An improved method and construction for positioning a plurality of socket terminals on an electrical circuit board in a predetermined configuration prior to the solder connection thereto. A sheet of electrically insulative, flexible, resinous plastic material is provided with a plurality of holes in an array conforming to the desired positioning of the sockets on the circuit boards. The socket terminals are provided with an enlarged generally cylindrical head including an intermediate groove such that the heads extend into the holes and are adapted for frictional snap engagement with the sheet. The sheet with the array of sockets temporarily held thereby is positioned on the circuit board which is then conventionally soldered so as to electrically and mechanically fix the sockets to the board. Thereafter, the sheet may be removed. The enlarged head of the circuit terminal is provided with leading edge sheet contacting surface to enable the terminals to be push positioned into the holes without injuring the sheet.

Patent
   RE32540
Priority
Mar 17 1986
Filed
Mar 17 1986
Issued
Nov 10 1987
Expiry
Mar 17 2006
Assg.orig
Entity
Small
24
15
all paid
12. The method of group positioning a plurality of socket terminals on an electrical circuit board in a predetermined configuration prior to solder connections thereto, comprising forming a plurality of holes in a sheet of relatively thin, flexible, electrically insulative, resinous plastic material in an array at least including said predetermined configuration, each of said socket terminals having a head of enlarged, generally cylindrical configuration and having an inwardly extending perimetal perimetrical groove intermediate the height thereof so as to define upper and lower sections of said head, said holes of a perimetal perimetrical extent less than that of said head sections but generally corresponding to or slightly smaller than that of said intermediate groove, the leading edge of at least one of said head sections provided with a longitudinally oriented sheet contacting surface, supporting one surface of said sheet and thereafter inserting the the heads of a plurality of socket terminals from the opposite surface of said sheet into said holes in said predetermined configuration such that said longitudinally oriented surface initially contacts peripheral edge portions of said sheet defining said holes so as to slightly deform said edge portions in the direction of head insertion until said sheet edge portions snap into said groove.
1. A construction for temporarily positioning a plurality of socket terminals on an electrical circuit board in a predetermined configuration prior to solder connection thereto, comprising a sheet of relatively thin, flexible, electrically insulative, resinous plastic material having a plurality of holes extending therethrough, said holes arranged in a planar configuration about said sheet to correspond with said predetermined positioning of said socket terminals in said circuit board, a plurality of socket terminals each having a pin adapted for insertion into an opening in said board at their lower end and an enlarged generally cylindrical head at their upper end, said enlarged head having upper and lower head sections defined by an inwardly extending perimetal perimetrical groove intermediate the height thereof and of a lateral extent less than that of said upper and lower sections, said holes of a perimetal perimetrical extent less than that of said head sections but generally corresponding to or slightly greater than that of said groove, said terminals adapted for positioning upon said sheet with the heads thereof extending through said holes and the sheet extending into said grooves and wherein the leading edge of at least one of said upper and lower head sections is provided with a longitudinally oriented, sheet contacting surface to enable said terminals to be push positioned into said grooves.
2. The invention of claim 1 wherein the geometric configuration of said holes corresponds with that of said grooves.
3. The invention of claim 2, said holes being circular.
4. The invention of claim 1, said head section sheet contacting surface being a curcumferential chamfer chamfered surface.
5. The invention of claim 4, said chamfered surface provided on the lower portion of said lower head section.
6. The invention of claim 4, said chamfered surface provided on the upper portion of said upper head section.
7. The invention of claim 4, said chamfered surface provided on both the lower portion of said lower head section and the upper portion of said upper head section.
8. The invention of claim 1, said head section sheet contacting surface being provided on the leading edges of both said upper and lower head sections.
9. The invention of claim 1, said groove being of substantially V-shaped configuration.
10. The invention of claim 1, said sheet including downwardly extending edge flanges having terminal edge surfaces adapted to contact the upper surface of said circuit board so as to hold portions of said socket terminal pins above said board during soldering of said pins thereto.
11. The invention of claim 1, said sheet being substantially clear Mylar.
13. The method of claim 12 wherein said socket terminals are inserted into said holes head first.
14. The method of claim 12 wherein said sockets terminals are inserted into said holes head last. 15. The invention of claim 1 wherein the thickness of said sheet is less than the height of said groove. 16. The invention of claim 1 wherein said sheet is Kapton. 17. The method of claim 12 and further including the steps of,
thereafter positioning said terminals while held by said sheet on said circuit board,
and thereafter group soldering said terminals to said board while said sheet holds said terminals. 18. The method of claim 17 and further including the step of removing said sheet from said terminals after the terminals are soldered to said board by progressively pealing said sheet beginning at one end thereof, from said terminals. 19. A construction for temporarily positioning a plurality of terminals on an electrical circuit board in a predetermined configuration prior to solder connection thereto, comprising a sheet of relatively thin flexible material having a plurality of holes extending therethrough, said holes arranged in a planar configuration about said sheet to correspond with said predetermined positioning of said terminals in said circuit board, a plurality of terminals each having a pin adapted for insertion in said board at their lower end and an enlarged head at their upper end, said enlarged head having upper and lower head sections defined by an inwardly extending perimetrical groove intermediate the height thereof and of a lateral extent less than that of said upper and lower sections, said holes of a perimetrical extent less than that of said head sections but generally corresponding to or slightly greater than that of said groove, said terminals adapted for positioning upon said sheet with the heads thereof extending through said holes and the sheet extending into said grooves. 20. The method of group positioning a plurality of terminals on an electrical circuit board in a predetermined configuration prior to solder connections thereto, comprising forming a plurality of holes in a sheet of relatively thin flexible material in an array at least including said predetermined configuration, each of said terminals having a head of enlarged configuration and having an inwardly extending perimetrical groove intermediate the height thereof so as to define upper and lower sections of said head, said holes of a perimetrical extent less than that of said head sections but generally corresponding to or slightly smaller than that of said intermediate groove, supporting one surface of said sheet and thereafter inserting the heads of a plurality of terminals from the opposite surface of said sheet into said holes in said predetermined configuration to establish contact with peripheral edge portions of said sheet defining said holes so as to slightly deform said edge portions in the direction of head insertion until said sheet edge portions snap into said groove.

This invention deals with an improved construction and method of positioning a plurality of socket terminals on an electrical circuit board such as a printed circuit board having a plurality of openings into which the pin portions of the socket terminals can be hand assembled upon the circuit board in the desired position, such involves undue time consumption; and, accordingly, it is generally accepted practice to utilize socket terminal carrier assemblies for group insertion into the printed circuit board.

Such carrier assemblies are conventionally in the form of an aluminum plate having a plurlity of downwardly extending thin fingers for entrance into the open sleeve portion of the socket terminals such that the terminals are held thereby and inserted into the PC board as a group in the desired array. Such system has found wide acceptance for socket terminals destined for single in-line and dual in-line positioning on circuit boards but are not particularly adapted with the recently introduced more complex pin grid arrays associated with electronic circuitry, i.e., integrated circuits. Thus it would be unwieldy to produce a conventional aluminum carrier having downwardly extending fingers in the desired number and geometric configuration necessary to group insert the number of socket terminals associated with such integrated circuit pin grid arrays. Accordingly, it would be desirable to be able to simply and effectively group position socket terminals in both simple and complex pin arrays by the same means.

Another problem associated with the use of presently utilized conventional socket terminal carrier assemblies such as the above-described aluminum plates is that there is both considerable tooling cost and lead time required to produce such carriers. Accordingly, a further desirable feature would be the provision of a means by which both lead time and tooling cost could be substantially reduced.

Still another problem associated with the use of aluminum carriers as above-described is that the slender fingers which are inserted into the lead socket can sometimes undesirably alter the electrical conductive properties of the sleeve portion of such sockets as by scratching or otherwise damaging the internal surface thereof. Such sleeves are very often provided with a very thin gold plate for contact of the pins of the active electrical or electronic circuit element and, accordingly, can be fragile and unnecessary contact therewith should be avoided. Also as when such aluminum carriers are carelessly removed, it is possible to actually pull out the contact sleeve of one or more sockets thus rendering the device useless. Accordingly, a further object of the present invention is the provision of a system and means whereby internal portions of the lead sockets are not contacted during the group insertion thereof into the printed circuit board.

It is also important that inspection of the soldered connections, particularly the connections between the upper portion of the printed board and the downwardly extending lead socket pin, not be obscured or otherwise hindered from proper inspection prior to the removal of the carrier element. Accordingly, a further object of the present invention is the provision of an improved system and means for group insertion of lead sockets which do not hinder solder inspection.

The above objectives as well as other objectives as will hereinafter be more apparent are achieved in the present invention by the provision of a construction for temporarily positioning a plurality of , and in those cases where the top of the sheet is supported and the pins inserted from below, then the sheet will contact the upper surface 66.

An inwardly extending groove 68 is positioned intermediate the enlarged head 50 and is generally of V-shaped configuration brought about by the convergence of an upper inwardly, downwardly extending wall 70 and a lower, inwardly, upwardly extending wall 72. The diameter of the openings 32 terminate in a circumferential edge surface 74. As shown in FIG. 7, the movement of the lower head section 76 towards and into the opening 32 will cause a slight downward extension or bending of the edge 74, i.e., a sort of slight wiping action such that the peripheral portions of the sheet 30 surrounding the hole 32 will be downwardly directed into contact with the lower wall 72 within the groove 68. Conversely, if the socket 34 is inserted in the opposite direction, the slight deformation of the sheet surrounding the openings 32 will be in the opposite direction and the terminal edge 74 thereof will abut the upper slanted wall surface 70. The thickness of sheet 30 is less than the height of groove 68.

Alternatively and as shown in FIG. 7A, the dimensions of the groove 68 and the openings 32 may be such that a lesser deflection is caused such that the terminal edge 74 merely extends into the groove 68. The important aspect is that the relative dimensions are such that the socket head 50 is securely grasped by the sheet 30 in the various holes 32 thereof such that they cannot easily dislodge therefrom during normal handling of the carrier and socket subassembly prior to insertion on the PC board. It is also possible to utilize groove and hole configurations which are non-circular so long as they are appropriately matched to facilitate the necessary firm connection between the two. It is, accordingly, anticipated that some useful functions such as rotational orientation of a socket in a particular manner with respect to the carrier sheet 30 and, accordingly, ultimately with respect to the circuit board can be achieved by the use of triangular, square, oblong, rectangular, etc. openings.

Turning now to FIGS. 8 and 9 of the invention, a modified form of the carrier 30a is shown wherein the sides thereof include downwardly extending flanges 82 of a length such that the terminal surface or edges 84 thereof contact the upper surface of the PC board in such a manner as to hold the pin portions of the sockets slightly above the upper surface of the PC board so as to promote desirable solder filleting therebetween.

While there is shown and described herein certain specific structure embodying this invention, it will be manifest to those skilled in the art that various modifications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except insofar as indicated by the scope of the appended claims.

Murphy, James V.

Patent Priority Assignee Title
4787510, Mar 02 1988 AFFILIATED BUSINESS CREDIT CORPORATION Carrier strip for electrical components
4816426, Feb 19 1987 Olin Corporation Process for manufacturing plastic pin grid arrays and the product produced thereby
4965227, Feb 19 1987 OLIN CORPORATION, A CORP OF VA Process for manufacturing plastic pin grid arrays and the product produced thereby
4970781, Aug 10 1989 Olin Corporation Process plate for plastic pin grid array manufacturing
5144412, Feb 19 1987 Olin Corporation Process for manufacturing plastic pin grid arrays and the product produced thereby
5176254, Apr 22 1991 ON-SHORE TECHNOLOGY, INC , A CORP OF AZ Terminal support system
5364280, Jul 16 1993 Molex Incorporated Printed circuit board connector assembly
5397254, Jan 21 1994 The Whitaker Corporation Pin socket carrier system
5779057, Nov 04 1996 Thomas & Betts International, Inc Rigid removable carrier trays
6398034, Feb 29 2000 National Semiconductor Corporation Universal tape for integrated circuits
6992496, Mar 05 2002 RIKA ELECTRONICS INTERNATIONAL INC Apparatus for interfacing electronic packages and test equipment
7114996, Sep 08 2004 Advanced Interconnections Corporation Double-pogo converter socket terminal
7179108, Sep 08 2004 Advanced Interconnections Corporation Hermaphroditic socket/adapter
7220134, Feb 24 2005 Advanced Interconnections Corporation Low profile LGA socket assembly
7362114, Oct 27 2004 Rika Electronics International, Inc. Apparatus for interfacing electronic packages and test equipment
7371096, Sep 08 2004 Advanced Interconnections Corporation Hermaphroditic socket/adapter
7419398, Jan 18 2006 Advanced Interconnections Corporation Hermaphroditic socket/adapter
7435102, Feb 24 2005 Advanced Interconnections Corporation Interconnecting electrical devices
7690925, Feb 24 2005 ADVANCED INTERCONNECTIONS CORP Terminal assembly with pin-retaining socket
9093775, Feb 25 2011 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Connection pin for mounting in a component carrier, a method for producing an electronic assembly comprising a motherboard with stackable modules comprising a component carrier, and such an electronic assembly
9253936, Feb 25 2011 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Method for mounting connection pins in a component carrier, a die tool for mounting connection pins, a component carrier forming a module for an electronic assembly, and such an assembly
9363916, Feb 25 2011 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Connection pin and a method for mounting a connection pin in a component carrier for an electronic assembly, and such a component carrier comprising connection pins
9590329, Jun 08 2015 International Business Machines Corporation Pin attach converter
9853375, Jun 08 2015 International Business Machines Corporation Pin attach converter
Patent Priority Assignee Title
2872655,
2877441,
3097360,
3545606,
3605062,
3784965,
3892313,
4036103, Jan 19 1974 Dynamit Nobel Aktiengesellschaft and Impex-Essen Vertrieb Von Werkzeugen Magazine apparatus for propellant charges and method of making same
4050772, May 21 1975 Unitary socket terminal for electronic circuits
4089105, Nov 22 1976 Augat Inc. Method for mounting lead sockets to an electrical interconnection board
4097101, Nov 22 1976 Augat Inc. Electrical interconnection boards with lead sockets mounted therein and method for making same
4099615, Aug 22 1974 AMP, Incorporated Carrier strip mounted electrical components
4175810, Nov 22 1976 C-MAC PACKAGING SYSTEMS, INC Electrical interconnection boards with lead sockets mounted therein and method for making same
4506438, Nov 02 1981 Elfab Corporation Apparatus for manufacturing integrated circuit connectors
DE2533672,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 17 1986Advanced Interconnections, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 19 1987M273: Payment of Maintenance Fee, 4th Yr, Small Entity, PL 97-247.
Oct 22 1987M273: Payment of Maintenance Fee, 4th Yr, Small Entity, PL 97-247.
Aug 05 1991M174: Payment of Maintenance Fee, 8th Year, PL 97-247.
Sep 13 1995M285: Payment of Maintenance Fee, 12th Yr, Small Entity.
Sep 15 1995SM02: Pat Holder Claims Small Entity Status - Small Business.


Date Maintenance Schedule
Nov 10 19904 years fee payment window open
May 10 19916 months grace period start (w surcharge)
Nov 10 1991patent expiry (for year 4)
Nov 10 19932 years to revive unintentionally abandoned end. (for year 4)
Nov 10 19948 years fee payment window open
May 10 19956 months grace period start (w surcharge)
Nov 10 1995patent expiry (for year 8)
Nov 10 19972 years to revive unintentionally abandoned end. (for year 8)
Nov 10 199812 years fee payment window open
May 10 19996 months grace period start (w surcharge)
Nov 10 1999patent expiry (for year 12)
Nov 10 20012 years to revive unintentionally abandoned end. (for year 12)