A weatherstrip and method for sealing a gap comprising a base preferably of fabric material, and one or more sealing bodies such as rows of pile fibers extending longitudinally there along. A barrier strip formed of a thin film or sheet of flexible plastic material is secured at one edge to the base and/or sealing bodies and projects substantially above the free or upper ends of the pile members. Foamed cellular plastic bodies may be used in place of the bodies of pile fibers, or a single body of pile or foamed plastic material may be used with the barrier strip located on one side thereof.
|
1. A weatherstrip for sealing a gap between members movable relative to one another between non-aligned and aligned positions, said weatherstrip comprising:
A. a backing strip for securing said weatherstrip to one of said members; B. at least one sealing body having one surface portion thereof fixed to one face of said backing strip and extending longitudinally thereof and cooperating therewith for forming a sealing assembly, said sealing body extending from said face toward the other of said members to substantially close said gap between said members; and C. A flexible film fixed adjacent one edge portion thereof to said sealing assembly with said film transverse to said one face, the opposite free edge portion of said film extending beyond said opposite free surface portion of said sealing body for a substantial distance whereby said free edge portion of said film is bent over at least a part of said free surface portion of said sealing body when said members are moved to said aligned position.
10. A method of sealing a gap between members movable relative to one another between non-aligned and aligned positions, said method comprising:
A. Affixing a backing strip of a weatherstrip to one of said relatively movable members, said backing strip having at least one sealing body having one surface portion thereof fixed to one face of said backing strip and extending transversely and longitudinally thereof and cooperating therewith for forming a sealing assembly; B. selecting said sealing body of a size so that the opposite free surface portion of said sealing body when said one surface portion thereof is fixed to said backing strip substantially closes said gap between said members; and C. affixing a flexible film to said sealing assembly adjacent one edge portion of said film with said film positioned adjacent said sealing body and extending transverse to transversely said one face of said backing strip, and the opposite free edge portion of said film extend extending beyond the opposite free surface portion of said sealing body for a substantial distance whereby said film is bent over at least a part of said opposite free surface portion of said sealing body when said members are moved to said aligned position.
2. A weatherstrip as specified in
3. A weatherstrip as specified in
4. A weatherstrip as specified in
5. A weatherstrip as specified in
6. A weatherstrip as specified in
7. A weatherstrip as specified in
8. A weatherstrip as specified in
9. A weatherstrip as specified in
11. A method according to
12. A method according to
13. A method according to
14. A method according to
|
This invention relates to weatherstrips and methods for sealing gaps or joints such as those between doors, windows and other enclosures, and the frames of structural supports therefore. While such weatherstrips are capable of use in various places for various sealing or weatherstripping purposes, they are particularly suitable for use on wood or aluminum windows and doors for sealing or weatherstripping the small clearance openings between adjacent door panels or window panels or between the panels and the frames in which they are mounted or between the door edge and an adjacent surface such as a floor. More particularly, this invention relates to weatherstripping having a base of indefinite length from which project preferably filament members forming a pile along the length of the base, and a flexible barrier member located within or beside the pile and extending along the length of the pile to aid in sealing the joint.
It is well known to provide a weatherstrip having rows of pile extending longitudinally from a flexible base, and having a substantially impervious barrier comprising a thin film or sheet of plastic material secured to the base and/or to the pile to supplement the sealing action of the pile and increase the resistance to air infiltration through the weatherstrip. An example of this construction is shown in U.S. Pat. No. 3,175,256 in which the barrier member is located between adjacent rows of pile. It is also known to locate the barrier strip on one side of the body of pile as shown in U.S. Pat. No. 3,404,487, or on both sides of the pile as shown in U.S. Pat. No. 3,266,190. U.S. Pat. No. 3,745,053 discloses a weatherstrip having longitudinally extended rows of pile with an impervious barrier strip located between adjacent rows of pile and secured only to the pile.
However, in all of the weatherstrips having pile and a supplemental plastic film or sheet forming a substantially impervious barrier, it has been common practice to form the weatherstrip so that the plastic sheet is substantially the same height as the pile, or slightly below the height of the pile, or in certain instances, slightly above the pile height. However, in all cases, the differential in height between the upper edge of the plastic barrier and the pile has been minimal and these parts have been of substantially the same height. It has been found that despite the advantages of the plastic film in reducing air and moisture infiltration through the weatherstrip, the film increases the break-away force required to open the sliding window or door. Break-away force is defined as the force required to overcome the inertia of the window or door when starting from a fully closed position. The film tends to snap over or reverse itself as the sliding window or door is moved from a fully closed position, thereby increasing the resistance to such movement to the point that the break-away force required to open a door or window has become excessive. Hence, small children or elderly people often cannot open the windows or doors having such weatherstripping.
This invention has for its primary object the provision of a weatherstrip and method for sealing a gap which, although having a thin film or sheet of plastic, or the like, reinforcing the pile bodies to improve the resistance to air moisture infiltration, is so constructed that the opening or break-away force is significantly reduced while maintaining desired sealing properties. It has been found that the break-away force can be reduced by eliminating the plastic barrier member or by shortening it so that it is substantially lower in height than the top of the pile so that when the pile is compressed to the usual degree of approximately 20%, the barrier strip is not substantially bent or flexed. Although such a construction reduces the break-away force, it does not provide satisfactory sealing properties as the resistance of the weatherstrip to water and air infiltration is markedly reduced and an unsatisfactory seal results.
In accordance with the present invention, a weatherstrip and method is disclosed for sealing a gap between members such as doors, windows, joints or the like which are movable relative to one another between non-aligned and aligned positions. The weatherstrip has a backing strip for securing the weatherstrip to one of the members. At least one sealing body has one end portion fixed to one face of the backing strip and extends longitudinally thereof to form a sealing assembly. The sealing body extends from the face toward the other member to substantially close the gap between the members. A flexible film is positioned transverse to the face and is fixed adjacent one edge thereof to the sealing assembly. The opposite free edge of the film extends beyond the opposite free end portion of the sealing body for a substantial distance whereby the free edge of the film is bent over at least a part of the free end portion of the sealing body when the members are moved to their aligned position.
In other aspects of the invention, the free edge of the film extends beyond the free end portion of the sealing body a distance of between .[∅015 #x2205;050 inches .[∅038 #x2205;127 centimeters) to 0.200 inches (0.508 centimeters) above the free ends of pile bodies 24, the preferred extension of barrier strip 28 above pile members 24 is substantially 0.100 inches (0.254 centimeters). Thus, the optimum conditions are substantially zero or negative compression of pile bodies 24 when in sealing position with barrier strip 28 extending approximately 0.100 inches (0.254 centimeters) beyond the free ends of said pile members.
FIGS. 8 and 9 show a pair of relatively movable members 232 and 234 in which member 232 is formed with in inverted "T"-shaped slot 30 providing opposed recesses 31 for the reception of marginal edges 25 of base 22 of weatherstripping 20. In FIG. 8 the letter D' indicates the distance or spacing between members 232 and 234, which spacing is to be sealed by the weatherstripping. FIG. 9 shows a weatherstripping of the type shown in FIGS. 1-3 mounted within a slot 30 of the type shown in FIG. 8.
While it is preferable to provide sealing bodies of pile fibers 24 on each side of barrier strip 28 as shown in FIGS. 1-3, it is sufficient for certain installation to provide only a single body of pile fibers 24 on one side of barrier strip 28. Such a construction is shown in FIG. 10 wherein an arrow 36 indicates the direction of the movable member (not shown) relative to the member on which base 22 is mounted. In this construction, the movement of the movable member in the direction of arrow 36 folds or bends barrier member 28 over the upper ends of pile members 24 similar to that shown at the right portion of FIG. 6. Thus, barrier strip 28 may be located at one side of the pile bodies 24.
FIGS. 11-13 show further modifications in which a barrier strip 28 is located between or on one side of solid or hollow sealing bodies 38, 38', and 40. Barrier 28 performs in the same manner as in FIG. 10, and is bent over the upper edge of a sealing body when the movable members are brought into aligned or closed positions.
It has also been found that although it is preferable to locate barrier strip 28 between sealing bodies 24 of woven or flocked pile fibers, the sealing bodies may be formed of resilient, matted or foamed plastic or rubber material, of closed or open cell construction such as sponge rubber, polymeric foams or other known and suitable materials of suitable density. Such sealing bodies 38, 38', and 40 (FIGS. 11-13), may have a round, square or other suitable cross-sectional shape. Bodies 38 are formed with a hollow center to aid in providing the desired resiliency. Bodies 38, 38' and 40 are secured to base 22 by heat welding, adhesives or other suitable means. Sealing bodies are preferably selected to have a height from the bottom of base member 22 substantially equal to distance D shown in FIG. 5 in the same manner as the weatherstripping shown in FIG. 6.
FIG. 14 shows a weatherstrip in which a barrier strip 228 is formed from a single film or sheet secured adjacent its lower edge by any suitable means to base 22 or to adjacent pile fibers 24.
FIG. 15 shows a weatherstrip similar to the weatherstrip shown in FIG. 14 in which the barrier strip 228 is formed integral with base 22, preferably by an extrusion molding operation.
FIG. 16 is also similar to FIG. 14 and shows a pair of spaced apart strips 228 which may be secured to or integral with the sealing assembly comprising base 22 and sealing bodies 24.
FIGS. 17-19 relate to a different form of weatherstripping in which a base 222, 322 or 422 is provided having a round or square cross-section. The base is slidably mounted within a complementary slot (similar to slot 30) of one of two relatively movable members, not shown. Each base is further provided with a V-shaped groove 40 terminating in an elongated central slot 42 for receiving the ends of pile fibers 224 and barrier strip 328. The fibers are secured adjacent their ends to the base by any suitable means, and the barrier strip is also secured to the base and/or to the adjacent pile fibers 224. In FIGS. 18 and 19, grooves 40 and bases 322 and 422 are oriented 45 degrees relative to one another.
This invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected when the spirit and scope of the invention without departing from the terms of the invention.
Patent | Priority | Assignee | Title |
5060422, | Nov 19 1990 | Ultrafab, Inc. | Weatherstrip |
5137078, | May 11 1990 | Air heater seals | |
5363906, | May 11 1990 | Air heater seals | |
5529113, | May 11 1990 | Air heater seals | |
6878428, | May 10 2001 | Composite weatherstripping | |
7329450, | Oct 16 2002 | Ultrafab, Inc. | Textile backed pile article and method for making same |
7896995, | Oct 16 2002 | Ultrafab, Inc. | Textile backed pile article and method for making same |
Patent | Priority | Assignee | Title |
3175256, | |||
3404487, | |||
3745053, | |||
4148953, | Feb 01 1978 | Ultrafab, Inc. | Air pervious weatherstrip |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 10 1982 | Schlegel Corporation | (assignment on the face of the patent) | / | |||
Dec 09 1997 | SCHLEGEL SYSTEMS, INC | FUJI BANK, LIMITED, THE, AS SECURITY AGENT | SECURITY AGREEMENT | 008855 | /0830 | |
Dec 12 1997 | Schlegel GmbH | SCHLEGEL SYSTEMS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008842 | /0773 | |
Dec 12 1997 | SCHLEGEL S A | SCHLEGEL SYSTEMS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008842 | /0773 | |
Dec 12 1997 | SCHLEGEL UK HOLDINGS LIMITED | SCHLEGEL SYSTEMS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008842 | /0773 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Oct 04 1986 | 4 years fee payment window open |
Apr 04 1987 | 6 months grace period start (w surcharge) |
Oct 04 1987 | patent expiry (for year 4) |
Oct 04 1989 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 04 1990 | 8 years fee payment window open |
Apr 04 1991 | 6 months grace period start (w surcharge) |
Oct 04 1991 | patent expiry (for year 8) |
Oct 04 1993 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 04 1994 | 12 years fee payment window open |
Apr 04 1995 | 6 months grace period start (w surcharge) |
Oct 04 1995 | patent expiry (for year 12) |
Oct 04 1997 | 2 years to revive unintentionally abandoned end. (for year 12) |