A ferromagnetic amorphous alloy having a composition represented by (Cox Niy Fez)a Mb Gc, wherein M is Cr, Mo and/or W, G is Zr, Hf and/or Ti and x,y,z and a, b, c are selected to meet the conditions of x=1-y-z, 0≦y≦0.2, 0≦z≦0.7, a=1-b-c, 0≦b≦0.05 and 0.05≦c≦0.2 This amorphous alloy has a superior magnetic characteristic and a high thermal stability.
|
1. A ferromagnetic amorphous alloy having a composition expressed by (Cox Niy Fez)a Mb Gc, wherein M is at least one transition metal element selected from the group consisting of Cr, Mo and W, G is at least one element selected from the group consisting of Zr Hf and Ti and wherein x, y, z and a, b, c are selected to meet the conditions of: x=1-y-z, 0≦y≦0.2, 0≦z≦0.7, a=1-c, 0≦b≦0.05 and 0.05≦c≦0.2.
2. A ferromagnetic amorphous alloy as claimed in
5. A ferromagnetic amorphous alloy as claimed in
6. A ferromagnetic amorphous alloy as claimed in
7. A ferromagnetic amorphous alloy as claimed in
9. A ferromagnetic amorphous alloy as claimed in
10. A ferromagnetic amorphous alloy as claimed in
11. A ferromagnetic amorphous alloy as claimed in
|
The present invention relates to a ferromagnetic amorphous alloy for use as material for magnetic appliances such as magnetic head, transformer, magnetic shield and so forth and, more particularly, to a ferromagnetic alloy of metal-metal amorphous alloy system having a superior thermal stability, high saturation flux density and substantially zero magnetic striction, usable in place of conventional ferromagnetic alloy of metal-metalloid amorphous alloy system.
It is known that, in some kinds of metal or alloy, it is possible to obtain an amorphous structure in which orderly arrangement of atoms is lost so far as a long range of atom arrangement is concerned, by cooling the metal or alloy in a molten state at a high cooling rate of about 106 °C/s under a specific condition. In recent years, it has been made clear that, among the amorphous alloys produced in the above-explained method, some alloys exhibit superior characteristics which could never be attained by the conventional crystalline alloys, such as high strength, high ductility, and superior soft magnetic characteristics, i.e. high saturation flux density and high magnetic permeability. These alloys are of metal-metalloid amorphous alloy system. A typical example of such alloys is an alloy of Fe-Co-Si-B system. For instance, an alloy having a composition of Fe4.5 Co70.5 Si15 B10 and an alloy having a composition of Fe4.8 Co75.2 B20 exhibit saturation flux densities which are as high as 8 to 11 kG. Since in the composition in which the ratio of Co to Fe contents is maintained 94:6, the magnetic striction becomes substantially zero, alloys having such composition can be used as the material of magnetic head, with the advantage that the change of magnetic permeability in the head production process is small. These amorphous alloys, however, are thermally unstable and time dependence is apt to occur regarding the magnetic characteristics thereof, because they are in pseudo-equilibrium state. Such thermal unstability is caused particularly in the amorphous alloys having non-metallic content such as B, C, P and Si. Such thermal unstable characteristic is considered to be caused by the diffusion and segregation of the non-metallic elements. In addition, since the non-metallic elements have no magnetic moment, the amorphous alloy containing non-metallic elements exhibits saturation flux density lower than that of the amorphous alloy consisting of only magnetic metallic elements.
Thus, there has been a demand for improvement in the thermal stability and saturation flux density of the metal-metalloid amorphous alloy.
Japanese Patent Laid-open No. 29817/1979 can be picked up as a reference showing a prior art relevant to the invention of this application.
Under these circumstance, the present invention aims at providing an amorphous alloy containing a ferromagnetic metal such as Co, Ni, Fe as the major constituent and at least one metal element selected from the group of Ti, Zr, and Hf as a glass former element, in place of conventional non-metallic glass former elements such as B, C, P or Si.
More specifically, the invention provides a ferromagnetic amorphous alloy having a superior soft magnetic characteristic, which alloy is made of an alloy system constituted by a major constituent of Co and a glass former element of Zr and containing, as occasion demands, Ni for reducing the magnetic striction substantially to zero and/or Fe for improving the saturation flux density and/or at least one element of VI group such as Cr, Mo, W for increasing the hardness and crystallization temperature to thereby further improve the thermal stability. A part or whole of Zr may be substituted by Hf or Ti.
The ferromagnetic amorphous alloy of the invention can be expressed by a formula of (Cox Niy Fez)a Mb Gc, wherein M is at least one transition element selected from a group consisting of Cr, Mo and W, G being at least one element selected from a group consisting of Zr, Hf and Ti. In the formula, x, y, z and a, b, c are selected to meet the following conditions:
x=1-y-z, 0≦y≦0.2, 0≦z≦0.7
a=1-b-c, 0≦b≦0.05 and
0.05≦c≦0.2.
The saturation flux density may be lowered below 10 KG, when the value of y exceeds 0.2 or when the value of b exceeds 0.05. Also, the saturation flux density is rapidly lowered as the value of Z exceeds 0.7. The amorphous structure can hardly be obtained when the value of c representing the amount of Zr, Hf and/or Ti is less than 0.05. A value of c in excess of 0.2 causes a drastic reduction of saturation flux density and makes it extremely difficult to obtain the amorphous structure.
The alloy of the invention is preferentially amorphous and the diffraction pattern obtained through known X-ray diffraction technique does not show sharp peak peculiar to crystals.
Any one of known production methods for producing an amorphous alloy, such as single roller quenching method, twin roller quenching method, rotating drum quenching method and spattering method can be used for the production of the amorphous alloy of the invention. The production can be made in any desired atmosphere such as inert gas atmosphere, vacuum or atmospheric air.
The ferromagnetic amorphous alloy of the invention thus constituted exhibits superior characteristics such as crystallization temperature in excess of 450°C and saturation flux density in excess of 10 KG. It is also possible to obtain an alloy having a magnetic striction falling between +5×10-6 and -5×10-6 (for instance, in a case of such constituents as G is Zr, z and b nearly equal zero and c nearly equals 0.1) and even another alloy having a magnetic striction of substantially zero (for instance, in a case of such constituents as G is Zr, z and b nearly equal zero and y and c nearly equal 0.1).
The valves of y, z and b may be zero. Namely, the addition of Ni, Ne, Cr, Mo and W is optional. It is, however, preferred to select these values as follows when the above-mentioned effect is necessary, that is, the addition of these elements provides the aforementioned advantages:
0<y≦0.2, 0<z≦0.7 and/or 0<b≦0.05
(namely, y+z+b>0)
In this case, the consumption of precious Co is reduced so that reduction of production cost is achieved as an additional advantage.
The use of Cr and Zr as M and G, respectively, is considered to be appropriate because they can be obtained comparatively easily at relatively low cost.
FIG. 1 is a diagram showing a Y-dependency of magnetic striction in an amorphous alloy expressed by (Co1.0-y Niy)0.9 Zr0.1 ;
FIG. 2 is a diagram showing z-dependency of saturation flux density in al alloy expressed by (Co1-z Fez)0.9 Zr0.1 ;
FIG. 3 is a digram showing z-dependency and b-dependency of crystallization temperature of alloys expressed by (Co1-z Fez)0.9 Zr0.1 and Co0.9-b Crb Zr0.1 ;
FIG. 4 is a diagram showing how much the hardness is affected in Co0.9-w Yw Zr0.1 system by an additional element Y which is Fe, Cr or Ni; and
FIG. 5 is a graph showing the relationship between the annealing temperature and fracture strain as observed in an amorphous alloy embodying the present invention and a conventional amorphous alloy.
FIG. 4 shows how much the hardness of Co0.9-w Yw Zr0.1 alloy (Y=Fe, Ni, Cr) is changed in accordance with the variation in the amounts of elements added. The sample was produced in the same manner as Example 1. In FIG. 4, it is shown that a considerable improvement of hardness is achieved by addition of Fe, Ni and Cr. Equivalent improvement in hardness was obtained when Mo or W, which belongs to VI group in the periodic table as in the case of Cr, is used in place of Cr.
In alloy of the invention, the concentration of Zr is selected to fall between 0.05 and 0.2. This is because the Zr concentration less than 0.05 makes the amorphous structure hardly obtained and because the Zr concentration in excess of 0.2 causes a serious reduction of saturation flux density, as well as difficulty in formation of amorphous structure.
In the composition of the alloy of invention, a part or whole of Zr can be substituted by Ti or Hf. For example, it was observed that the alloys having compositions of Co0.913 Hf0.087 and Co0.909 Zr0.048 Hf0.043 compositions had amorphous structure. These amorphous alloys also showed high crystallization temperatures exceeding 500°C Equivalent effect was obtained with alloys of structures in which Hf is substituted by Ti, e.g. Co0.907 Ti0.093 and Co0.911 Zr0.043 Ti0.046 as well as in the case of alloys in which both of Hr and Ti are added, e.g. Co0.909 Hf0.047 Ti0.044.
Alloys having compositions of (Co0.72 Ni0.156 Fe0.024 Zr0.1)95 Mo5, (Co0.72 Ni0.156 Fe0.024 Zr0.1)95 W5, (Co0.72 Ni0.156 Fe0.024 Zr0.1)95 Cr5, Co72 Ni15.6 Fe2.4 Zr10 were produced in the same manner as Example 1 and were subjected to an X-ray diffraction. As a result, it was confirmed that all of these alloys have amorphous structures. The saturation magnetizations were 90, 77, 83 and 112 emu/g, respectively, while the crystallization temperatures were 485°C, 498°C, 490°C and 482°C, respectively.
Amorphous alloys of the present invention having compositions of (Co0.9 Ni0.1)90 Zr10 and (Fe0.7 Co0.3)90 Zr10 were prepared together with conventional amorphous alloys of Fe40 Ni40 P14 B6 and Fe40 Co40 B20 as references. These alloys were subjected to a bending test after annealing at 100°C to 600°C in 30 minutes. As a result, relationships between the bending fracture strain and annealing temperature as shown in FIG. 5 was observed. In FIG. 5, axis of abscissa and axis of ordinate represent, respectively, annealing temperature and fracture strain Ef. The thickness of the samples was about 20 μm. Characteristics of amorphous alloys Fe40 Ni40 P14 B6, Fe40 Co40 B20, (Fe0.7 Co0.3)90 Zr10 and (Co0.9 Ni0.1)90 Zr10 are denoted by numerals 1, 2, 3 and 4, respectively.
From FIG. 5, it is shown that the amorphous alloy of the invention has a higher embrittlement commencing temperature and, hence, a higher thermal stability than the conventional amorphous alloy having non-metallic content.
As has been described, the amorphous alloy of the invention has superior magnetic and mechanical characteristics, as well as high thermal stability.
Obviously, many modifications and variations of the invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
Tsukuda, Yasuo, Ogata, Yasunobu, Takayama, Shinji, Shiiki, Kazuo, Sawada, Yoshizo, Otomo, Shigekazu, Kudo, Mitsuhiro
Patent | Priority | Assignee | Title |
5114800, | Jul 10 1989 | FUJIFILM Corporation | Soft magnetic thin film |
5277977, | Dec 29 1988 | TDK Corporation | Ferromagnetic stabilized ultrafine spherical hexagonal crystalline Fe2 |
5380375, | Apr 07 1992 | YKK Corporation | Amorphous alloys resistant against hot corrosion |
7034348, | Aug 02 2002 | Sony Corporation | Magnetoresistive effect element and magnetic memory device |
Patent | Priority | Assignee | Title |
3986867, | Jan 12 1974 | The Research Institute for Iron, Steel and Other Metals of the Tohoku; Nippon Steel Corporation | Iron-chromium series amorphous alloys |
4187128, | Sep 26 1978 | Bell Telephone Laboratories, Incorporated | Magnetic devices including amorphous alloys |
4496635, | Apr 09 1980 | The United States of America as represented by the United States | Amorphous metal alloy and composite |
JP4974246, | |||
JP5429817, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 05 1987 | Hitachi, Ltd. | (assignment on the face of the patent) | / | |||
Nov 05 1987 | Hitachi Metals, Ltd. | (assignment on the face of the patent) | / | |||
Nov 05 1987 | Research Development Corp. of Japan | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Aug 15 1992 | 4 years fee payment window open |
Feb 15 1993 | 6 months grace period start (w surcharge) |
Aug 15 1993 | patent expiry (for year 4) |
Aug 15 1995 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 15 1996 | 8 years fee payment window open |
Feb 15 1997 | 6 months grace period start (w surcharge) |
Aug 15 1997 | patent expiry (for year 8) |
Aug 15 1999 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 15 2000 | 12 years fee payment window open |
Feb 15 2001 | 6 months grace period start (w surcharge) |
Aug 15 2001 | patent expiry (for year 12) |
Aug 15 2003 | 2 years to revive unintentionally abandoned end. (for year 12) |