A mobile paging call back system is provided includes a control unit interconnecting a radio pager, a memory, an indicator, a control switch, and an automatic dialer, with the control unit including a logic circuit programmed: (i) to provide verification that valid data representing a telephone number has been received from a radio pager, (ii) to store that data in the memory after verification, (iii) to activate the indicator, after the verification, to provide a system user observable signal indicating that valid data has been received, and (iv) to either transfer the stored data from the memory to the automatic dialer means for use therein to dial a mobile radio telephone or to erase that data from the memory in response to system operator activation of the control switch. Preferably, the system of the subject invention is mounted on the dashboard of a mobile vehicle. A related method is also disclosed.

Patent
   RE33417
Priority
Feb 06 1989
Filed
Feb 06 1989
Issued
Oct 30 1990
Expiry
Feb 06 2009
Assg.orig
Entity
Large
61
38
all paid
2. A mobile paging and radio telephone call back system comprising:
a mobile radio telephone having means for digitally controlling dialing of said telephone in response to control head signals;
radio pager means for receiving radio broadcast paging signals which include data representing a telephone number and for providing as an output data which represents that telephone number; a mobile power supply coupled to power both said mobile radio telephone and said radio pager means;
a memory;
indicator means for providing a signal to a system operator;
control switch;
manual dialer means, coupled to said mobile radio telephone for generating control head signals for digitally controlling dialing of said mobile radio telephone;
control unit means for interconnecting said radio pager means, said memory, said indicator, said control switch and said dialer means, said control unit means including:
(a) interface means for converting said data representing said telephone number to corresponding control head signals for use by said mobile telephone; and
(b) a logic circuit; (i) to provide verification that valid data representing a telephone number has been received from said radio pager, (ii) to store said data, after said verification in said memory, (iii) to activate said indicator, after said verification, to provide a signal indicating that validated data has been received, and (iv) to either transfer said stored data from said memory to said interface means for use therein to generate said corresponding control head signals to dial said mobile radio telephone, or to erase said data from said memory, in response to activation of said control switch.
1. A mobile paging and radio telephone call back system comprising:
a mobile radio telephone having means for digitally controlling dialing of said telephone in response to control head signals;
radio pager means for receiving radio broadcast paging signals which include data representing a telephone number and for providing as an output data which represents that telephone number;
a mobile power supply coupled to power both said mobile radio telephone and said radio pager means;
a memory;
indicator means for providing a signal to a system operator;
control switch
manual dialer means, coupled to said mobile radio telephone for generating control head signals for digitally controlling dialing of said mobile radio telephone;
control unit means for interconnecting said radio pager means, said memory, said indicator, said control switch and said manual dialer means, said control unit means including:
(a) interface means for converting said data representing said telephone number to corresponding control head signals for use by said mobile telephone; and
(b) a logic circuit (i) to provide verification that valid data representing a telephone number has been received from said radio page, (ii) to store said data, after said verification in said memory, (iii) to activate said indicator, after said verification, to provide a signal indicating that validated data has been received, and (iv) to either transfer said stored data from said memory to said interface means for use therein to generate said corresponding control head signals to dial said mobile radio telephone or to erase said data from said memory, in response to activation of said control switch; and
means for mounting said system to a mobile vehicle.

I. Field of the Invention

The present invention relates to a paging call back system which permits telephone numbers received with a radio paging unit to be responded to using a mobile radio telephone , and is a Reissue of Ser. No. 06/923,206 10/27/86 now U.S. Pat. No. 4,747,122.

II. Background Information

Radio paging systems and mobile radio telephone systems are well known and widely used. Radio paging systems operate, upon receipt of a page, to provide a user with audio and/or visual information from the paging party, but are not capable of transmitting information back to the paging party.

Typically, a radio paging system comprises a control unit located in a central area of a region and a plurality of mobile pagers carried by different individuals within that region. When a paging party wishes to speak with one of the individuals carrying a pager, the paging party dials the telephone number of the central control unit, which may be an automatic device or may be operated by a human operator, (for example a telephone answering service) and leaves a message for that individual. The central control unit will then transmit a radio signal addressed to the pager carried by the individual who was paged. Upon receipt of this radio signal, the pager carried by the individual who was paged will provide either a visual or audio indication that the party has been paged. The present invention employs the type of pager that is capable of receiving and displaying a telephone number of the paging party seeking to speak to the paged individual. Some of these pagers can also display other alpha-numeric information, such as the time and date of the message.

Recently, a nationwide paging service has become a reality. This is a major advance in the pager technology. It is now possible for an individual to receive a page message wherever he is in the United States.

The present state of radio paging technology is less than ideal, however, due to the receive only nature of that technology. Specifically, after an individual carrying a pager has learned that a paging party wishes to initiate a telephone conference, that individual must locate a telephone communication system to contact the paging party.

In contrast, mobile radio telephone systems allow easy two way communication with a recipient party while that party is traveling outside of the home or office, for example, in a car, boat airplane, other type of vehicle, or while walking. However, because a mobile telephone system if often vehicle based, or may not otherwise always be in the possession of the user, the user of such a system may miss important telephone calls when he is not in the vehicle in which the system is mounted or is not in possession of the radio telephone. That user will have no way of knowing which calls have been missed. In addition, because users of radio telephone systems are often billed for all telephone calls received or placed on their mobile systems, it is desirable that the users have a method of selecting which telephone calls to place or accept.

Finally, with the advent of cellular mobile telephone systems in major metropolitan areas of the United States, a mobile radio telephone may not be able to receive telephone calls if it is outside of its local cellular network. This is because it will not have been assigned a telephone number on which it may receive telephone calls outside that cellular network. Therefore, it may not be possible to reach someone who is using a mobile radio telephone system outside of his local cellular network.

In view of the foregoing, an object of the present invention is to provide a single system which overcomes the disadvantages of not being able to respond to a page initiated through a radio paging system while the user is mobile, and not being able to use a mobile radio telephone system to collect and respond to incoming calls when the user of that system is not present upon receipt of such calls.

An additional object of the present invention is to provide a system which permits a convenient and effective call back to a paging party through utilization of a mobile radio telephone system.

Another object of the invention is to allow a mobile radio telephone user to receive a page, no matter where he may be located in the United States, and automatically telephone the individual who paged him from a mobile radio telephone located in a car, boat, airplane, other vehicle, or even hand carried.

Yet another object of the present invention is to promote safety in the use of mobile radio telephone systems by allowing users of those systems to return calls with a minimum amount of distraction from whatever activity they may be involved in.

Additional objects and advantages of the invention will be set forth in the description which follows and, in part, will be obvious from that description or may be learned by practice of the invention.

To achieve the foregoing objects and in accordance with the purpose of the invention as embodied and broadly described herein, a mobile paging call back system is provided which comprises: a mobile radio telephone; a radio pager designed to receive radio broadcast paging signals which include data representing a telephone number and further designed to provide as an output data which represents that telephone number; a memory; an indicator designed to provide a signal to a system operator; a control switch; an automatic dialer, coupled to the mobile radio telephone, designed to automatically dial the mobile radio telephone upon receipt of data representing a telephone number; and a control unit interconnecting the radio pager, the memory, the indicator, the control switch, and the automatic dialer, which control unit includes a logic circuit designed to (i) provide verification that valid data representing a telephone number has been received from the radio pager, (ii) store that data, after verification, in the memory, (iii) activate the indicator, after the verification, to provide a visual signal indicating that valid data has been received and (iv) to either transfer the stored data from the memory to the automatic dialer for use therein to dial the mobile radio telephone or to erase the data from the memory, in response to system operator activation of the control switch.

The mobile paging call back system of the subject invention may also include a mechanism for mounting that system in a vehicle.

Another aspect of the subject invention provides a method for interconnecting a mobile radio telephone with a radio paging system comprising the steps of: receiving radio broadcast systems that include data representing a telephone number; storing that data in a memory; indicating to a system operator that valid data representing a telephone number has been received and stored in the memory; transmitting that data to a telephone automatic dialer at the command of the system operator; and causing the automatic dialer to dial the mobile radio telephone according to that data.

cl BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a general block diagram of the presently preferred embodiment of a mobile paging call back system incorporating the teachings of the present invention;

FIG. 2 is a detailed block diagram of the mobile paging call back system of FIG. 1;

FIG. 3 is a flow chart of te operation of a mobile paging call back system incorporating the teachings of the present invention;

FIG. 4 is a detailed block diagram of an alternative embodiment of a mobile paging call back system incorporating the teachings of the subject invention;

FIG. 5 is a detailed block diagram of a still further alternative embodiment of a mobile paging call back system incorporating the teachings of the subject invention; and

FIG. 6 is an illustration of a mobile paging call back system of FIG. 1 mounted upon a dashboard of an automobile.

Referring now to FIG. 1, there is shown a generalized block diagram illustrating a mobile paging call back system incorporating the teachings of the present invention. The system of FIG 1 includes an AM/FM antenna 10; an antenna coupler/splitter 12; an AM/FM radio 14; a radio pager 16; a radio pager interface control unit 18; a memory 20; an indicator 22; a control switch 24; a radio telephone interface 26; an automatic dialer 28; a mobile radio telephone 30 and a radio telephone antenna 32.

AM/FM antenna 10 preferably comprises a standard AM/FM antenna as presently exists in automobiles and other vehicles containing an AM/FM radio. However, the antenna may be a cellular radio-telephone antenna or other type of antenna. The output of antenna 10 is coupled to the input of antenna coupler/splitter 12, the outputs of which are coupled one to the input of AM/FM radio 14 and one to the input of radio pager interface control unit 18. Antenna coupler/splitter 12 operates to provide both radio 14 and control unit 18 with access to antenna 10. Antenna coupler/splitter 12 is a standard component well familiar to those skilled in the art. To the extent antenna coupler/splitter 12 couples AM/FM antenna 10 to AM/FM radio 14, the resultant combination of antenna 10, coupler/splitter 12 and radio 14 operates in a conventional manner.

Radio pager 16 preferably comprises a standard radio pager including a liquid crystal display 16'. Pager 16 comprises the type pager capable of receiving radio broadcast paging signals which include data representing a telephone number and which provide as an output data, typically displayed on a liquid crystal display 16', which represents that telephone number. Radio pager 16 is coupled to control unit 18 and this coupling includes a connection of the output of antenna coupler/splitter 12 to an antenna input of radio pager 16, as will be discussed below in more detail with regard to FIG. 2.

In accordance with the teachings of the present invention, the data received by radio pager 16 which represents the telephone number of a paging party is supplied as an output of radio pager 16 to pager interface control unit 18. As will be also described in more detail with regard to FIG. 2, control unit 18 interconnects radio pager 16, memory 20, indicator 22 and control switch 24. Specifically, radio pager interface control unit 18 preferably includes a logic circuit which operates to provide verification that valid data representing a telephone number has been received from radio pager 16; which operates to store that data, after the verification, in memory 20; which operates to activate indicator 22 after that verification to provide a visual signal indicating that valid data has been received; and which operates to either transfer the stored data from memory 20 to automatic dialer 28 in radio telephone interface 26 or, in the alternative, to erase that data from memory 20 in response to activation of control switch 24. A description of control unit 18 and of the logic circuit contained therein will be discussed below in more detail regard to FIG. 2.

The output of pager interface control unit 18 is coupled to the input of radio telephone interface 26 as illustrated in FIG. 1. As described above, the output of control unit 18, as mentioned above, comprises data representing a telephone number received from radio pager 16. This data is coupled through operation of radio telephone interface 26 to automatic dialer 28. Automatic dialer 28, which is coupled through the output of radio telephone interface 26 to mobile radio telephone 30, operates, upon receipt of data representing a telephone number, to automatically dial mobile radio telephone 30. Mobile radio telephone 30 may comprise any standard mobile radio telephone and, as is standard in the industry, has an output coupled to a standard radio telephone antenna 32.

FIG. 2 is a more detailed block diagram of the system of FIG. 1. Specifically, in FIG. 2 antenna 10, antenna coupler/splitter 12; AM/FM radio 14; radio page 16; pager interface control unit 18; memory 20; indicator 22; control switch 24; radio telephone interface 26 (including automatic dialer 28); mobile radio telephone 30 and radio telephone antenna 32 are once again illustrated. In addition, in FIG. 2 pager interface control unit 18 is further illustrated as including battery charger 40 and logic circuit 42; radio telephone interface 26 is illustrated as including a mixer 26; and a handset/manual dialer 44 is further illustrated.

Specifically, as shown in FIG. 2, the output of antenna 10 is again coupled to the input of antenna coupler/splitter 12. The output of antenna coupler/splitter 12 is coupled by conductor 46 to the input of AM/FM radio 14 and by inductive coupling represented by reference numeral 48 to the antenna input of radio pager 16. Battery charger 40 is illustrated as having an input coupled to a 12 volt DC supply and having an output coupled to radio pager 16. The output of battery charger 40 is also coupled to supply power for logic circuit 42. Data output from radio pager 16 in the form of the before-mentioned data which represents the telephone number of a paging party is supplied over conductor 50 to an input of logic circuit 42. Logic circuit 42 is also connected to memory 20 by conductor 52, to indicator 22 by conductor 54, to control switch 24 by conductor 56, and to automatic dialer 28 by conductor 58.

Control switch 24, as illustrated in FIG. 2, preferably comprises two single pole, single throw switches 60 and 62. As will be discussed in more detail below, by activating (closing) switch 60, a user activates logic circuit 42 to transfer stored telephone number representing data from memory 20 to automatic dialer 28 and by activating (closing) switch 62 a user causes logic circuit 42 to erase stored telephone number representing data from memory 20. As is further illustrated in FIG. 2, indicator 20 preferably comprises an incandescent lamp 64 although, as should be apparent to those skilled in the art, lamp 64 may be substituted by any form of visual indicator such as a lighting diode, a liquid crystal display 16' or the like. Indicator 20 might even comprise an audio signal source such as a bell or buzzer, or a voice message.

The operation of the system of FIG. 2 will now be explained with reference to the flow chart of FIG. 3. Radio pager 16 is maintained constantly alert to receive a radio broadcast paging signal which includes data representing a telephone number. Power required to maintain this alertness is supplied by battery charger 40 to radio pager 16. In addition, the antenna input of radio pager 16 is constantly inductively coupled by operation antenna coupler/splitter 12 to AM/FM antenna 10 which is coupled to the frequency of that radio broadcast paging system.

Upon receipt of a radio broadcast paging signal which includes data representing a telephone number, radio pager 16 operates as is well known to those skilled in the art, to generate data representing that telephone number and to use that data to display that telephone number on a liquid crystal display 16' of pager 16. In addition, this data is supplied, in accordance with the teachings of the present invention, over conductor 50 to logic circuit 42. Logic circuit 42 may comprise a plurality of hard wire logic elements or, in the alternative, may comprise a small microprocessor. In any event, logic circuit 42 is designed to provide the logic functions represented in the flow chart of FIG. 3.

Specifically, logic circuit 42 is designed to monitor the data output 100 (FIG. 3) from radio pager 16 over conductor 50 for data indicating a valid telephone number. Logic circuit 42 may, for example, be programmed to identify as a valid telephone number any data which has the requisite number of digits to represent a telephone number. In the alternative, select valid telephone numbers may be preliminarily stored in memory 20 and data from radio pager 16 may be compared against those stored valid telephone numbers to determine when data from pager 16 actually comprises a validated telephone number. In this regard, as illustrated in the flow chart of FIG. 3, output data 100 from radio pager 16 is monitored by logic circuit 42 in step 102 to determine if a valid telephone number has been received. If no valid telephone number has been received, in step 104 logic circuit 42 operates to return to a ready state awaiting receipt of additional data from radio pager 16. If a valid telephone number is detected in step 104, logic circuit 42 is programmed to activate indicator 22 in step 106. Indicator 22 remains activated to indicate to a user that a valid telephone number has been received by radio pager 16.

In step 106, in addition to turning on indicator 22, logic circuit 42 is programmed to store the validated telephone number data in memory 20.

Upon activation of indicator 22, indicator 22 remains activated until intervention by a user. During this period of time, additional valid telephone numbers may be received and stored in memory 20 without affecting the activation of indicator 22.

User intervention occurs through user activation of control switch 24, either by closing switch 60 or by closing switch 62 of control switch 24. Upon closure of switch 60, as represented by step 108 of FIG. 3, logic circuit 42 is programmed to transfer the stored data representing a valid telephone number from memory 20 to automatic dialer 28. If data representing more than one telephone number is stored in memory 20, activation of switch 60 of control switch 24 preferably causes the first entered of that data to be transferred to dialer 28. This step of transferring data to automatic dialer 28 is illustrated by step 110 of FIG. 3.

Dialer 28 then automatically operates in accordance with the operation of a conventional automatic dialer to transmit corresponding dialtone signals through mixer 26' to mobile radio telephone 30 thereby resulting in a dialing of that number by mobile radio telephone 30. As should be understood by those skilled in the art, mixer 26' is also coupled to a standard headset/manual dialer 44 to permit optional manual dialing of mobile radio telephone 30 and to permit headset/manual dialer 44 to operate as a standard headset for audio utilization of mobile radio telephone 30.

In the event data for only a single valid telephone number is stored in memory 20, logic circuit 42 operates to then clear memory 20 of that data and extinguish indicator 22. However, if data representing more than one valid telephone number is stored in memory 20, step 110 of transmitting that data to mobile radio telephone 30 is continued upon each closure of switch 60 of control switch 24 and step 112 is not entered after step 110 until step 110 represents transmittal of data representing the last stored valid telephone number to automatic dialer 28.

It should be understood that stored data in memory 20 may be cleared as that data is employed, instead of clearing all such data upon entry of step 112 as indicated by the flow chart of FIG. 3.

In the alternative to activating switch 60 of control switch 24, a user, upon observation of an illuminated indicator 22, may elect not to return the requested call. In this event, the operator would activate switch 62 of control switch 24 which, as indicated by step 114 of the FIG. 3 flow chart, results in clearing memory 20 of the corresponding telephone number indicating data and deactivating indicator 22. To permit the operator to determine whether the stored telephone number should be dialed or not, some display should be provided for indicating that number. This display may comprise liquid crystal display 16' of radio pager 16, or may comprise an entirely independent display coupled to logic circuit 42. Moreover, although it is preferable that indicator 22 comprise a lamp 64 or the like independent of liquid crystal display 16', it is also contemplated that liquid crystal display 16' of radio pager 16 may, itself, comprise an indicator for providing a signal to a system operator that data representing a valid telephone number has been received. Thus, the very existence of a telephone number displayed on liquid crystal display 16' may operate to provide the requisite indication to the system user.

In the embodiment illustrated in FIG. 2, automatic dialer 28 comprises a standard DTMF (Dial Tone Multifrequency) encoder to dial a telephone number through an audio input of mobile radio telephone 30. With this arrangement, as referred to above, handset audio is mixed with DTMF signals through operation of mixer 26'.

Alternative embodiments are also contemplated. For example, interface 26 may comprise a multiplexer 120 which, as illustrated in FIG. 4, is connected to receive either parallel or serial radio control head signals from logic circuit 42 and to receive comparable control head signals and audio signals from hand set/manual dialer 44. The output of multiplexer 120 is coupled to an input of mobile radio telephone 30 to permit the parallel or serial radio control head signals to digitally control dialing circuitry within mobile radio telephone 30. Thus, in this embodiment, the automatic dialer is actually physically located within the mobile radio telephone itself.

A still further embodiment is illustrated in FIG. 5 wherein interface 26 comprises a driver 122 and a logic processor 124. Driver 122 may, for example, comprise a model RS-232-C interface. Driver 122 has an input coupled to receive serial radio control head signals from logic circuit 42 and an output coupled to logic processor 124. An output of logic processor 124 is coupled as an input to mobile radio telephone 30. Driver 122 and logic processor 124 function as a radio control head to generate telephone dialing signals for mobile radio telephone 30. Logic processor 124 may, for example, be an off the shelf unit such as model No. ACT ONE from Advanced Cellular Technology of Haywood, Calif. Logic processor 124 effectively replaces the standard control head of mobile radio telephone 30. Logic processor 124 may provide extended functionally of larger displays 126, keyboard options 128, local printers 130 and other peripheral interfaces 132.

The mobile paging call back system of the subject invention may include a mechanism for mounting that system on the dash of a mobile vehicle. By way of example, and not limitation. FIG. 6 discloses an automobile dash with pager 16 and mobile radio telephone 32 mounted thereon. The other elements of the claimed invention may be mounted out of view, for instance under a seat, behind the dash, or in the glove compartment. If desired, the pager 16 may also be mounted out of view, to reduce the possibility of theft.

Alternate embodiments of the invention are contemplated, which embodiments do not depart from the scope and spirit of the description contained herein nor the scope of the claims appended hereto. For example, it is not necessary that the mobile paging call back system be mounted in a vehicle of any sort. The system can be connected directly to a transportable cellular telephone system such as is manufactured by Nokii-Kinex of Largo, Fla. or the new EB-362 cellular transportable phone manufactured by Panasonic Corporation. If such a transportable telephone is used in the mobile paging call back system, the antenna of the transportable telephone is used rather than an antenna which exists on a vehicle, the power supply of the transportable telephone may be used rather than a vehicle power supply, and the remaining features of the mobile paging call back system remain unchanged.

A mobile paging call back system and related method of the subject invention thus provides a combination of features of both radio paging systems and mobile radio telephone systems which permit unanswered incoming mobile radio telephone calls to be replaced by incoming paging signals which permit the telephone number of the caller to be stored and ultimately, at the activation of the system user, employed to automatically obtain telephone contact with that caller. Thus, the system of the present invention provides a distinct improvement over prior art independent radio paging systems and mobile radio telephone systems.

Additional advantages and modifications will readily occur to those skilled in the art. The invention in its broader aspects is, therefore, not limited to the specific details, representative apparatus and illustrative method shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's generic inventive concept as set forth in the appended claims.

Hays, William D., Bhagat, Jai P.

Patent Priority Assignee Title
5423062, Aug 31 1992 NEC Corporation System for reducing congestion of radio paging channel
5438610, Apr 29 1988 SKYTEL CORP Method for establishing a communication link between a ground-base caller and a passenger on board an aircraft
5479478, Jan 29 1993 Boeing Company, the Method and system for pull communication
5539392, Oct 13 1994 SKYTEL CORP Method for coordinating radio paging transmissions on local and nationwide channels
5542115, Jun 24 1994 GPNE CORP Paging method and apparatus
5555172, Aug 22 1994 Johnson Controls Technology Company User interface for controlling accessories and entering data in a vehicle
5559862, Sep 02 1994 MOBILE TELECOMMUNICATIONS TECHNOLOGIES, LLC Mobile paging telephone call back system and method
5613212, Jun 24 1994 GPNE CORP Paging method and apparatus
5689807, Jun 24 1994 GPNE CORP Paging method and apparatus
5705994, Mar 24 1995 Uniden Corporation Receiving apparatus
5710987, Feb 25 1993 Google Technology Holdings LLC Receiver having concealed external antenna
5729827, Jun 24 1994 GPNE CORP Pager with station switch request
5870426, Aug 20 1992 Nexus 1994 Limited Grouping of spread spectrum acknowledgement pagers to minimize transmission collisions
5963876, Nov 22 1996 Google Technology Holdings LLC Method for editing a received phone number prior to placing a call to the received phone number
6014549, Dec 27 1995 AT&T Corporation Communication system and method using two-way paging to provide call control
6032023, Dec 27 1995 AT&T Communication system and method using two-way paging to provide call control
6094574, Oct 31 1997 Alpha enhanced paging and voice mail system and method
6188907, Aug 08 1997 Verizon Patent and Licensing Inc Enhanced telephone communication methods and apparatus incorporating pager features
6243589, Apr 12 1999 PC card for use in a telecommunications system
6282406, Jun 24 1994 GPNE CORP Paging method and apparatus
7031716, Jun 24 1994 GPNE CORP Network communication system using assigned timeslots for nodes to request a bandwidth amount for data transmission with a resulting grant for the node to transmit
7142846, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved paging receiver and system
7200406, Jun 24 1994 GPNE CORP Network communication system using a single reservation request made from a node to transmit its data
7209748, Jun 24 1994 GPNE CORP Network communication system using a single reservation request over one or more assigned frequencies to identify a node
7212825, Jun 24 1994 GPNE CORP Network communication system using a single reservation request made with randomly generated information to identify a node
7251318, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved personal communication devices and systems
7254223, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved personal communication devices and systems
7257210, Jan 05 1994 INTELLECT WIRELESS INC Picture phone with caller id
7266186, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved paging receiver and system
7286658, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved personal communication devices and systems
7305076, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved paging receiver and system
7308088, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved personal communication devices and systems
7310416, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved personal communication devices and systems
7349532, Jan 05 1994 INTELLECT WIRELESS INC Picture and video message center system
7426264, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved personal communication devices and systems
7454000, Jan 05 1994 INTELLECT WIRELESS INC Method and apparatus for improved personal communication devices and systems
7555267, Jun 24 1994 GPNE Corp. Network communication system wherein a node obtains resources for transmitting data by transmitting two reservation requests
7570954, Jun 24 1994 GPNE Corp. Communication system wherein a clocking signal from a controller, a request from a node, acknowledgement of the request, and data transferred from the node are all provided on different frequencies, enabling simultaneous transmission of these signals
7664508, Jun 24 1994 GPNE Corp. Communication system with a request by a single node made over one of two separate timeslots
7668511, Jun 24 1994 GPNE Corp. Network communication system with nodes transmitting randomly generated information (RGI) and controllers transmitting a copy of the RGI for identification purposes
7738439, Jun 24 1994 GPNE CORP Communication system with request reservation timeslot management
7787883, Jun 24 1994 GPNE Corp. Apparatus for network communication system allowing for persistent request slots for network nodes as well as separate identification to be sent from nodes
7792492, Jun 24 1994 GPNE Corp. Network communication system with an alignment signal to allow a controller to provide messages to nodes and transmission of the messages over four independent frequencies
7962144, Jun 24 1994 GPNE Corp. Method for network communication allowing for persistent request slots for network nodes as well as separate indentification information to be sent from nodes
8086240, Jun 24 1994 GPNE Corp. Data communication system using a reserve request and four frequencies to enable transmitting data packets which can include a count value and termination indication information
8090803, Jan 26 1996 SimpleAir, Inc. System and method for transmission of data
8222995, Jan 04 2011 Intego Software, LLC System and method for transmitting messages received from a paging network on a paging device to electronic devices
8233460, Jun 24 1994 GPNE Corp. Communication system with map of information provided from controller to enable communication with nodes
8254970, Jun 08 2011 Intego Software, LLC Systems and methods for communicating with a paging network operations center through wireless cellular devices
8311020, Jun 24 1994 GPNE Corporation Communication system allowing network nodes to efficiently establish communications with a controller
8331960, Jun 08 2011 Intego Software, LLC Systems and methods for communicating with a paging network operations center through wireless cellular devices
8335195, Jun 24 1994 GPNE Corporation Communication system allowing node identification
8489707, Jan 26 1996 SIMPLEAIR, INC System and method for transmission of data
8572279, Jan 26 1996 SimpleAir, Inc. System and method for transmission of data
8601154, Jan 26 1996 SimpleAir, Inc. System and method for transmission of data
8629758, Jan 04 2011 Intego Software, LLC System and method for transmitting messages received from a paging network on a paging device to electronic devices
8639838, Jan 26 1996 SimpleAir, Inc. System and method for transmission of data
8656048, Jan 26 1996 SimpleAir, Inc. System and method for transmission of data
9356899, Jan 26 1996 SimpleAir, Inc. System and method for transmission of data
9380106, Jan 26 1996 SimpleAir, Inc. System and method for transmission of data
D369166, Feb 07 1995 Pager having dialing capabilities
Patent Priority Assignee Title
1626464,
1802345,
1809296,
2097872,
2662975,
2866891,
3071728,
3134945,
3244981,
3590136,
3731202,
3868571,
3896448,
3917372,
4031468, May 04 1976 Reach Electronics, Inc. Receiver mount
4065642, Apr 24 1975 PHONETEL COMMUNICATIONS, INC Message signaling and alerting system and method thereof
4072824, Apr 26 1976 GIMIX, Inc. Automatic dialer for paging system or the like
4194155, Jun 14 1978 Honda Giken Kogyo Kabushiki Kaisha Radio receiving device for automotive use
4194585, Jul 26 1978 Prince Corporation Instrument mounting system
4263480, Jul 17 1979 CASIO COMPUTER CO , LTD , A CORPORATION OF JAPAN Pager receiver
4313035, Jan 18 1980 Bell Telephone Laboratories, Incorporated Method of providing person locator service
4317035, Dec 20 1979 AT & T TECHNOLOGIES, INC , Gold monitoring procedure
4336524, Jul 17 1979 MOTOROLA, INC A DE CORP Video display pager receiver with memory
4475009, Nov 18 1982 FORWARD TECHNOLOGIES LLC Method and device for remotely controlling telephone call forwarding
4490579, Apr 15 1983 Auto-dialing pager receiver
4499567, Jun 21 1982 Radio actuated record controller device
4550944, Mar 02 1984 Visteon Global Technologies, Inc Retainer for radio receiver
4571457, Jul 30 1982 Tokyo Shibaura Denki Kabushiki Kaisha Automatic telephone answering and recording apparatus
4612416, Jan 22 1985 Avaya Technology Corp Integrated message service system
4625081, Nov 30 1982 Gilbarco Inc Automated telephone voice service system
4658416, Feb 14 1984 NEC Corporation Automatic call transfer system capable of carrying out call transfer without manual operation
4661972, Feb 18 1985 NEC Corporation Mobile telephone system for automatically paging absent mobile subscriber
4680785, Oct 03 1984 Hitachi Telecom Technologies, Ltd Personal-signaling communication system
4740788, Oct 06 1986 Method of providing location dependent visitor dispatching service
4752951, Dec 23 1985 Method of providing location dependent person locator service
4821308, Mar 19 1985 Hashimoto Corporation Telephone answering system with paging function
EP176104,
JP46627,
////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 06 1989Mobile Telecommunication Technologies Corporation(assignment on the face of the patent)
Apr 15 1993MTEL TECHNOLOGIES, INC CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MTEL PCN, INC CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MTEL SERVICE CORPORATIONCHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MTEL SPACE TECHNOLOGIES CORPORATIONCHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MTEL PAGING, INC CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MTEL INTERNATIONAL, INC CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993COM NAV REALTY CORP CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MTEL CELLULAR, INC CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MTEL DIGITAL SERVICES, INC CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MOBILECOMM EUROPE, INC CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993SKYTEL CORP CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Apr 15 1993MOBILE TELECOMMUNICATION TECHNOLOGIES CORP CHEMICAL BANK, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0065850890 pdf
Nov 05 1999CHASE MANHATTAN BANK FORMERLY KNOWN AS CHEMICAL BANK AS ADMINISTRATIVE AGENT, THESKYTEL COMMUNICATIONS, INC F K A MOBILE TELECOMMUNICATION TECHNOLOGIES CORP TERMINATION OF SECURITY AGREEMENT0132480517 pdf
Dec 31 2004SKYTEL COMMUNICATIONS, INC SKYTEL CORP MERGER SEE DOCUMENT FOR DETAILS 0187970318 pdf
Mar 12 2007BELL INDUSTRIES, INC NEWCASTLE PARTNERS, L P SECURITY AGREEMENT0190090529 pdf
Date Maintenance Fee Events
Jun 11 1991M173: Payment of Maintenance Fee, 4th Year, PL 97-247.
Jul 09 1991ASPN: Payor Number Assigned.
Nov 21 1995M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Oct 27 1999M185: Payment of Maintenance Fee, 12th Year, Large Entity.
Nov 02 2006ASPN: Payor Number Assigned.
Nov 02 2006RMPN: Payer Number De-assigned.


Date Maintenance Schedule
Oct 30 19934 years fee payment window open
Apr 30 19946 months grace period start (w surcharge)
Oct 30 1994patent expiry (for year 4)
Oct 30 19962 years to revive unintentionally abandoned end. (for year 4)
Oct 30 19978 years fee payment window open
Apr 30 19986 months grace period start (w surcharge)
Oct 30 1998patent expiry (for year 8)
Oct 30 20002 years to revive unintentionally abandoned end. (for year 8)
Oct 30 200112 years fee payment window open
Apr 30 20026 months grace period start (w surcharge)
Oct 30 2002patent expiry (for year 12)
Oct 30 20042 years to revive unintentionally abandoned end. (for year 12)