A marine tether anchoring device comprises an anchor body and a segmented spring collet that moves axially relative to the anchor body. As the anchor body moves downwardly relative to the collet the upper end of the collet is expanded by a wedge structure which is attached to the anchor body and lockingly engages the wall of an anchoring chamber. The lower end of the tether line is attached to the wedge structure and cannot escape from the anchoring chamber. Release is effected by slackening the tension on the tether line and supplying fluid to a piston supported in the anchor body so that the piston forces the collet downwardly and releases the segments of the spring collet from the face of the wedge structure. Retraction of the collet is completed by a cam ring that engages faces on the collet as final downward travel of the collet takes place.

Patent
   RE32274
Priority
Nov 28 1984
Filed
Nov 28 1984
Issued
Nov 04 1986
Expiry
Nov 28 2004
Assg.orig
Entity
Large
1
10
EXPIRED
1. A marine tether anchoring device comprising in combination:
(a) an anchor body;
(b) a segmented spring collet surrounding said body, movable axially relative thereto and having an expandible upper end;
(c) wedging means attached to said anchor body, said wedging means being arranged to expand the upper end of said collet as said anchor body moves downwardly relative to said collet and having means defining a surface with which the segments of said collet latch to define the expanded state of said collet;
(d) an anchoring chamber into which said anchor body and collet may be inserted and including a wall that the upper end of the collet lockingly engages in its expanded state;
(e) a tether line having a lower end connected to said wedging means so that said lower end cannot escape from said anchoring chamber when said collet is wedged in its expanded state; and
(f) controllable actuator means in said body operable to move said collet downwardly relative to said body so that the upper end of said collet is unlatched from said surface on said wedging means and can retract away from the wall of the anchoring chamber to permit withdrawal of the anchor body and collet as the tether line is pulled upwards.
2. A device according to claim 1, wherein adjoining segments of said collet define slots, radial fins attached to said body project through said slots, guide fins are provided in said anchoring chamber and a ring supported on said radial fins cooperates with said guide fins to position said anchor body and collet in said anchoring chamber.
3. A device according to claim 1 wherein further means on said wedging means defines a surface which the segments of said collet engage to define its retracted state.
4. A device according to claim 3, wherein said wedging means is a ring and said surfaces are frustoconical.
5. A device according to claim 4, wherein the neutral state of said collet is between its expanded and retracted states, a cam ring is supported on said radial fins and means defines guide surfaces on the exterior of said collet to urge the collet to its fully retracted state as said collet moves to its fully downwards position relative to said anchor body.
6. A device according to claim 1, in which said actuator means comprises a piston in said body.
7. A device according to claim 6, wherein said tether line is formed with an internal passage down which fluid may be pumped to actuate said piston.
8. A device according to claim 7, wherein means defines a cup-shaped surface at the lower end of said tether line, a ball shaped support is secured to the top of the anchor body on which said cup-shaped surface is supported, and means in said support defines an axial through hole that communicates said internal passage with said piston.
9. A device according to claim 8, wherein a flexible connector attaches the lower end of said tether line to said wedging means.
10. A device according to claim 1, wherein the wedging means and the upper end of the collet have planar mating surfaces that in the locking condition are substantially at 45 degrees to the axis of the body.
11. A marine tether anchoring device comprising
an anchoring chamber for installation in the seabed having a mouth that provides a locking surface;
a tether line having an enlarged lower end that is insertable through said mouth into said anchoring chamber;
a collet that surrounds the lower end of the tether line and has upwardly facing segments that in a retracted state pass said mouth of said anchoring chamber, the uppermost ends of said segments defining tips which in an expanded state of said segments latch behind said mouth of said anchoring chamber; and
wedging means relative to which the collet moves axially to expand said segments, said wedging means providing a load path between said enlarged lower end of said tether line and said collet so that in the latched position the expanded lower end of the tether line is located below said tips of the collet segments and tension in the tether line is transmitted from said expanded portion as a compressive load through said wedging means and said tips of said collet segments to said mouth of said anchoring chamber. 12. A device according to claim 11, wherein the wedging means includes a resilient inner member adjacent the lower end of the tether line and a rigid outer member adjacent the collet. 13. A device according to claim 12, wherein the lower end of the tether line is also formed with a cup-shaped surface that when tension on said tether line is relieved rests on a part spherical support. 14. A device according to claim 13, wherein the part spherical support is carried by the wedging means. 15. A device according to claim 11, wherein the collet is a segmented spring collet. 16. A device according to claim 15 wherein the wedging means is provided with a first surface onto which the collet segments latch to define an expanded state of the collet and a second surface onto which the collet segments latch to define a retracted state thereof. 17. A device according to claim 16 wherein said wedging means is a ring and said first and second surfaces are frustoconical. 18. A device according to claim 11 wherein downward movement of the wedging means relative to the collet expands the collet. 19. A device according to claim 18 wherein said anchoring chamber has a protuberant member arranged to stop downward movement of said collet as said tether line is lowered into said anchoring chamber, said collet being expanded by continued downward movement of said tether line and wedging means.

The invention relates to marine tether anchoring devices.

Various methods are known for fixing tethers of drilling platforms, and the like, in position and it is an object of the present invention to provide an improved marine tether anchoring device which can be released and re-established if necessary and as required.

According to the invention, there is provided a marine tether anchoring device comprising an anchor body, a segmented spring collet surrounding said body movable axially relative thereto and arranged to be expanded at its upper end by wedging means attached to said anchor body as said anchor body moves downwardly relative to said collet so that the expanded upper end of the collet lockingly engages the wall of an anchoring chamber and the lower end of a tether line attached to said wedging means cannot escape from said anchoring chamber, and controllable actuator means in said body operable to move the collet downwardly relative to said body so that the upper end of the collet is released from the wedging means and can retract away from the wall of the anchoring chamber to provide an unlocked condition of said device.

The device is self-locking under gravity since the weight of the anchor body and tether line will automatically pull the wedging means downwards and expand the collet. But when the tether line is under tension the collet is locked in its expanded state since it is only free to expand when the collet is spaced from the locking surface at the mouth of the anchoring chamber.

23 24a of the tether line cannot escape from the template insert and the ends of the fingers 28 are held between the locking ring 20 and the upper end of the template insert so that they cannot disengage. Continued raising of the tether line brings the locking ring 3 into contact with the abutment ring 31 as shown in FIG. 2.

It will be noted that the tension in tether line (24) is transmitted via its flared end (24a) as an upwards and outwards compressive load in flexjoint assembly (27). The load is further taken in compression by the locking ring (20) and by the top ends of the fingers (28) which pass their load to the mouth of the template insert (38).

The procedure for unlocking the device is as follows. Tension is removed from the tether line 24 to allow the template insert 38 to move downwards, normally under its own weight from the position shown in FIG. 2 an the body 1 and collet 2 to move downwardly into the template insert. Then fluid is pumped down the interior of the line 24 and flows through the central hole 36 in spherical seat 4 and drives the piston or thrust column 11 downwardly. This forces the collet 2 downwards disengaging fingers 28 from the upper surface 21 of the locking ring. Continued downward movement of the collet causes the ramp 16 to travel past cam ring 9 which finally engages the shoulder 17 to retain the collet in its fully collapsed state in which the fingers 28 engage lower surface 22 of the locking ring 20. The collet 2 will then pass out of the template insert 38 when tension is again applied to the tether line 24.

Thus a relatively simple releasable tether connection is provided. The planar mating surfaces 21 between the locking ring 20 and the fingers 28 in the locked condition is preferably at approximately 45° to the axis of the body 1.

Burchett, Clive J.

Patent Priority Assignee Title
5039255, Nov 13 1990 Conoco Inc.; Conoco INC Termination for kinkable rope
Patent Priority Assignee Title
3199906,
3429286,
3560032,
3638988,
3999605, Feb 18 1976 Texas Iron Works, Inc. Well tool for setting and supporting liners
4347012, Oct 07 1978 FMC Corporation Method and apparatus for tension setting and compression releasing tubular connectors
4432670, Oct 01 1980 KVAERNER NATIONAL, INC Combination connector and flex joint for underwater tension elements
4439055, Jan 25 1982 VETCO GRAY INC , Anchor connector
4459933, Nov 06 1980 BROWN & ROOT VICKERS TECHNOLOGY LIMITED Marine tether anchoring device
GB1341373,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 28 1984Vickers Public Limited Company(assignment on the face of the patent)
Jul 06 1987Vickers Public Limited CompanyBROWN & ROOT VICKERS TECHNOLOGY LIMITEDASSIGNMENT OF ASSIGNORS INTEREST 0047620319 pdf
Date Maintenance Fee Events
Oct 28 1986ASPN: Payor Number Assigned.
Dec 14 1987M170: Payment of Maintenance Fee, 4th Year, PL 96-517.
Oct 31 1991M174: Payment of Maintenance Fee, 8th Year, PL 97-247.
Feb 20 1996REM: Maintenance Fee Reminder Mailed.
Jul 14 1996EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Nov 04 19894 years fee payment window open
May 04 19906 months grace period start (w surcharge)
Nov 04 1990patent expiry (for year 4)
Nov 04 19922 years to revive unintentionally abandoned end. (for year 4)
Nov 04 19938 years fee payment window open
May 04 19946 months grace period start (w surcharge)
Nov 04 1994patent expiry (for year 8)
Nov 04 19962 years to revive unintentionally abandoned end. (for year 8)
Nov 04 199712 years fee payment window open
May 04 19986 months grace period start (w surcharge)
Nov 04 1998patent expiry (for year 12)
Nov 04 20002 years to revive unintentionally abandoned end. (for year 12)