A high-speed filling machine for filling a fluid product into small containers, in which a continuously moving conveyor belt brings empty containers to their filling position underneath filling nozzles, where the empty containers are held stationary by an indexing mechanism while the filling nozzles are lowered into the empty containers, the fluid product is discharged into the containers and upon completion of discharge stroke of the filling units, the nozzles are again raised whereafter the indexing mechanism will release the filled containers for further movement by the conveyor belt; the single channel from the inlet end thereby branches out into two parallel channels upstream of the filling station, each provided with its own indexing mechanism, while a nozzle support structure which raises and lowers the filling nozzles into the containers, is also adapted to reciprocate so that alternately the empty containers in one channel and then in the other channel are filled.
|
24. A filling machine with a filling station for filling containers with a fluid product by the use of several filling nozzles, which comprises two substantially parallel channel means within the area of the filling station which are defined at least in part by conveyor means, a number of filling units operatively connected with a corresponding number of filling nozzles, nozzle support means supporting thereon the filling nozzles in proper position, means for lowering and raising the nozzle support means and therewith the filling nozzles into and out of containers held under the filling nozzles, indexing means for said channel means for determining the number of containers to be filled in a given filling operation while held stationary in the filling positions on the conveyor means during the filling operation, and control means for the filling machine to control its operation including means for correlating the operation of the indexing means and the lowering and raising of the nozzle support means with the operation of the filling units, characterized in that reciprocating means which are operatively connected with the control means are provided for the nozzle support means to alternately place the filling nozzles over the containers to be filled in one channel means and after completion of the filling operation thereof, to move the nozzle support means transversely to the direction of movement of the conveyor means over the other channel means to fill the containers which have been brought into filling position in the meantime in said other channel means and which are held stationary thereat during the filling operation.
23. A filling machine with a filling station for filling containers with a fluid product by the use of several filling nozzles, which comprises two substantially parallel channel means within the area of the filling station, which are defined at least in part by a conveyor belt continuously running , in operation, conveyor belt, a number of filling units operatively connected with a corresponding number of filling nozzles, nozzle support means supporting thereon the filling nozzles in proper position, means for lowering and raising the nozzle support means and therewith the filling nozzles into and out of containers held under the filling nozzles, indexing means for said channel means for holding containers stationary in their filling positions during the filling operation on the conveyor belt and control means for the filling machine to control its operation including means for correlating the operation of the indexing means and the lowering and raising of the nozzle support means with the operation of the filling units, characterized in that reciprocating means which are operatively connected with the control means are provided for the nozzle support means to alternately place the filling nozzles over the containers to be filled in one channel means and after completion of the filling operation thereof, to move the nozzle support means transversely to the direction of movement of the conveyor belt over the other of the two channel means to fill the containers which have been brought into filling position in the meantime in said other channel means and which are held stationary thereat during the filling operation by the respective indexing means.
1. A filling machine for filling containers with a fluid product by the use of several filling nozzles, which comprises a number of filling units performing working cycles, which are operatively connected with a corresponding number of filling nozzles and are operable for filling containers with the fluid product by way of the nozzles during the working cycles thereof, nozzle support means supporting thereon the filling nozzles in proper position, means for lowering and raising the nozzle support means and therewith the filling nozzles into and out of containers held under the filling nozzles, indexing means for holding containers stationary in their filling positions during the filling operation on a continuously running conveyor means, and control means for controlling the operation of the filling machine including means correlating the operation of the indexing means and the lowering and raising of the nozzle support means with the working cycle of the filling units, characterized in that two substantially parallel channel means defined in part by said conveyor means are provided which branch out from a single channel means upstream of the filling station and which recombine again into a single channel means downstream of the filling station, in that said indexing means are coordinated to each channel means to hold a predetermined number of containers corresponding to the number of the filling nozzles stationary in the respective channel means during the filling operation, and in that reciprocating means which are operatively connected with said control means are provided for the nozzle support means to alternately place the filling nozzles over containers to be filled in one channel means during a respective working cycle and after completion of the filling operation thereof, to move the nozzle support means transversely to the direction of movement of the conveyor means over the other of the two parallel channel means to fill the containers which have been brought into filling position in the meantime in said other channel means during the next working cycle and which are held stationary thereat during the filling operation of such working cycle by the respective indexing means.
2. A filling machine according to
3. A filling machine according to
4. A filling machine according to
5. A filling machine according to
6. A filling machine according to
7. A filling machine according to
8. A filling machine according to
9. A filling machine according to
10. A filling machine according to
11. A filling machine according to
12. A filling machine according to
13. A filling machine according to
14. A filling machine according to
15. A filling machine according to
16. A filling machine according to
17. A filling machine according to
18. A filling machine according to
19. A filling machine according to
20. A filling machine according to
21. A filling machine according to
22. A filling machine according to
25. A filling machine according to
filling station. 32. A filling machine according to claim 30, characterized in that the two feed lanes are provided for feeding the channel means. 33. A filling machine according to claim 32, characterized in that four channel means are provided within the area of the filling station. 34. A filling machine according to claim 33, characterized in that the nozzle support means supports thereon two parallel rows of filling nozzles. 35. A filling machine according to claim 23, characterized in that the two channel means merge into a single feed-out channel. 36. A filling machine according to claim 35, characterized in that a single conveyor belt is provided for the two channel means and the single feed-out channel. 37. A filling machine according to claim 23, characterized in that a single conveyor belt is provided for the two channel means. 38. A filling machine with a filling station for filling containers with a fluid product by the use of several filling nozzles, which comprises two substantially parallel channel means within the area of the filling station which are defined at least in part by conveyor means, filling means operatively connected with the filling nozzles, nozzle support means supporting thereon the filling nozzles in proper position, means for lowering and raising the nozzle support means and therewith the filling nozzles into and out of containers held under the filling nozzles, indexing means for said channel means for determining the number of containers to be filled in a given filling operation, while held stationary in the filling positions on the conveyor means during the filling operation, and means for operating the filling machine through at least one control cycle including control means for the indexing means, the means for lowering and raising the nozzle support means and the filling means, characterized in that reciprocating means are provided for the nozzle support means to alternately place the filling nozzles over the containers to be filled in one channel means and after completion of the filling operation thereof, to move the nozzle support means transversely to the direction of movement of the conveyor means over the other channel means to fill the containers which have been brought into the filling position in the meantime in said other channel means and which are held stationary thereat during the filling operation, said reciprocating means being controlled in proper timed relationship to the operation of the filling machine by control means therefor. 39. A filling machine according to claim 38, characterized in that the two channel means merge into a single feed-out channel. 40. A filling machine according to claim 39, characterized in that a single conveyor means is provided for the two channel means and the single feed-out channel. 41. A filling machine according to claim 38, characterized in that a single conveyor means is provided for the two channel means. 42. A filling machine with a filling station for filling containers with a fluid product by the use of several filling nozzles, which comprises two substantially parallel channel means within the area of the filling station which are defined at least in part by conveyor means, filling means operatively connected with the filling nozzles, nozzle support means supporting thereon the filling nozzles in proper position, means for lowering and raising the nozzle support means and therewith the filling nozzles into and out of containers held under the filling nozzles, indexing means for said channel means for determining the number of containers to be filled in a given filling operation, while held stationary in the filling positions on the conveyor means during the filling operation, and means for operating the filling machine through at least one control cycle including control means for the indexing means, the means for lowering and raising the nozzle support means and the filling means, characterized in that reciprocating means are provided for the nozzle support means to alternately place the same filling nozzles over the containers to be filled in one channel means and after completion of the filling operation thereof, to move the nozzle support means and therewith said filling nozzles transversely to the direction of movement of the conveyor means over the other channel means to fill the containers which have been brought into the filling position in the meantime in said other channel means by said filling nozzles and which are held stationary thereat during the filling operation, said reciprocating means being controlled in proper timed relationship to the operation of the filling machine by control means therefor. |
The present invention relates to a high-speed filling machine for filling small containers with accurately metered quantities of fluid products at high speeds.
Various filling machines for filling small containers are known in the prior art. For example, the U.S. Pat. No. 3,237,661 discloses a filling machine in which containers moving on a continuously operating conveyor belt in a single line can be filled simultaneously. The drawback of this machine resides in its limitation of the number of containers which can be filled per unit time. Even though limitations exist as the maximum speed at which the filling units can operate, these limitations are of little practical concern at present since the available filling units are capable of operating at considerably higher speeds than the maximum practical speed for such filling machines. The limiting factor in a high-speed filling line is at present the maximum speed at which the conveyor belt of the machine can be operated safely. If the conveyor belt speed is excessive, tipping of the containers will occur and therewith spillage of the fluid product contained therein. For example, if a sixteen nozzle filling machine of the type disclosed in the aforementioned U.S. Pat. No. 3,237,661 is used, in which each nozzle dispenses the liquid product at the rate of fifteen fills per minute, this would provide a theoretical rate of 240 containers per minute. Though the filling units themselves are quite capable of such a rate of operation, the belt speeds required for a single line machine would be prohibitive. With fifteen filling cycles per minute--each cycle consisting of one suction stroke and of one power stroke of the filling unit pump--, each cycle would involve 60/15=4 seconds. Since the discharge (power stroke of the pump) amounts to 180° of pump shaft rotation per cycle and since about 30° of pump shaft rotation per cycle is used up for each of lowering and raising, the nozzle support structure supporting the sixteen nozzles, only 120° of pump shaft rotation per cycle would be left over within which to remove the sixteen filled containers from under the filling nozzles and bring in sixteen empty containers into position under the sixteen nozzles for the next filling operation. Hence, the time available for moving the sixteen filled containers from under the filling nozzles and bringing in sixteen empty containers under the nozzles would thus be 4×120/360=1.33 seconds. Assuming that the bottle diameter of each container is 3 inches, then 48 inches of conveyor belt length would have to be moved in 1.33 seconds. This would amount to a belt speed of about 2,165 inches per minute which is equal to 180 feet per minute belt speed. If a slippage factor of 1.15 is assumed, which is a realistic value, the conveyor belt speed would have to be 180×1.15=207 feet per minute. This speed is far too fast for safe operation and would cause the bottles to tip over and spill.
A double line arrangement has already been proposed in the U.S. Pat. No. 3,322,167. Since the arrangement of this U.S. Pat. No. 3,322,167 involves two sets of nozzles cooperating with double-acting pumps, the linear conveyor belt speed could be reduced in the aforementioned example by a factor of one half to about 103.5 feet per minute with the use of eight nozzles in each line, i.e., only eight containers would have to be moved within the available period of time of 1.33 seconds to achieve the filling rate of 240 containers per minute. However, a speed of about 103 feet per minute is still excessive and would still tip over bottles.
The present invention is therefore concerned with the task to eliminate the aforementioned shortcomings and drawbacks and to provide a high-speed filling machine in which a relatively large number of containers can be filled per minute, yet the conveyor belt speed thereof can be kept within reasonable limits to avoid tipping over of bottles and spillage of the fluid product.
The underlying problems are solved according to the present invention in that the filling machine comprises two lines at the filling station and in that the filling nozzles, supported by a nozzle support structure, are reciprocated between the two lines so as to alternately fill the empty containers of one line while permitting the filled containers of the other line to be removed and a new batch of empty containers to be brought into filling position and thereafter to shift the nozzle support structure and fill the empty containers of the other line which had been brought into position underneath the nozzles at the filling station in the meantime, and then to shift again the nozzle support structure back to the one line to thereafter fill the empty containers which had been brought in the meantime into filling position in the one line. With the use of the arrangement according to the present invention, the speed of the conveyor belt can be surprisingly cut by almost one-half as compared to the prior U.S. Pat. No. 3,322,167, i.e., by almost one-fourth compared to the single line filling machine as disclosed in the prior U.S. Pat. No. 3,237,661.
According to the present invention, the nozzle support structure which had been used heretofore only to lower the nozzles supported thereon into the empty containers prior to the discharge (power) stroke and to thereafter raise the nozzles during the suction stroke, before permitting the filled containers to leave the filling station, is additionally operable to reciprocate between two end positions corresponding to the filling positions over the one and over the other line of the two-line filling machine in accordance with the present invention. For purposes of shifting the nozzle support structure, a double-acting pneumatic cylinder and piston unit is used whereby a pneumatic medium under pressure is alternately admitted to the one or the other end of the pneumatic actuating cylinder of the unit, depending on the position of a solenoid valve which alternately connects the source of the pneumatic pressure medium with the one or the other side of the pneumatic cylinder in dependance on the position of the pump shaft while venting the opposite side.
According to another feature of the present invention, the empty containers are automatically guided into the one and the other line by the use of a wedge-shaped gating member without the need for any mechanical movable parts, such as gates or the like, thereby simplifying the arrangement.
Any conventional indexing mechanism may be used in the filling machine of the present invention, for example, as disclosed in the prior U.S. Pat. Nos. 3,067,786 and 3,237,661. However, in a preferred embodiment of the present invention, a container driven star wheel indexing system is used, as disclosed more fully in the copending application Ser. No. 708,635 entitled "Star Wheel Indexing System for Automatic Filling Machines" and filed in the name of Sidney Rosen on July 26, 1976, , and., now U.S. Pat. No. 4,083,389, includes two adjustably positioned star wheel indexing mechanisms generally designated by reference numeral 60 and 60' of similar construction so that only one thereof will be described in somewhat greater detail. Each indexing mechanism 60 and 60' includes a star wheel 61 provided with a number of sprockets corresponding to the number of containers to be filled simultaneously, i.e., in the given embodiment with sixteen sprockets thereby forming sixteen pockets, whereby the external configuration of each pocket is so designed as to match the external configuration of the container to be filled. Each star wheel 61 is freely rotatably supported and so positioned in relation to the containers in the channels 121 and 122 that it is rotated (container-driven) by the passing containers as long as the star wheel 61 is not stopped. For indexing purposes each star wheel 61 is provided with a pin member (not shown) projecting downwardly from its bottom surface which is adapted to engage with a stop member (not shown) normally projecting into its path as the star wheel 61 rotates to a predetermined position. The stop member is adapted to be momentarily retracted by an electromagnet 62 to cause disengagement from the pin member and to thereby permit one complete, container-driven rotation of the star wheel so that 16 containers are thereby permitted to move past the star wheel before the star wheel 61 will again come to a stop upon engagement of its pin member with the stop member. Two rotatable cam disks 131 and 132 each provided with cam projections 131' and 132', properly positioned thereon as will be described more fully hereinafter, will close at the proper moment a respective contact 133 and 134 which in turn will cause momentary energization of the electromagnet 62 by way of the line 66 and 67 connected with a suitable control unit 68 and 69. In practice, the closing of a contact 133 or 134 will apply an electrical potential to the winding of the electromagnet 62 to thereby energize the same so as to momentarily retract the stop member and thereby release the container-driven star wheel 61 for one rotation.
The solenoid valve 55, in its turn, is controlled by cam projections 141' and 142' on rotatable cam disk 141 and 142 whereby the cam disks 131, 132 and 141, 142 may all be mounted for rotation in unison on a control shaft 111 driven from the drive motor 11 by way of a reduction gear 112, providing a speed reduction of 2:1 with respect to the pump or control shaft 110, which itself may be driven by the motor 11 by way of a suitable speed reduction.
Additionally, the drive motor 11 is operatively connected by way of the pump shaft 110, either directly or indirectly, with a cam disk 150 which has a raised cam portion 151 to lower the nozzle support structure 30 and therewith the filling nozzles in the containers prior to the discharge stroke of the filling units 16. Conventional cam follower means and mechanical linkages are thereby provided to raise and lower the support structure 36, and therewith the parts fixedly or slidingly supported thereon by the use of vertical support rods or columns sliding within tubular vertical slide bearing members 37, 38, 39, 40 and 41. The cylinder unit 50 itself is thereby movable in unison with the vertical movements of the support structure 36.
The sixteen filling units 16 are connected by way of suitable hoses 17 with the respective filling nozzle 31a through 31p.
In operation, the conveyor belt 20 rotates continuously at a predetermined speed which is preferably adjustable. The drive motor 11 drives the filling unit 16 by way of pump shaft(s) 110 to provide, for example, fifteen complete filling cycles per minute, i.e., at a speed of fifteen rotations per minute for the pump shaft(s) 110. Any appropriate gearing arrangement between motor 11 and shaft 110 may be used to achieve the desired speed. Furthermore, the speed of the drive motor may also be adjustable by conventional means.
During each rotation of the pump shaft(s) 110 of the filling unit 16, each filling unit undergoes a suction stroke during 180° of its pump shaft rotation and a discharge or power stroke during the other 180° of its pump shaft rotation. Referring now to FIG. 2, which shows the vertical movement and position of the filling nozzles as a function of degrees pump shaft rotation for a prior art single-line machine (curve I) and for a double-line machine of the present invention (curve II), at point A of the upper curve (II) of this figure, the nozzle support structure and piston 51 are in the opposite end position from that shown in FIG. 1, i.e., in a position in which the nozzles 31a through 31p are aligned with the empty containers of channel 121 (line 1), which are held in position by the stopped star wheel 61 associated with line 121. During about 30° of rotation of the pump shaft 110, representing the last 30° of the suction stroke, from point A to point B of the cam 151 corresponding to points A and B of FIG. 2, the nozzle support structure 30 is lowered to thereby lower the nozzles 31a-31p into the containers of line 121. From point B to point C (180° of pump shaft rotation), the filling units 16 undergo their power strokes, thereby discharging the fluid product into the containers in accurately metered amounts. At point C, representing the beginning of the suction stroke, cam 151 will cause the nozzles to be raised again so that the nozzles are completely out of the filled containers at point D of FIG. 2 about 30° of pump shaft rotation later. At this point, the projecting cam member 131' of cam 131 closes the contact 133 thereby momentarily energizing the electromagnet 62 to retract the stop member out of engagement with the pin member of the indexing mechanism 60 and thereby permitting the star wheel 61 to freely rotate, container-driven, for one complete rotation, whereby sixteen containers are indexed which, permits the sixteen filled containers shown in cross-hatching to leave their filling position, in which they were held previously by the stopped star wheel 61 and to bring in sixteen empty containers under the filling nozzles. At point D the projecting cam member 141' of cam 141 closes the contact 143, thereby energizing the solenoid valve 55 so as to supply compressed air from output 57 by way of line 52 to the far end of the cylinder unit 50, as a result of which the nozzle support structure 30 is displaced from its position over channel 121 into its filling position over channel 122 as shown in FIG. 1.
At point E, cam 151 again causes the nozzle support structure 30 to be lowered, thereby now lowering the filling nozzles 31a through 31p into the empty containers in channel 122 held in their filling position by the stationary star wheel 61 of indexing mechanism 60', itself held fast by abutment of its pin member at the corresponding projecting stop member. The lowering of the nozzle support structure is completed at point F where the discharge stroke of the filling units 16 commences, which lasts until point G. At point G cam 151 causes the nozzle support structure 30 to be raised thereby raising the filling nozzles 31a through 31o out of the filled containers in channel 122 (line 2). Furthermore, at point H, the projecting cam member 132' of cam 132 closes contact 134 to thereby momentarily retract the stop member from the pin member of the star wheel 61 associated with channel 122 so as to permit the release of the filled containers by indexing sixteen containers corresponding to one complete revolution of the star wheel 61. Also at point H the projecting cam member 142' of cam 142 closes contact 144 which causes the solenoid valve 55 to connect the compressed air source input 56 with the output 58, thereby displacing the piston 51 in the pneumatic cylinder unit 50 into the position opposite from that shown in FIG. 1. At point I, the cam member 151 again causes the nozzle support structure 30 to be lowered thereby lowering the filling nozzles 30a through 30o into the empty containers, now held in position underneath the filling nozzles in channel 121. The discharge of the filling units 16 commences again at point J. As is quite clear, at point I the cycle of operation described beginning with point A will be repeated.
While the nozzles together with the nozzle support structure are lowered and raised once during each cycle of the filling units 16, i.e., once during each rotation of the pump shaft 110, the selective energization of the star wheel indexing mechanism 60 and 60', i.e., the release of the respective star wheel thereof, takes place only during every alternate rotation of the pump shaft(s) 110. The same is also true for the selective energization of the solenoid valve 55. Hence, the cams 131, 132, 141, 142 are rotated by way of control shaft 111 at a speed which is one-half the speed of the pump shaft or shafts 110, actuating the pistons of the filling units 16 and rotating can 151.
A comparison of the lower curve I of FIG. 2, representing the discharge cycle for a sixteen unit filling machine carrying out fifteen cycles per minute according to my prior U.S. Pat. No. 3,237,661 with the curve II, in which the full line portion represents the discharge of line 1 and the dotted curve the discharge of line 2, shows that the time available for moving the sixteen containers in the lower curve I is about 120° rotation of pump shaft, i.e., 1.33 seconds, assuming fifteen cycles per minute. In contradistinction thereto, in the machine according to the present invention, the time available for moving the sixteen containers in each line is about 480° (time interval from point D to I), which is an improvement about 4:1.
Utilizing the values in the above calculations, it is noted that the 48 inches, corresponding to sixteen containers with a diameter of 3 inches each, which must be displaced per working cycle, now can take place over a period of time or more than 4 seconds. However, even assuming that only 4 seconds were available, this would mean 60 feet per minute which with a slippage factor 1.15, would give a speed of about 69 feet per minute, a value well within permissive limits.
In the filling machine according to the present invention, no mechanically movable gating devices are required since an automatic gating is achieved by the wedge-shaped members 123 and 125 cooperating with the inclined rods 127a, 127b and 128a, 128b. It is only necessary that the tip of the wedge-shaped member 123 be so positioned in relation to the indexing wheel 61 that the farthest upstream container in a given channel whose star wheel is held stationary, has its diametric plane coinciding with the tip of the wedging member. This is shown with respect to the empty container 201 whose center line coincides with the tip of the wedging member 123 while channel 122 is filled by the stoppage of the star wheel 61. With this arrangement the containers which will continue to move in channel 120 as long as one of the channels 121 or 122 is not completely filled will automatically roll off along the farthest upstream stationary container of a filled channel, i.e., container 201 in FIG. 1, to pass into the channel 121. This feature eliminates the need for complicated mechanical movable gating mechanisms thereby further simplifying the filling machine in accordance with the present invention.
Instead of two lanes, the machine may also include more lanes, for example, four lanes fed from a single lane which bifurcates into two lanes which themselves then bifurcate into two lanes each to form the four lanes. FIG. 3 illustrates schematically a machine with a single feed lane 120 which bifurcates into two lanes 220a and 220b which themselves then each bifurcate into two lanes 221a, 221a' and 221b, 221b'. The gating members 125, 125a and 125b may be of any conventional construction. The machine is then provided with a nozzle support structure 30a, 30b, 33, 34, 41, etc. forming two parallel rows of filling nozzles 31a, 31b, . . . 31o, 31p and 31a', 31b', . . . 31o', 31p' which are then reciprocated between 1st and 3rd lane and 2nd and 4th lane, respectively. The conveyor speed can again be cut down by approximately one-half as compared to the machine described and illustrated herein. Furthermore, two feed lanes may also be provided in lieu of the single lane, which then bifurcate into the four lanes. , as schematically illustrated in FIG. 4.
While I have shown and described only one embodiment in accordance with the present invention, it is understood that the same is not limited thereto but is susceptible of numerous changes and modifications as known to those skilled in the art and I therefore do not wish to be limited to the details shown and described herein but intend to cover all such changes and modifications as are encompassed by the scope of the appended claims.
Patent | Priority | Assignee | Title |
10421097, | Sep 11 2015 | HENKEL AG & CO KGAA | Remote adhesive monitoring system |
5651235, | Jun 15 1991 | ELOPAK A S | Packaging method and apparatus |
5975374, | Nov 03 1997 | General Mills, Inc | Depositor apparatus |
Patent | Priority | Assignee | Title |
3036604, | |||
3139713, | |||
3322167, | |||
3828833, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 07 1979 | National Instrument Company, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jan 28 1989 | 4 years fee payment window open |
Jul 28 1989 | 6 months grace period start (w surcharge) |
Jan 28 1990 | patent expiry (for year 4) |
Jan 28 1992 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 28 1993 | 8 years fee payment window open |
Jul 28 1993 | 6 months grace period start (w surcharge) |
Jan 28 1994 | patent expiry (for year 8) |
Jan 28 1996 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 28 1997 | 12 years fee payment window open |
Jul 28 1997 | 6 months grace period start (w surcharge) |
Jan 28 1998 | patent expiry (for year 12) |
Jan 28 2000 | 2 years to revive unintentionally abandoned end. (for year 12) |