implementation of remote control with a suitable code each subscriber from a central location can be connected at each desired moment to the cable television network or can be disconnected from said network.

It is also an object of the invention to allow the implementation of said remote control with a suitable code such that certain programs on certain subscriber drop lines can be jammed so that observation and listening of the related program is made impossible.

A signal distribution device according to the invention is characterized by one or a plurality of high-frequency switches by which said programs can be remotely switched and/or jammed, of which switches for each subscriber line one is inserted in series and/or a plurality is taken up in co-operation with this line; a data receiver and a logic control unit which after decoding of the suitable codes switches the series switch(es) for tansmission of the high-frequency program signals and/or the switch(es) cooperating with the line(s) for jamming of certain high-frequency signals.

The distinct advantage in said system is that each subscriber connected to the distribution device, can be connected or disconnected from a central location and also that each subscriber can be allowed or can be denied the reception of certain programs without jamming of the other subscribers.

An additional advantage is also that a subscriber is not able to switch on himself. The invention will be explained with the aid of an embodiment with reference to the drawings, in which:

FIG. 1 is a block diagram of a signal distribution device including four subscriber drop lines, whereby in each line a high-frequency switch is inserted in series and whereby the transmission and the disconnection respectively of the programs can be switched remotely;

FIG. 2 is a block diagram of a signal distribution device including a single subscriber drop line, provided with four high-frequency switches co-operating in parallel with the line for jamming at wish of certain television programs and radio programs;

FIG. 3a is a drawing of an embodiment of a high-frequency switch of the semi-conductive type, which is used in the device according to FIG. 2;

FIG. 3b is a drawing of the portion relative to the high-frequency operation of the high-frequency switch according to FIG. 3a;

FIG. 4 is a front view of a housing in which the distribution device is taken up

FIG. 5 is a block diagram of a signal distribution device including a single subscriber drop line provided with four high-frequency switches of another type inserted in series with the line for jamming at wish of certain television programs and radio programs;

FIG. 6 is a drawing of an embodiment of a high-frequency switch of said other type, which is used in the device according to FIG. 5; and

FIG. 7 is a drawing of another embodiment of a high-frequency switch of said other type which singularly can be used for a plurality of channels.

Referring to FIG. 1, there is shown a supply or ring line 1, a plurality of subscriber drop lines 2, a data receiver 3, a logic control unit 4, high-frequency switches 5 and a braching element 6. The data receiver 3 in said distribution device is connected to the branching- or coupling distribution point. For said branching function a directional coupler or a tap can be used. The logic control unit following the data receiver, decodes the suitable codes introduced in the high-frequency signal. Depending upon the information of said codes the control unit 4 will switch one or a plurality of high-frequency switches 5 such that the high-frequency signals of the related television programs and radio programs are transmitted to the subscriber lines 2 or are blocked from transmission.

Referring to FIG. 2, a block diagram is indicated of a signal distribution device by which it is feasible to couple jamming signals into the subscriber drop lines by which the related subscribers can be allowed or can be denied the reception of television programs and radio programs. Again referring to FIG. 2, there is indicated a supply line 1, a single subscriber drop line 2, a data receiver 3 connected to the branching distribution point, a logic control unit 4, a single high-frequency switch inserted on series with the subscriber line 2. Also there is shown a plurality of high-frequency switches 5 taken up in parallel with the subscriber line 2, a plurality of preconnected oscillators 9 and a plurality of attenuators 7 connected in between.

The oscillators 9 substantially have the same frequency as the related programs, such that upon a closed switch 5 a strong interference signal is introduced in the subscriber line to thereby interdict the observation and listening of the program. As the signal is coupled into the subscriber line, for these jamming signals low levels, for example about O dBmV, can be used. These jamming levels can be maintained with the aid of for example a pin-diode attenuator, which is controlled by the automatic gain control of the data receiver. In order to prevent leakage into the system, the oscillator signals are introduced via a directional coupler 8 into the subscriber line.

With reference to FIG. 3a, there is shown a high-frequency switch of the semi-conductive or solid-state type. The attenuation of this switch in the 50-300 MHz-region is better than 88 dB. The applied power is 2 mA for 5 V direct current. The operation is as follows:

If point A is positive with respect to point B, there will follow a direct current in the circuit R1, D1, R2, R3, D2, R4, by which the series diodes D3, D4 and D5 are connected in reverse direction and the parallel diodes D1 and D2 are connected in forward direction. With reference to FIG. 3b, there is indicated with respect to the high-frequency operation how the assembly constitutes an attenuator comprising large series-impedances (D3, D4 and D5) and small parallel-impedances (D1 with C1 and D2 with C2), such that the high-frequency signal is not transmitted from the input to the output (and also not vice versa).

If point A is negative with respect to point B, there will follow a direct current in the circuit R6, D5, D4, D3, R5, by which the series diodes D3, D4 and D5 are connected in forward direction and the parallel diodes D1 and D2 are connected in reverse direction. The high-frequency signal now is transmitted practically without attenuation. The capacitors C3 and C5 serve to block the DC voltage applied to the points A and B, to the high-frequency cables.

The capacitor C3 is used in order to prevent the occurence of a high-frequency leakage via R2 and R3 parallel to D4 (in reverse direction). All resistors serve to set the DC bias and they do not have a high-frequency function.

The high-frequency switch can also be of the mechanical type.

For four subscribers for a branching point by way of example the following is requires:

- one data receiver;

- one logic unit including for the

branching address: n bits

subscriber address: 2 bits

connect/disconnect: 1 bit

four programs: 4 bits

- four oscillators and corresponding attenuators;

- four subscriber units each including five high-frequency switches.

In principle, any number of subscribers and a number of programs per unit can be combined.

Referring to FIG. 4 there is indicated how such a combination can be inserted in a formed housing.

Referring to FIG. 5, there is indicated a block diagram of a signal distribution device, with which it is possible as with the device according to FIG. 2, to allow and to deny respectively the subscriber the reception of four or more or less programs respectively. The same componencts in FIG. 4 as those according to FIG. 2 are indicated by the same reference numbers. Instead of four high-frequency switches 5 in parallel with the subscriber line, however, four high-frequency switches 10 of another type are inserted in series with the line.

Referring to FIG. 6, there is indicated a drawing of the high-frequency switch 10 of the other type. Before this switches of said other type the high-frequency switch 5 (S1) can be inserted in series for the transmission of blocking respectively of all high-frequency program signals per subscriber. In the switch 10 a T-filter is inserted in series with the subscriber line, and a parallel circuit of an inductance 11 and among others a Varicap 12 is inserted in the cross branch of the T-filter. By periodically controlling said Varicap 12 with for example a low-frequency signal of 50 or 1000 Hz, the tuning of the circuit can be swept across the whole channel or a portion thereof, such that periodically (not synchronously) always another, relatively small portion of the side bands of the signal is filtered out so that the resulting signal is jammed. The tuning of this high-frequency switch or trapping circuit is obtained in the position "na" (not authorized) of the switch S2 by adjusting the inudctance 11 on the channel to be jammed. Care should be taken during this procedure that adjacent program channels are not disturbed a bit either. By placing the switch S2 under control of the control unit 4 from the position na to the position "a" (authorized), the jamming of the related program channel is removed. The switch S2 only switches low frequencies and therefore can be both of the mechanical type and of the solid-state type.

As the Varicap diode is switched in forward direction in the position a, a current from the DC-voltage source flows via S2, the resistor R, the Varicap 12 and the inductance 11 back to the source. The inductance is short-circuited and the two capacitors C having relatively small values, occur in parallel with the line and then have practically no influence on the signal transmission.

It is also feasible to simultaneously jam a plurality of channels being adjacent to each other, by selecting the low frequencies sweep to be large enough. In this case one switch 10 for a plurality of channels is sufficient.

Referring to FIG. 7 there is indicated how the switch 10 for example can be tuned on four different channels by periodically connecting this switch via a solid-state switch (S2 and S3 -S6) to different negative voltages by which a plurality of channels is subsequently jammed. The switch S2 can periodically (for examples 3 μ sec) be connected through. Of the switches S3 -S6 for four programming channels each of them under control of the control unit 4 can be adjusted to a positive DC voltage only (no jamming) or to the low-frequency voltage superimposed upon a negative DC-voltage.

The tuning is then determined by the DC voltage on the varicap and the trapping circuit is swept with the 50 or 1000 Hz voltage across the related channel. By connecting or disconnecting said low-frequency voltages with the aid of the data receiver and the control unit, program after program can be allowed or denied respectively. Each channel which is denied, can be sufficiently jammed in this way by the correct selection of the repetition frequency.

In order to jam a plurality of channels a parallel connection, besides the first mentioned series connection and the above mentioned plural connections can also be used, namely by inserting in the longitudinal branch of the T-filter a plurality of trapping circuits parallel to each other.

den Toonder, Pieter

Patent Priority Assignee Title
10219027, Oct 24 2014 Music Choice System for providing music content to a user
10390092, Mar 18 2002 Music Choice Systems and methods for providing an on-demand entertainment service
10390093, Apr 26 2012 Music Choice Automatic on-demand navigation based on meta-data broadcast with media content
10785526, Oct 24 2014 Music Choice System for providing music content to a user
11336948, Oct 24 2014 Music Choice System for providing music content to a user
4521809, Dec 29 1982 North American Philips Corporation Method and apparatus for controlling access to selected television programs
4837820, Oct 17 1986 Zenith Electronics Corporation Hybrid CATV scrambling system
4912760, Mar 10 1988 MOONBEAM L L C Off-premises cable television channel interdiction method and apparatus
5014309, Mar 10 1988 MOONBEAM L L C Off-premises cable television channel interdiction method and apparatus
5142574, Mar 10 1988 MOONBEAM L L C Optimum amplitude and frequency of jamming carrier in interdiction program denial system
5208854, Mar 10 1988 MOONBEAM L L C Picture carrier controlled automatic gain control circuit for cable television interdiction or jamming apparatus
5265160, Jun 10 1992 MOONBEAM L L C Interdiction method and apparatus with pulsed mode jamming
5323462, Mar 10 1988 MOONBEAM L L C CATV subscriber disconnect switch
5389963, Feb 05 1992 LIBRARY VIDEO COMPANY System for selectively interconnecting audio-video sources and receivers
5505901, Mar 10 1988 MOONBEAM L L C CATV pay per view interdiction system method and apparatus
5537612, May 09 1994 LG Electronics Inc Remotely selectable audio/video/text disruption
5557675, May 10 1994 Computer controlled audio-visual system
6879963, Apr 12 2000 Music Choice Cross channel delivery system and method
7028082, Mar 08 2001 Music Choice Personalized audio system and method
7076561, Mar 08 2000 Music Choice Personalized audio system and method
7133924, Mar 08 2000 Music Choice Personalized audio system and method
7158169, Mar 07 2003 Music Choice Method and system for displaying content while reducing burn-in of a display
7275256, Aug 28 2001 Music Choice System and method for providing an interactive, visual complement to an audio program
7321923, Mar 08 2000 Music Choice Personalized audio system and method
7325043, Mar 08 2000 Music Choice System and method for providing a personalized media service
7346558, Apr 12 2000 Music Choice Cross channel delivery system and method
7555539, Mar 08 2000 Music Choice Personalized audio system and method
7617295, Mar 18 2002 Music Choice Systems and methods for providing a broadcast entertainment service and an on-demand entertainment service
7626609, Mar 07 2003 Music Choice Method and system for displaying content while reducing burn-in of a display
7643057, Mar 07 2003 Music Choice Method and system for displaying content while reducing burn-in of a display
7668538, Jun 15 2005 Music Choice Systems and methods for facilitating the acquisition of content
7783722, Mar 08 2000 Music Choice Personalized audio system and method
7856485, Mar 08 2000 Music Choice Systems and methods for providing customized media channels
7913273, Oct 10 2000 Music Choice System and method for receiving broadcast audio/video works and for enabling a consumer to purchase the received audio/video works
7926085, Aug 28 2001 Music Choice System and method for providing an interactive, visual complement to an audio program
7940303, Mar 07 2003 Music Choice Method and system for displaying content while reducing burn-in of a display
7962572, Mar 18 2002 Music Choice Systems and methods for providing an on-demand entertainment service
7986977, Jun 15 2005 Music Choice Systems and methods for facilitating the acquisition of content
8051146, Mar 08 2000 Music Choice Personalized audio system and method
8060583, Mar 08 2000 Music Choice Personalized audio system and method
8060584, Mar 08 2000 Music Choice Personalized audio system and method
8060635, Mar 08 2000 Music Choice Personalized audio system and method
8166133, Mar 08 2000 Music Choice Systems and methods for providing a broadcast entertainment service and an on-demand entertainment service
8214462, Mar 08 2000 Music Choice System and method for providing a personalized media service
8260271, Jun 15 2005 Music Choice Systems and methods for facilitating the acquisition of content
8271341, Apr 12 2000 Music Choice Media content delivery systems and methods
8332276, Apr 12 2000 Music Choice Cross channel delivery system and method
8463780, Mar 08 2000 Music Choice System and method for providing a personalized media service
8463870, Mar 08 2000 Music Choice Personalized audio system and method
8612539, Mar 08 2000 Music Choice Systems and methods for providing customized media channels
8639228, Jun 15 2005 Music Choice Systems and methods for facilitating the acquisition of content
8769602, Aug 28 2001 Music Choice System and method for providing an interactive, visual complement to an audio program
9172732, Mar 08 2000 Music Choice System and method for providing a personalized media service
9271105, Jun 15 2005 Music Choice Systems and methods for facilitating the acquisition of content
9348907, Mar 08 2000 Music Choice Personalized audio system and method
9351045, Dec 03 2004 Music Choice Systems and methods for providing a broadcast entertainment service and an on-demand entertainment service
9357245, Aug 28 2001 Music Choice System and method for providing an interactive, visual complement to an audio program
9414121, Mar 18 2002 Music Choice Systems and methods for providing an on-demand entertainment service
9451300, Aug 28 2001 Music Choice System and method for providing an interactive, visual complement to an audio program
9591051, Mar 08 2000 Music Choice Systems and methods for providing customized media channels
Patent Priority Assignee Title
3668307,
3786424,
3806814,
3896262,
3899633,
GB1030841,
/////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 03 1977Oak Holland, B.V.(assignment on the face of the patent)
Apr 21 1980OAK HOLLAND B V , BY JAMES D BOWEN GENERAL MANAGEROAK COMMUNICATIONS, INC , A CORP OF ILL ASSIGNMENT OF ASSIGNORS INTEREST 0038100148 pdf
Aug 21 1980OAK COMMUNICATIONS INC ,OAK INDUSTRIES, INC ASSIGNMENT OF ASSIGNORS INTEREST 0038010482 pdf
Jul 21 1987OAK INDUSTRIES INC , A DE CORP General Instrument CorporationLICENSE SEE DOCUMENT FOR DETAILS 0047610665 pdf
Oct 28 1987OAK INDUSTRIES, INC M A-COM, INC , A CORP OF MASSACHUSETTSLICENSE SEE DOCUMENT FOR DETAILS 0047790629 pdf
Nov 02 1988OAK INDUSTRIES, INC ,ZENITH ELECTRONICS CORPORATION, A CORP OF DELAWARELICENSE SEE DOCUMENT FOR DETAILS 0052840010 pdf
Nov 02 1988OAK INDUSTRIES, INC ZENITH ELECTRONICS CORPORATION, A CORP OF DE LICENSE SEE DOCUMENT FOR DETAILS 0051640006 pdf
Jul 31 1990OAK INDUSTRIES INC OCI COMMUNICATIONS, INC ASSIGNMENT OF ASSIGNORS INTEREST 0054650595 pdf
Jun 01 1991OCI COMMUNICATIONS, INC OCI COMMUNICATIONS COMPANYASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0074200138 pdf
Feb 27 1995OCI COMMUNICATIONS COMPANY DBA TV COM INTERNATIONAL, AS SUCCESSOR IN INTEREST TO OCI COMMUNICATIONS, INC IRDETO N V SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0074200160 pdf
Feb 27 1995OCI COMMUNICATIONS COMPANY DBA TV COM INTERNATIONAL, AS SUCCESSOR IN INTEREST TO OCI COMMUNICATIONS, INC NOKIA CONSUMER ELECTRONICS LTD SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0074200160 pdf
Apr 12 1995OCI COMMUNICATIONS COMPANYHyundai Electronics AmericaSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0074620690 pdf
Jun 12 1995NOKIA CONSUMER ELECTRONICS LTD HYUNDAI ELECTRONICS AMERICA, A CA CORP SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0075210501 pdf
Jun 12 1995IRDETO N V HYUNDAI ELECTRONICS AMERICA, A CA CORP SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0075210501 pdf
Jun 16 1995OCI COMMUNICATIONS COMPANYHyundai Electronics AmericaASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0075530811 pdf
Jun 16 1995OCI COMMUNICATIONS COMPANYTV COM TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0075530811 pdf
Jul 12 1995TV COM TECHNOLOGIES, INC TV COM TECHNOLOGIES, INC MERGER SEE DOCUMENT FOR DETAILS 0076560613 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
May 15 19824 years fee payment window open
Nov 15 19826 months grace period start (w surcharge)
May 15 1983patent expiry (for year 4)
May 15 19852 years to revive unintentionally abandoned end. (for year 4)
May 15 19868 years fee payment window open
Nov 15 19866 months grace period start (w surcharge)
May 15 1987patent expiry (for year 8)
May 15 19892 years to revive unintentionally abandoned end. (for year 8)
May 15 199012 years fee payment window open
Nov 15 19906 months grace period start (w surcharge)
May 15 1991patent expiry (for year 12)
May 15 19932 years to revive unintentionally abandoned end. (for year 12)