An optical scanning and encoding device for providing a print signal pulse train to an ink jet printer in which a master image, including a reference image area, is scanned along a scan line. An optical scanner scans the master image and provides a signal which is inversely related to the print density of the image along the scan line. An integrator integrates the density signal during receipt of a gating signal pulse. A level detector detects when the integrator output has reached a predetermined level and provides a pulse to the printer and to an integrator reset circuit. A reference level means, responsive to scanning the reference image area, provides a signal output indicative of the maximum print density in the master image. A tachometer provides tachometer pulses at a frequency proportional to the rate at which the master image is scanned along the scan line. Means are responsive to the output of the reference level means and to the tachometer means for providing gating signal pulses to the integrator means, which pulses are of a frequency proportional to the tachometer pulses. Each of the gating signal pulses is inversely proportional in duration to the output of the reference level. The pulse signal to the printer is therefore compensated for fluctuation in the rate at which the master image is scanned and also for fluctuations in the optical path of the scanning means.

Patent
   RE30911
Priority
Dec 20 1979
Filed
Dec 20 1979
Issued
Apr 20 1982
Expiry
Dec 20 1999
Assg.orig
Entity
unknown
1
12
EXPIRED
14. The method of scanning and encoding a master image to provide a print signal pulse train for an ink jet printer, comprising the steps of:
optically scanning a master image, including a reference image area, and providing an electrical scanning signal related to the print density of the master image and a reference level signal related to the print density of the reference image area,
adjusting the electrical scanning signal in dependence upon the reference level signal to provide a density signal directly related to the density of the master image,
integrating said density signal during selected periods of time,
providing a print signal pulse to an ink jet printer when the integral of said density signal reaches a predetermined level, and
initiating a new integration operation.
12. An optical scanning and encoding device for providing a print signal pulse train to an ink jet printer in which a master image, including a reference image area, is scanned along a scan line and said print signal pulse train is generated at a frequency proportional to the density of said master image, comprising:
optical scanner means for scanning the master image along a scan line and for providing an image density signal related to the density of the master image along the scan line,
reference level means for receiving light from said reference image area and for providing a reference level signal,
level shifter means, responsive to said image density signal and to said reference level signal, for providing an adjusted image density signal, and
integrator means, responsive to said adjusted image density signal and to said reference level signal, for repetitively integrating said adjusted image density signal and providing a pulse in said print signal pulse train each time said adjusted image density signal is integrated to a predetermined level, said integrator means further including means, responsive to said reference level signal for adjusting the time required for said integrator to integrate to said predetermined level, whereby the frequency of said print signal pulse train is adjusted to compensate for fluctuations in light reflected from said reference image area.
2. In a copier system in which a master image is scanned along a scan line and a copy of said master image simultaneously printed by an ink jet printer, a circuit for scanning the master image and providing a print signal pulse train to the printer which is compensated for fluctuations in the optical scanning arrangement and for variations in scanning speed of the master image, comprising:
optical scanning means for scanning the master image along a scan line and for providing a density signal inversely related to the print density of the image along the scan line,
reference level means for providing a signal output indicative of the maximum print density in the master image,
summer means for subtracting said density signal from the output of said reference level means to provide a difference signal,
integrator means, responsive to said difference signal, for integrating said difference signal during receipt of a gating signal pulse and providing an output proportional to the integral of said difference signal,
level detector means for detecting when said integrator output has reached a predetermined level and for providing a print signal pulse to said printer and a pulse to said integrator means to reset said integrator means,
a tachometer providing tachometer pulses at a frequency proportional to the rate at which the master image is scanned along the scan line,
timing means, responsive to the output of said reference level means and to said tachometer pulses, for providing gating signal pulses to said integrator means of a frequency proportional to said tachometer pulses, each of said gating signal pulses being inversely proportional in duration to the output of said reference level means, whereby the print signal pulse train to said printer is compensated for fluctuations in the rate at which said master image is scanned and in the optical path of said scanner means.
1. An optical scanning and encoding device for providing a print signal pulse train to an ink jet printer in which a master image, including a reference image area, is scanned along a scan line for a predetermined color of ink, and a print signal pulse train generated, comprising:
a tachometer for providing tachometer pulses in synchronism with scanning of said master image along said scan line,
optical scanning means for illuminating said master image and providing light reflected therefrom which is inversely related in intensity to the color content of the predetermined color being scanned along the scan line on the master image,
image scanning photodiode means and reference photodiode means positioned to receive light from said optical scanning means and to provide electrical output signals directly related to the intensity of the light,
reference pulse means for providing a reference pulse as said optical scanning means scans said reference image area,
sample and hold means, connected to said reference photodiode means and responsive to said reference pulse, for sampling and storing the output signal from said reference photodiode means upon receipt of a reference pulse and for providing a reference level at the output of said sample and hold means,
timing means, responsive to the output of said sample and hold means and to tachometer pulses, for providing a gating signal pulse train equal in frequency to said tachometer pulses and having pulses of a duration inversely proportional to the output of said sample and hold means, and
encoder means, responsive to the output from said image scanning photodiode means, for providing a print signal, including
summer means for subtracting the output from said image scanning photodiode means from the reference level output of said sample and hold means to produce a color signal directly related to the content of said predetermined color along the scan line of said master image,
integrator means, responsive to said summer means and to said timing means, for integrating the output of said summer means during receipt of each pulse in said gating signal pulse train, and
level detector means for detecting when the output from said integrator means reaches a predetermined level and for providing a print signal pulse to said ink jet printer and resetting said integrator means in response thereto.
3. Apparatus for scanning a master image along a scan line and encoding the image information into a print signal pulse train of a frequency proportional to the image density, comprising:
scanner transducer means for scanning said master image, including a reference image area, along a scan line, and for providing an output signal inversely related to the print density of the image,
reference pulse means for providing an output reference pulse when said reference image area is being scanned,
means for sampling and holding the output from said scanner transducer means in response to receipt of said reference pulse, and
summer means for subtracting the output of said scanner transducer means from the output of said means for sampling and holding during scanning of said master image, thereby providing a difference signal which is directly
related to the density of the image being scanned. 4. The apparatus of claim 3 further comprising: Apparatus for scanning a master image along a scan line and encoding the image information into a print signal pulse train of a frequency proportional to the image density, comprising:
scanner transducer means for scanning said master image, including a reference image area, along a scan line, and for providing an output signal inversely related to the print density of the image,
reference pulse means for providing an output reference pulse when said reference image area is being scanned,
means for sampling and holding the output from said scanner transducer means in response to receipt of said reference pulse,
summer means for subtracting the output of said scanner transducer means from the output of said means for sampling and holding during scanning of said master image, thereby providing a difference signal which is directly related to the density of the image being scanned,
timing integrator means, responsive to said means for sampling and holding, for providing a gating signal pulse train having pulses of a duration inversely related to the output from said optical scanner means as said reference image area is scanned,
encoding integrator means, responsive to said timing integrator means and to said summer means, for integrating the output from said summer means during receipt of each pulse in said gating signal pulse train, and
reference level detector means for detecting when said encoding integrator means reaches a predetermined level and for providing a pulse output for resetting said encoding integrator, whereby pulses from said encoding
integrator means form said print signal pulse train. 5. The apparatus of claim 4 further comprising means for generating tachometer pulses in response to the rate at which said scanner transducer means scans said master image along said scan line and means for adjusting the frequency of said gating signal pulse train in dependence upon the frequency of said
tachometer pulses. 6. Apparatus for scanning a master image along a scan line and encoding the image into a print signal pulse train of a frequency proportional to the image density, comprising:
scanner transducer means for scanning said master image along a scan line, and for providing an output inversely related to the image density,
reference level means for providing a signal output indicative of the maximum image density in the master image,
summer means for subtracting the output of said scanner transducer means from the output of said reference level means, thereby providing a difference signal which is directly related to the density of the image being scanned,
encoding integrator means, responsive to a gating signal pulse train, for integrating the output of said summer means during receipt of each pulse in said gating signal pulse train,
level detector means for detecting when the output from said integrator means reaches a predetermined level and for providing a print signal pulse to said ink jet printer and resetting said integrator means in response thereto,
means for generating tachometer pulses in response to the rate at which said scanner transducer means scans said master image along said scan line, and
timing means, responsive to said tachometer pulses, for providing a gating signal pulse train equal in frequency to said tachometer pulses to said encoding integrator means,
whereby fluctuations in the rate at which said master image is scanned are
compensated. 7. The apparatus of claim 6 further comprising:
means, responsive to said reference level means, for adjusting the duration of the pulses in said gating signal pulse train such that said pulses have a duration inversely related to the maximum print density in the master image.
8. The method of scanning and encoding a master image to provide a print signal pulse train for an ink jet printer comprising the steps of:
optically scanning a master image, including a reference image area, and providing an electrical scanning signal inversely proportional to the print density of the master image,
storing the scanning signal produced during scanning of the reference image area, and
subtracting the electrical scanning signal, produced by scanning the master image, from the scanning signal produced by scanning the reference image area, to provide a density signal directly related to the density of the
master image. 9. The method of claim 8 including the further steps of: The method of scanning and encoding a master image to provide a print signal pulse train for an ink jet printer comprising the steps of:
optically scanning a master image, including a reference image area, and providing an electrical scanning signal inversely proportional to the print density of the master image,
storing the scanning signal produced during scanning of the reference image area,
subtracting the electrical scanning signal, produced by scanning the master image, from the scanning signal produced by scanning the reference image area, to provide a density signal directly related to the density of the master image,
integrating said density signal during selected periods of time,
providing a print signal pulse to an ink jet printer when the integral of said density signal reaches a predetermined level, and
initiating a new integration operation. 10. The method of claim 9 further comprising the steps of:
monitoring the scanning signal as the reference image area is scanned,
monitoring the rate at which the master image is scanned, and
controlling the time periods during which integration of said density signal occurs such that the integration occurs during time periods which vary in frequency according to the rate at which the master image is scanned and which time periods are inversely proportional in length to the
density signal resulting from scanning said reference image area. 11. The method of scanning and encoding a master image to provide a print signal pulse train for an ink jet printer, comprising the steps of:
optically scanning the master image,
generating a density signal related in amplitude to the print density of the master image,
measuring the rate of scanning of the master image,
integrating the density signal in accordance with the rate at which the master image is scanned, and
generating print and integration reset signals when the integral of the density signal reaches a predetermined level.
13. The device of claim 12 in which said integrator means further comprises reset means for resetting said integrator means each time a print signal pulse is provided in said print signal pulse train.
15. The method of scanning and encoding a master image of claim 14 further comprising the step of:
adjusting the time period required for integration of said density signal to said predetermined level in dependence upon the level of said reference level signal.

The present invention relates to optical encoders and, more particularly, to encoders which may be used to provide print control information in an ink jet copier for copying all types of materials, including printed text and photographs, and which is particularly useful in multiple color printing operations. In recent years, ink jet printing has developed in sophistication to the point where it is now possible to print both text material and other types of material, such as photographs, with a high degree of resolution. A technique similar to half-tone printing is used to reproduce photographs and other graphics. The photograph is reproduced by depositing ink drops closely together in areas which are to be dark in tone and further apart in areas which are to be lighter in tone. In a color printing arrangement, drops of red, yellow, and blue ink are deposited on the copy paper with the spacing between drops of each color ink being dependent upon the color content of the image in the area being reproduced.

In order to utilize an ink jet printer as the printing mechanism for the copier, it is necessary to have some method of scanning the master to produce print control information which will space the ink drops apart by the necessary distance to reproduce the master. When printing with multiple colors of ink, it is necessary that the master be scanned, generally by using color filters, as to the color content of each color of ink being printed. The final multicolor copy is produced by superimposing the printed images which result from scanning the master with respect to its color content for each color of ink being used.

It is known in the prior art to scan optically a master by illuminating the master and then, by some arrangement, directing the reflected light from along a scan line on the master image to one or more optical lenses which, in turn, direct the light to a photoelectric transducer. The output from the photoelectric transducer provides an indication of the printed material along the scan line of the master, with more light being reflected from the lighter toned areas, indicating little or no ink deposits in these areas.

In order to provide scanning for a particular color, a color filter is inserted in the optical system which passes only light of a preselected frequency range. The color scanning will usually be substracted--i.e., the color filters in the optical scanner block out the color being scanned. If, for instance, red is being scanned in the master and a red portion of the image is encountered, the light reflected from the master image will be of wavelengths principally that are in the red region of the light spectrum, with the balance of light being absorbed by the master. The color filter will block out the red spectrum light, permitting light of other wavelengths to pass. A large amount of light striking a photoelectric transducer in the optical scanning system will, therefore, indicate that a region having a small amount of red color content is being scanned. On the other hand, when very little light is directed to the photoelectric transducer, this will indicate that the red content of the area being scanned is significant. It is usual then to substract the output from the photoelectric transducer from a reference level to produce a signal directly related to the color content in the master image of the color being scanned.

Several problems have been noted with respect to prior art scanning devices. It has been found that the optical path alternation in a scanner will vary over a period of time for one of a number of reasons. If the supply voltage to the lamps which illuminate the master image should fluctuate, the intensity of the light directed to the photoelectric transducer, and therefore the magnitude of the electrical signal produced thereby, will fluctuate. Additionally, when a number of colors are being scanned in the master image by a scanner in which filters of various color transmitting characteristics are sequentially inserted into the optical path, the amount of light falling upon the photoelectric transducer will vary in dependence upon the light transmitting characteristics of each of the filters being used. It is not possible to obtain a set of filters ofeminating emanating from printer 62 will, therefore, provide for printing on the paper 68 along a line corresponding to the scan line 16 on the master image.

The output from encoder 60 is provided on line 72 and additional ink jet control inputs 74 are also illustrated. It should be understood that if a plurality of jets are used simultaneously for printing on the copy paper 68, such jets would each be under the control of a separate encoder, substantially identical to the encoder 60. Each encoder would have its own image scanning photodiode mounted adjacent photodiode 26 for simultaneous receipt of light from image 12. The photodiodes would scan parallel scan lines across the master image 12.

Ink jet printers of the type used in the present invention are well known in the prior art. Typical printers are illustrated in U.S. Pat. Nos. 3,701,998, issued Oct. 31, 1972, to Mathis; 3,586,907, issued June 22, 1971, to Beam et al; and 3,373,437, issued Mar. 12, 1968, to Sweet et al.

The encoder means 60 includes a summer means comprising amplifier 76, resistors 78, 80, and 82, and tapped resistance 84. The summer means substracts the output from the image scanning photodiode, on line 28, from the reference level output of the sample and hold means, which is provided on line 40. The output on line 40 is appropriately attenuated by resistors 82 and 84. It can be seen that the output signal of the summer on line 86 is, therefore, a difference signal which is directly related to the color density of the predetermined color in the master image along the scan line.

An encoding integrator means includes amplifier 88, capacitor 90, and MOSFET 92. The encoding integrator has a gating circuit at its input 93 providing selectively the signal from line 86 and controlling the time periods during which the encoding integrator means operates.

A level detector means includes a level detector 94 which provides a trigger signal to monostable multivibrator 96 when the output from the integrator reaches a predetermined level as set with resistor 98. When this predetermined level is reached, multivibrator 96 provides an output pulse on line 72 to the ink jet printer 62, thus causing a drop of ink to be deposited on the sheet of copy paper 68. At the same time, the multivibrator 96 provides a reset pulse to line 100, gating MOSFET 92 ON and discharging capacitor 90. When this occurs, the integrator means is reset and a new integration operation begins. Thus the frequency of the output pulses on line 72 is a function of the time taken by the encoding integrator means to reach a predetermined reference level and, in turn, this time is directly proportional to the input on line 86.

A signal is applied to the encoding integrator by a gating circuit, including FET 102 and transistor 104, only when a gating signal is supplied to line 108. As a consequence, the frequency of the output print signal pulse train on line 72 is also dependent on the amount of time that the signal from line 86 is applied to the encoding integrator means. A timing means 110 is responsive to the output 40 of the sample and hold means 36 and also to tachometer pulses on line 112 from tachometer 114. The timing means 110 provides a gating signal pulse train on line 108 which is equal in frequency to the tachometer pulses on line 112. However, the gating signal pulse train has pulses of a duration inversely proportional to the output of the sample and hold means 36.

The timing means 110 includes a timing integrator means comprising amplifier 120, capacitor 122, resistor 124, reset MOSFET 126 and drive driver 128. Additionally, the timing integrator means includes level detector 130 and resistor 132 which provide an output on line 134 when the integrator output on line 136 exceeds a preselected reference level. The integrator, including amplifier 120 and capacitor 122, will integrate the output from the sample and hold circuit 36 and, when a preselected reference level is reached, provide an output on line 134. Line 134 is connected to the reset input of flip-flop F1, while the set input of the flip-flop is connected to line 112 which receives tachometer pulses from tachometer 114. The output 138 of the flip-flop F1 is connected to gate driver 128 and also to line 108.

When a pulse is received on line 112, setting flip-flop F1, the pulse applied to line 138 will switch the MOSFET 126 OFF and an integration cycle will be initiated. The timing integrator will integrate at a rate which is proportional to the output of the sample and hold circuit 36. When the output of the timing integrator reaches the level set by level detector 130, the flip-flop F1 will be reset and, as a consequence, the gate including MOSFET 126 will be turned ON and capacitor 122 discharged. The timing means 110 will, thereafter, await the receipt of the next tachometer pulse on line 112.

The timing integrator is adjusted to have identical characteristics to the encoding integrators in the data channels associated with each of the scanning photodiodes. This is done so that if an encoding integrator is receiving a maximum signal it will integrate at the same rate as the timing integrator and provide a pulse output to the printer at the trailing edge of the pulse in the gating signal pulse train on line 108. These gating signal pulses will also be applied via line 140 to the encoding integrators associated with the additional image scanning photodiodes, if such additional photodiodes are used in the scanner. A level adjustment buffer 141 receives the pulses from flip-flop F1 and adjusts the voltage level of the pulse train such that it will consist of positive-going pulses having a maximum voltage level of zero volts. Switching of transistor 104 and FET 102 will thereby be appropriately controlled.

Thus it is seen that the encoding integrator is gated ON once for each tachometer pulse on line 112 for a period of time which is inversely proportional to the maximum signal output from the sample and hold circuit 36. If the tachometer pulses should vary, resulting from fluctuations in the speed of rotation of drum 10, the data accumulated in the encoding integrator will be compensated to allow for these variations and the density of printing provided by the printer 62 will not show such variations. Thus the copier is compensated both for fluctuations in the optical scanning path and for variations in the speed of scanning of the master image.

It will be appreciated that many variations in the scanning and encoding circuit shown in the FIGURE may be made within the scope of the invention. An encoder arrangement may be provided in which fluctuations in the amplitude of the photodiode output are compensated without compensating for fluctuation in the speed of rotation of the drum. This could be accomplished, for instance, by substituting an oscillator circuit having a fixed frequency output in the timing circuit 110 with the duration of output pulses being varied in dependence upon the voltage output from the sample and hold circuit 36. Alternatively, a compensation could be provided for fluctuations in the speed of rotation of the drum 10, without compensating for amplitude variations. This could take the form of a simple gating circuit controlling the timing of pulses to the printer. In such an arrangement, the encoding integrator would operate on a continuous basis.

It should also be apparent that, while a drum scanning arrangement responsive to reflected light from a master image has been described above, other scanning arrangements could be used in the present invention. A transparency may, for instance, be scanned by directing light through the transparency. The master image may also be scanned along scan lines configured other than in a conventional raster format, provided the printer is capable of using print information so encoded. Many other such variations within the scope of the present invention will be apparent to one skilled in the art.

While the method herein described, and the form of apparatus for carrying this method into effect, constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to this precise method and form of apparatus, and that changes may be made in either without departing from the scope of the invention.

Burnett, James E.

Patent Priority Assignee Title
4754143, Sep 12 1984 Fuji Photo Film Co., Ltd. Scanning read-out apparatus with scanning speed fluctuation compensating means and correction coefficient adjusting method
Patent Priority Assignee Title
1790723,
1973726,
2804574,
2962545,
3373437,
3528749,
3580995,
3604846,
3928713,
GB1194717,
GB751909,
GB795011,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 20 1979The Mead Corporation(assignment on the face of the patent)
May 31 1988MEAD CORPORATION, THEEASTMAN KODAK COMPANY, A CORP OF NYASSIGNMENT OF ASSIGNORS INTEREST 0049180208 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Apr 20 19854 years fee payment window open
Oct 20 19856 months grace period start (w surcharge)
Apr 20 1986patent expiry (for year 4)
Apr 20 19882 years to revive unintentionally abandoned end. (for year 4)
Apr 20 19898 years fee payment window open
Oct 20 19896 months grace period start (w surcharge)
Apr 20 1990patent expiry (for year 8)
Apr 20 19922 years to revive unintentionally abandoned end. (for year 8)
Apr 20 199312 years fee payment window open
Oct 20 19936 months grace period start (w surcharge)
Apr 20 1994patent expiry (for year 12)
Apr 20 19962 years to revive unintentionally abandoned end. (for year 12)