A pump such as a vehicle air conditioner compressor has a compressor shaft, a continuously engine-driven flywheel and means such as an electromagnetic clutch for selectively coupling the flywheel to the shaft to operate the pump. The flywheel also provides a permanent magnet field which field rotates with the flywheel and induces in the windings of a relatively stationary annular stator assembly an electric voltage in response to the rotating magnetic field. The pump shaft, annular clutch actuating coil, annular stator assembly, and permanent magnet flywheel are all generally concentrically disposed and in the order stated. The flywheel is driven any time that the engine is running thereby inducing a voltage in the stator windings and that flywheel also drives the exemplary compressor when the clutch is actuated.
|
6. A unified pump-generator for a vehicle engine comprising:
a pump including a housing having a face, pump bearings supported in the housing and a rotatable driving shaft journaled in the pump bearings and extending from said housing face; a rotatable hub member supported on said shaft for rotation about said shaft; a generator stator mounted on and supported solely by said housing face, said stator positioned in close proximity to said housing face; and a generator rotor fixedly secured to said hub member, the hub member and generator rotor rotatably supported by the pump bearings, said rotor positioned in close proximity to said housing face, radially outward of the stator and concentric with said shaft.
1. A unified compressor-generator assembly for a vehicle engine comprising:
compressor means for compressing refrigerant in an automobile air conditioning system including a housing having an end face and a rotatable driving shaft extending from said end face; a hub member rotatably supported on said shaft and adapted to be driven by said engine to rotate about said shaft; a flywheel connected to said hub member and rotatable therewith, said flywheel having an annular flange portion at the periphery thereof adjacent said housing end face, said flange portion having a support surface concentric with said shaft; generator rotor elements supported on said support surface of said flywheel flange portion; a generator stator assembly supported on said housing end face concentrically within said rotor elements and surrounding said shaft; and selectively actuable clutch means for drivingly coupling said hub member to said shaft, said clutch means including a portion fixedly secured to said shaft and rotatable therewith, a clutch plate adapted drivingly to engage said hub member, and a coil concentrically surrounding said hub member and adapted when energized to urge said clutch plate into driving engagement with said hub member.
12. A unified compressor-generator assembly for a vehicle engine comprising:
compressor means for compressing refrigerant in an automobile air conditioning system including a housing having an end face and a rotatable driving shaft extending from said end face; a hub member rotatably supported on the compressor and adapted to be driven by said engine to rotate about said shaft; a flywheel connected to said hub member and rotatable therewith, said flywheel having an annular flange portion at the periphery thereof adjacent said housing end face, said flange portion having a support surface concentric with said shaft; generator rotor elements supported on said support surface of said flywheel flange portion; a generator stator assembly supported on said housing end face concentrically within said rotor elements and surrounding said shaft; and selectively actuable clutch means for drivingly coupling said hub member to said shaft, said clutch means including a portion fixedly secured to said shaft and rotatable therewith, a clutch plate adapted drivingly to engage said hub member, and a coil concentrically surrounding said hub member and adapted when energized to urge said clutch plate into driving engagement with said hub member.
2. The structure of
3. The structure of
4. The structure of
5. The structure of
7. The assembly of
8. The assembly of
9. The assembly of
11. The assembly of
|
in an air conditioner compressor 19. Three leads 20, 22 and 24 extend from Delta connected alternator phase windings and a clutch energizing or controlled control lead 26 extends from a clutch actuating electromagnet to a thermostat or control switch 32 for clutch control. The other clutch energizing lead may be grounded. Thus, FIG. 1 illustrates a unified pump-generator structure and such a combined arrangement provides a compressor function for a vehicle air conditioning system as well as a generator or alternator function for supplying the vehicle electrical needs. The detailed construction and operation of such a combined arrangement will be most easily understood by considering FIGS. 2 and 3 together.
The pump or compressor 19 has housing 21 from which there is axially extending a drivable compressor actuation shaft 23, rotation of which actuates the compressor in a conventional manner. Housing 21 also has fixedly attached thereto an annular generator stator assembly 25 which comprises a slotted laminated magnetic core 27 having windings 29 disposed in the core slots. Still further housing 21 has affixed thereto annular coil 31 which when energized creates a magnetic field to actuate clutch 17. Shaft 23 may be thought of as rotating about imaginary axis 33 and the annular coil 31 as well as the generator stator assembly 25 are attached to housing 21 concentric to one another and to axis 33. Similarly, these last two annular members are concentric with compressor crank shaft 23.
Shaft 23 is fixed, for example, by key 35 in keyway 37, by threading, or both, to member 39. Such threaded attachment may be facilitated by nut 41 and threads 43 on the compressor crank shaft. Still further, fixedly connected to member 39 and spaced therefrom is clutch support plate 45. Clutch support plate 45 may be connected to member 39, for example, by bolts or rivets 47, and this bolt or rivet 47 may also affix one end of spring 49 to the clutch support plate. As illustrated three such springs 49 have their ends remote from the bolts or rivets 47 connected to clutch plate 51. If shaft 23 is rotationally motionless so are member 39, clutch support plate 45, leaf springs 49 and clutch plate 51.
However, clutch plate 51 may move axially somewhat due to the flexing of springs 49 when the annular coil or clutch actuating coil 31 is energized. Energizing coil 31 draws clutch plate 51 axially toward side surface 53 of pulley 15 frictionally to engage surface 53 thereby connecting rotatable member 55 to compressor crank shaft 23. When coil 31 is deenergized, for example, by a manual or thermostatic control (not shown), clutch plate 51 under the influence of springs 49 returns to its rest position and no longer frictionally engages surface 53. In this rest position compressor 19 is inactive, however, rotatable member 55 free wheels about the axis 33 on a bearing 57. Bearing 57 is supported on portion 58 of clutch plate 51 shown in FIG. 3.
Rotatable member 55 includes not only pulley 15, but also bearing retainer spring 59, and generator rotor portion 63, which includes flywheel 65 and a series of permanent magnets 67, which together form a multipole rotor for the alternator. Flywheel 65 may have the permanent magnets 67 adhesively bonded to its interior rim. Flywheel 65 and its permanent magnets 67 are again concentric within reasonable limits with axis 33. Flywheel 63 may be provided with a plurality of air passing apertures 69 for cooling the generator stator portion. A cooling fan may be mounted on member 65 to force air through holes 69 for applications in which the vehicles main cooling fan is not favorably located with respect to this alternator. The air passing apertures have webs lying therebetween and these web portions may be bent to form a fan type structure.
When the fixed annular coil 31 is not energized to creat a magnetic field, clutch 17 is motionless and the compressor 19 is quiescent, even though the engine is operating and driving belt 13, to cause pulley 15, retainer 59, flywheel 65, and its associated permanent magnets 67 to rotate about the stator 25 and induce a voltage in the windings thereof. Energization of the coil 31 causes clutch plate 51 to engage surface 53 of pulley 15 and additionally, frictionally to drive clutch 17, and compressor crank shaft 23.
Axial space saving is accomplished by the nesting of generator and compressor portions which is most readily seen in FIG. 3. Thus generator elements, such as the permanent magnets 67 and stator 25, including stator laminations 27 and windings 29, are nested with and overlap somewhat magnetic clutch actuating coil 31 as well as bearing 57 and shaft engaging member 39. A substantial space saving and weight saving over merely an end to end connection of a generator and compressor is thereby achieved. It will be understood that electromagnets energized through slip rings on member 39 may be substituted for permanent magnets 67.
While many winding arrangements could be employed in the annular stator assembly 25, typical known alternators employ windings connected in a three-phase wye or star configuration with an ungrounded center point of that wye. Six diodes are employed to couple such a wye connection to, for example, a vehicle storage battery with three of those diodes conducting current from one terminal of the battery to each of the three respective winding leads while three other diodes couple those same three respective winding leads to the other side of the battery. Such a known winding connection would be perfectly suitable for use in the present invention, however, FIG. 4 illustrates another manner in which the windings may be connected and which connection may be preferred in some vehicle environments.
In FIG. 4, the three windings 29 are Delta connected with each winding junction, such as 71 coupled by way of a diode 73 to the positive terminal of storage battery 75. Voltage regulating circuit 77 may sense the voltage across the battery and provide appropriate gating signals to silicon controlled rectifiers, such as 79, so as to pass or block charging current, depending upon the state of charge of the battery 75.
In FIG. 5 a fan blade 80 is supported on a shaft 82 connected to a pump 84 such as a vehicle water pump having an impeller 87. Frame 84 of the water pump supports stator laminations 86 having windings 88 disposed therein. A pulley 90 is engine driven and in turn drives a flywheel 92 supporting permanent magnets 94 to provide a generator or alternator operating substantially as previously described. Mounting the alternator directly behind the vehicle cooling fan in this manner allows excellent cooling of the alternator windings, silicon controlled rectifiers and diodes. The alternator rotor is common with the vehicle fan and water pump shaft.
Thus, while the present invention has been described with respect to a specific preferred embodiment, numerous modifications will suggest themselves to those of ordinary skill in the art. For example, the illustrated preferred embodiment is of an alternator-compressor, however, pumps found in vehicles other than air conditioner compressor pump might equally well be integrated with an alternator, or other type generator advantageously according to the principles of the present invention. Also a bracket may support the alternator when no compressor is present. Accordingly, the scope of the present invention is to be measured only by that of the appended claims.
Patent | Priority | Assignee | Title |
11081996, | May 23 2017 | DPM Technologies Inc. | Variable coil configuration system control, apparatus and method |
11708005, | May 04 2021 | Exro Technologies Inc. | Systems and methods for individual control of a plurality of battery cells |
11722026, | Apr 23 2019 | DPM Technologies Inc. | Fault tolerant rotating electric machine |
4746480, | Aug 11 1986 | Hoechst Celanese Corporation | Process for providing a protective oxide coating on ceramic fibers |
5914551, | Oct 14 1997 | GENERAC POWER SYSTEMS, INC | Electrical alternator |
6204577, | Jan 05 2000 | Ford Motor Company | Method and apparatus for space-saving installation of a starter-alternator |
6570288, | Jun 20 2000 | Honda Giken Kogyo Kabushiki Kaisha | Outer rotor type brushless direct current motor |
6609896, | Jan 28 2002 | KULTHORN KIRBY PUBLIC COMPANY LIMITED | Device and method for reducing forces in mechanisms |
7717683, | May 09 2002 | ITT Manufacturing Enterprises LLC | Self contained pump electrical equipment power supply |
7789049, | Jul 14 2008 | Honda Motor Co., Ltd. | Variable capacity water pump via electromagnetic control |
8106563, | Jun 08 2006 | DPM TECHNOLOGIES INC | Polyphasic multi-coil electric device |
8212445, | Aug 12 2004 | DPM TECHNOLOGIES INC | Polyphasic multi-coil electric device |
8614529, | Aug 12 2004 | DPM TECHNOLOGIES INC | Polyphasic multi-coil electric device |
9584056, | Jun 08 2006 | DPM TECHNOLOGIES INC | Polyphasic multi-coil generator |
9685827, | Aug 12 2004 | DPM TECHNOLOGIES INC | Polyphasic multi-coil electric device |
Patent | Priority | Assignee | Title |
1422995, | |||
1672191, | |||
2002230, | |||
2070615, | |||
2079724, | |||
2465436, | |||
2660865, | |||
2674356, | |||
3082933, | |||
3186184, | |||
3449924, | |||
3498272, | |||
3517207, | |||
3663850, | |||
3759058, | |||
3778651, | |||
3828212, | |||
4097754, | Oct 20 1976 | Tecumseh Products Company | Short pitch alternator |
4169360, | May 16 1977 | Sanden Corporation | Refrigerant compressors for automotive air conditioning refrigerating systems |
DE1041731, | |||
DE1503618, | |||
GB1051594, | |||
GB1307267, | |||
GB1362140, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 22 1982 | Tecumseh Products Company | (assignment on the face of the patent) | / | |||
Sep 30 2005 | Tecumseh Products Company | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 016641 | /0380 | |
Feb 06 2006 | HAYTON PROPERTY COMPANY LLC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | EUROMOTOT, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | Von Weise Gear Company | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH PUMP COMPANY | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | Tecumseh Power Company | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH COMPRESSOR COMPANY | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH CANADA HOLDING COMPANY | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | M P PUMPS, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | MANUFACTURING DATA SYSTEMS, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | Little Giant Pump Company | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | FASCO INDUSTRIES, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | EVERGY, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH TRADING COMPANY | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | CONVERGENT TECHNOLOGIES INTERNATIONAL, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | Tecumseh Products Company | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH DO BRASIL USA, LLC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 |
Date | Maintenance Fee Events |
Aug 29 1988 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Jul 16 1988 | 4 years fee payment window open |
Jan 16 1989 | 6 months grace period start (w surcharge) |
Jul 16 1989 | patent expiry (for year 4) |
Jul 16 1991 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 16 1992 | 8 years fee payment window open |
Jan 16 1993 | 6 months grace period start (w surcharge) |
Jul 16 1993 | patent expiry (for year 8) |
Jul 16 1995 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 16 1996 | 12 years fee payment window open |
Jan 16 1997 | 6 months grace period start (w surcharge) |
Jul 16 1997 | patent expiry (for year 12) |
Jul 16 1999 | 2 years to revive unintentionally abandoned end. (for year 12) |