A hyperthermia applicator comprises a generator of a focused ultrasonic beam comprising a main high frequency electric wave emitter and a main piezoelectric transducer and an echography device comprising an auxiliary high frequency electric pulse generator associated with an auxiliary piezoelectric transducer which generates an ultrasonic examination beam sweeping the zone to be treated. During a main treatment and checking operating mode, the focused beam is emitted by the main transducer energized by the main emitter during periodic time intervals separated by shorter time intervals. During the shorter time intervals, the examination beam is emitted and echographic images are formed.

Patent
   RE33590
Priority
Dec 14 1983
Filed
Nov 22 1988
Issued
May 21 1991
Expiry
May 21 2008
Assg.orig
Entity
Small
127
159
all paid
1. Apparatus for ultrasonically heating a subject volume comprising:
(i) a first transducer having a curved transmitting surface for generating a single first ultrasound beam focused in a restricted focal zone and drive means for excitig exciting ultrasonic vibrations within the first transducer;
(ii) means for displacing the first transducer with respect to predetermined axes of coordinates successively to irradiate subject volume with said ultrasound beam focal zone;
(iii) a second transducer for generating a second ultrasound beam, said second transducer having an active surface which is substantially smaller than that of the transmitting surface of the first transducer, said second transducer having a point which is fixed with the fist transducer during the displacement of the first transducer, and
(iv) an echography device comprising said second transducer, electric pulse generator means coupled to said second transducer, means for effecting a scanning of an examination volume with the second ultrasound beam, receiver means coupled coupled to said second transducer for receiving the echoes formed through reflexion reflection of the second ultrasound beam on reflecting surfaces within the examination volume and image forming means coupled to the receiver means for displaying images of the examination volume, said focal zone being located in a predetermined relative position within the examination volume, and said image forming means further displaying a mark which materializes said predetermined position of the focal zone.
3. Apparatus for ultrasonically heating a subject volume comprising:
(i) a first transducer having a curved transmitting surface for generating a single first ultrasound beam focused in a restricted focal zone and drive means for exciting ultrasonic vibrations within the first transducer;
(ii) means for displacing the first transducer with respect to predetermined axes of coordinates successively to irradiate subject volume with said ultrasound beam focal zone;
(iii) a second transducer for generating a second ultrasound beam, said second transducer having an active surface which is substantially smaller than that of the transmitting surface of the first transducer, said second transducer having a point which is fixed with the first transducer during the displacement of the first transducer;
(v) an echography device comprising said second transducer, electric pulse generator means coupled to said second transducer, means for effecting a scanning of an examination volume with the second ultrasound beam, receiver means coupled to said second transducer for receiving the echoes formed through reflextion reflection of the second ultrasound beam on reflecting surfaces within the examination volume and image forming means coupled to the receiver means for displaying images of the examination volume, said focal zone being located in a predetermined relative position within the examination volume, and said image forming means further displaying a mark which materializes said predetermined position of the focal zone;
(v) said drive means exciting ultrasonic vibrations within the first transducer during periodic time intervals which are separated by first blanks of substantially smaller duration;
(vi) said echography device further compirsing comprising means for controlling the generation of electric pulses by said generator means during second periodic time intervals having the same duration as said first blanks and separated by second blanks, and
(vii) switchable synchronization means having first and second operating modes for effecting coincidence of each of said second blanks with said first time intervals and setting the drive means into operation during the first mode and for effecting coincidence of a plurality of said second time intervals and the associated second blanks with each of the first time intervals and setting the drive means out of operation during the second mode.
4. Apparatus fo ultrasonically heating a subject volume comprising:
(i) a first transducer having a curved transmitting surface for generating a single first ultrasound beam focused in a restricted focal zone and drive means for exciting ultrasonic vibrations within the first transducer;
(ii) means for displacing the first transducer with respect to predetermined axes of coordinates successively to irradiate subject volume with said ultrasound beam focal zone;
(iii) a second transducer for generating a second ultrasound beam, said second transducer having an active surface which is substantially smaller than that of the transmitting surface of the first transducer, said second transducer having a point which is fixed with the first transducer during the displacement of the first transducer;
(iv) an echography device comprising said first and second transducers, electric pulse generator means coupled to said second transducer, means for effecting a scanning of an examination volume with the second ultrasound beam, receiver means coupled to said second transducer for receiving the echoes formed through reflexion of an examination ultrasound beam on reflecting surfaces within the examination volume and image forming means coupled to the receiver means for displaying images of the examination volume, said focal zone being located in a predetermined relative position within the examination volume, and said image forming means further displaying a mark which materializes said predetermined position of the focal zone;
(v) switchable synchronization means having first, second and third operating modes;
(vi) during said first and second operating modes, said drive means exciting ultrasonic vibrations within the first transducer during first periodic time intervals which are separated by first blanks of substantially smaller duration;
(vii) said echography device further comprising means for controlling the generation of electric pulses by said generator means during second periodic time intervals having the same duration as said first blanks and separated by second blanks;
(viii) said synchronization means effecting coincidence of each of said second blanks with said first time intervals and setting the drive means into operation during the first mode and effecting coincidence of a plurality of said second time intervals and the associated second blanks with each of the time intervals and setting the drive means out of operation during the second mode; and
(ix) said synchronization means discoupling decoupling said electric pulse generator means from the second transducer during said third operating mode and coupling said electric pulse generator means to the first transducer, whereas said electric pulse generator means is synchronized for effecting coincidence of a plurality of said second time intervals and the associated second blanks with each of the first time intervals.
2. Apparatus as claimed in claim 1, wherein said first transducer is formed by a mosaic of piezoelectric elements isolated for from each other and forming a spherical skill cap supported by said displacing means, said skull cap having a top, said displacing means being adapted for controlling the displacement of the first transducer along three orthogonal axes, whereas the second transducer is fixed to the top of said skull cap and said means for effecting a scanning of the second ultrasound beam provide a sectorial sweep of said second beam in a plane which passes through the axis of symmetry of said skull cap.
a spherical skull cap supported by a mount which allows it to move along three orthogonal axes X, Y and Z. This mount has been shown schematically, its construction being within the scope of a man skilled in the art. Along the axis of the spherical skull cap is disposed an auxiliary transducer 2 of a generally cylindrical shape which passes through skull cap 1 and is fixed thereto. A pocket of water P is placed between the skull cap 1 and the surface S of the body of the patient, who is assumed lying flat on a horizontal plane.

The skull cap 1 has for example a diameter of 200 to 300 mm and is formed from a large number (300 or 400) of piezoelectric elements 10, 11, etc. . . . (FIG. 1) isolated from each other and juxtaposed so as to form a mosaic. These elements are metallized on both faces, one of the metallizations being connected to ground and the other to connections for energization by a main emitter 3.

This latter delivers an electric signal A (FIG. 3) formed of high frequency wave trains (500 KHz for example) of a relatively low peak power (about 10 or a 100 watts for example), but of a relatively long duration (for example of the order of a second) separated by time intervals of the order of 1/10 second, the time required for the echography device to form an image. It is then a question of operating conditions using substantially continuous emission for the treatment. Such operating conditions may be obtained by means of emitters using power transistors. Preferably, the elements of transducer 1 will be divided up into groups each energized by a separate emitter (rectangle 4 3 symbolizing the assembly of these emitters), the elements of each group being spaced apart in the same circular zone of the spherical surface. By adjusting the relative phases of the emissions, it is possible to modify the energy distribution in the focusing region of the ultra sonic beam.

An input 31 to emitter 3 symbolizes an adjustment of the emitted power and an input 32 symbolizes an adjustment of the wave train duration. The focal spot formed in the center F of the sphere may, with this technique, be very small (diameter of 2 or 3 mm for example) and have a position which is strictly fixed for a given position of the transducer.

In FIG. 1 it can be seen that the auxiliary transducer 2 is itself connected both to a high frequency electric pulse emitter 21 and to a reception amplifier 22 followed by an analog-digital converter 23, itself followed by a memory 24. Emitter 21 is synchronized by a pulse generator 211 which delivers 256 pulses during each of the successive time intervals of 1/10 second. To each of these time intervals there corresponds a complete sweep of a given angular sector φ (FIG. 1) by the beam emitted by transducer 2 so the formation, in the sweep plane, of an image of the zone observed by the echography device.

Transducer 2 is advantageously of the type described in U.S. Pat. No. 4,418,698 granted on Dec. 31, 1983, for: "Ultrasonic scanning probe with mechanical sector scanning means", that is to say that it comprises an oscillating piezoelectric element 200 controlled by a motor 201, itself controlled by an electronic circuit which is shown symbolically by a rectangle 4. This electronic circuit provides control signals for the motor 201 housed inside the case of the transducer 2 and is adapted so that a complete oscillation of the motor corresponds to the above defined duration for forming an image (1/10 sec.).

In a first operating mode (treatment and checking) switch 210 is in position I as well as switches 212 and 33.

In position I of switches 33 and 212, generator 211 is synchronized by a first output 41 of circuit 4, and this latter is then adjusted, by means not shown, for generating at its output 43 connected to motor 201 signals having the wave form (MT) shown in FIG. 4 3. An image is swept then in 1/10 sec. and is followed by a time interval of 1 sec. during which the oscillating element 200 remains immobile, so that transducer 2 receives no echos.

During the intervals between the sweep periods, a circuit 34 generates square waves of 1 sec. which serve for synchronizing emitter 3 whereas, during the sweep periods, a circuit 213 generates square waves of 1/10 sec. which serve for synchronizing the generator 211.

Thus, in this operating mode, transducer 1 generates an ultra-sonic beam under substantially continuous operating conditions whereas the echography device forms an image every second in the intervals between the wave trains. At (BT) has been shown the wave forms of the signals then emitted by generator 211.

In a second operating mode (locating) with switch 210 in position I, switch 33 is in position II, so that emitter 3 is not synchronized and the focused ultrasonic beam is not emitted. Switch 212 is also in position II so that generator 211 is synchronized by a second output 42 of circuit 4 and this latter is adjusted so as to generate at its output 43 signals having the wave forms (MR) shown in FIG. 3. The 1/10 sec. sweeps are then separated by time intervals of 1/100 sec. only and the images are formed from echos coming from the reflection of the pulses generated by transducer 2. Generator 211 delivers the signals (BR).

In a third operating mode (checking the focal region), switch 210 is in position III, so that the emitter 21 and transducer 2 do not emit. Switch 212 is again in position II so that generator 211 is synchronized by the output 42 of circuit 4 and this latter is adjusted as in the second operating mode so that the 1/10 sec. sweeps are again separated by intervals of 1/100 sec. Switch 33 is in position III and consequently emitter 3 is now synchronized by the generator 211 which then delivers the signals (BR).

In this operating mode, the echographic device is therefor formed by emitter 3, transducer 1 operating for emission and transducer 2 operating for reception. The result is that an image of the zone of concentration in the focal region of the energy emitted by the transducer 1 is obtained.

The echographic signals received at 22 in the first or third operating modes are, after analog-digital conversion at 23, stored line by line in memory 24, a writing addressing device 25, controlled by circuit 4, causing the respective deflection angles of the beam emitted and/or received by transducer 2 to correspond with the respective lines of the memory. A device 26 for rapid reading of the memory energizes the X and Y deflection coils of a cathode ray tube 28, so the brightness control electrode receives the corresponding contents from memory 24, transformed into an analog signal by a digital-analog converter 27.

The practical construction of all the circuits described and shown is within the scope of a man skilled in the art. The control circuit 4 may for example comprise a one shot multivibrator delivering square waves of a duration adjustable to 1/100 s or is depending on the operating mode and circuits for generating increasing and decreasing voltages of a 1/10 s duration, triggered off by said square waves.

The apparatus which has just been described operates as follows:

In the locating operating mode, the operator searches for and localizes the zone to be treated. The display device is adapted, in a way known per se, so as to materialize on the screen of the cathode ray tube (for example by means of a cross) the theoretical position of the focal spot in the sectional plane shown, which plane passes through the axis of symmetry of transducer 1. (It is a question of B type echography). The operator begins by moving transducer 1 along X, until the tumour appears clearly on the screen, then he moves it along Y and Z, until the cross coincides with the central region of the image of the tumour (K, FIG. 4). At this moment, the switches may be placed in position for checking the focal region: only this latter is then made visible on the screen, with a luminosity proportional to the corresponding energy concentration. Thus a representation is obtained of what the distribution of the energy of the treatment wave will be, which allows the adjustments to be checked and perfected.

During treatment, the apparatus only supplies one image per second, but this rate is sufficient for substantially permanently checking the position of the focal spot.

It is clear that the apparatus described allows the evolution of the tumour to be checked after each treatment sequence. It is evident that different modifications may be made thereto and even according to other embodiments, without departing from the scope and spirit of the invention.

Dory, Jacques

Patent Priority Assignee Title
10071266, Aug 10 2011 The Regents of the University of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
10219815, Sep 22 2005 The Regents of the University of Michigan Histotripsy for thrombolysis
10293187, Jul 03 2013 The Regents of the University of Michigan Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
10335280, Jan 19 2000 Medtronic, Inc. Method for ablating target tissue of a patient
10772681, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energy delivery to intraparenchymal regions of the kidney
10780298, Aug 22 2013 The Regents of the University of Michigan Histotripsy using very short monopolar ultrasound pulses
10925579, Nov 05 2014 OTSUKA MEDICAL DEVICES CO , LTD Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
11058399, Oct 05 2012 The Regents of the University of Michigan Bubble-induced color doppler feedback during histotripsy
11135454, Jun 24 2015 The Regents of the University of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
11154356, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Intravascular energy delivery
11364042, Sep 22 2005 The Regents of the University of Michigan Histotripsy for thrombolysis
11432900, Jul 03 2013 HISTOSONICS, INC Articulating arm limiter for cavitational ultrasound therapy system
11648424, Nov 28 2018 HistoSonics Inc. Histotripsy systems and methods
11701134, Sep 22 2005 The Regents of the University of Michigan Histotripsy for thrombolysis
11813484, Nov 28 2018 HISTOSONICS, INC Histotripsy systems and methods
11813485, Jan 28 2020 The Regents of the University of Michigan; THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS Systems and methods for histotripsy immunosensitization
11819712, Aug 22 2013 The Regents of the University of Michigan Histotripsy using very short ultrasound pulses
5150713, Aug 21 1989 Kabushiki Kaisha Toshiba Method and system for controlling shock wave irradiation in a shock wave therapy apparatus
5247935, Mar 19 1992 Insightec Ltd Magnetic resonance guided focussed ultrasound surgery
5291890, Aug 29 1991 Insightec Ltd Magnetic resonance surgery using heat waves produced with focussed ultrasound
5311869, Mar 24 1990 Kabushiki Kaisha Toshiba Method and apparatus for ultrasonic wave treatment in which medical progress may be evaluated
5490840, Sep 26 1994 Insightec Ltd Targeted thermal release of drug-polymer conjugates
5643179, Dec 28 1993 Kabushiki Kaisha Toshiba Method and apparatus for ultrasonic medical treatment with optimum ultrasonic irradiation control
5984881, Mar 31 1995 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus using a therapeutic ultrasonic wave source and an ultrasonic probe
6086535, Mar 31 1995 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparataus
6128522, May 23 1997 Koninklijke Philips Electronics N V MRI-guided therapeutic unit and methods
6267734, Mar 31 1995 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus
6334846, Mar 31 1995 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus
6361531, Jan 21 2000 MEDTRONIC XOMED SURGICAL PRODUCTS, INC Focused ultrasound ablation devices having malleable handle shafts and methods of using the same
6374132, May 23 1997 Koninklijke Philips Electronics N V MRI-guided therapeutic unit and methods
6409720, Jan 19 2000 Medtronic Xomed, Inc Methods of tongue reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
6413254, Jan 19 2000 Medtronic Xomed, Inc Method of tongue reduction by thermal ablation using high intensity focused ultrasound
6425867, Sep 18 1998 MIRABILIS MEDICA, INC Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
6454713, Mar 31 1995 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus
6516211, May 23 1997 Koninklijke Philips Electronics N V MRI-guided therapeutic unit and methods
6595934, Jan 19 2000 Medtronic Xomed, Inc Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
6689087, Mar 28 2001 GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA Floating probe for ultrasonic transducers
6692450, Jan 19 2000 Medtronic Xomed, Inc Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
6716184, Sep 18 1998 MIRABILIS MEDICA, INC Ultrasound therapy head configured to couple to an ultrasound imaging probe to facilitate contemporaneous imaging using low intensity ultrasound and treatment using high intensity focused ultrasound
6773408, May 23 1997 Koninklijke Philips Electronics N V MRI-guided therapeutic unit and methods
6936046, Jan 19 2000 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
6976986, Apr 12 2000 MAQUET CARDIOVASCULAR LLC Electrode arrangement for use in a medical instrument
7033352, Jan 18 2000 MAQUET CARDIOVASCULAR LLC Flexible ablation instrument
7052491, Oct 23 1998 MAQUET CARDIOVASCULAR LLC Vacuum-assisted securing apparatus for a microwave ablation instrument
7099717, Jan 03 2002 MAQUET CARDIOVASCULAR LLC Catheter having improved steering
7115126, Oct 23 1998 MAQUET CARDIOVASCULAR LLC Directional microwave ablation instrument with off-set energy delivery portion
7156841, Apr 12 2000 MAQUET CARDIOVASCULAR LLC Electrode arrangement for use in a medical instrument
7192427, Feb 19 2002 MAQUET CARDIOVASCULAR LLC Apparatus and method for assessing transmurality of a tissue ablation
7211044, May 29 2001 Ethicon Endo-Surgery, Inc Method for mapping temperature rise using pulse-echo ultrasound
7226446, May 04 1999 Maquet Cardiovascular, LLC Surgical microwave ablation assembly
7229469, Oct 02 1999 VALVECURE, INC Methods for treating and repairing mitral valve annulus
7239919, Apr 23 2002 BIOPHYSICAL MIND TECHNOLOGIES LTD Diagnosis, treatment and research of mental disorder
7301131, Jan 18 2000 MAQUET CARDIOVASCULAR LLC Microwave ablation instrument with flexible antenna assembly and method
7303560, Dec 29 2000 MAQUET CARDIOVASCULAR LLC Method of positioning a medical instrument
7346399, May 28 1999 MAQUET CARDIOVASCULAR LLC Monopole tip for ablation catheter
7387612, Dec 04 2003 GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA Floating probe for ultrasonic transducers
7387627, Oct 23 1998 MAQUET CARDIOVASCULAR LLC Vacuum-assisted securing apparatus for a microwave ablation instrument
7452357, Oct 22 2004 Cilag GmbH International System and method for planning treatment of tissue
7473224, May 29 2001 Ethicon Endo-Surgery, Inc Deployable ultrasound medical transducers
7473250, May 21 2004 Cilag GmbH International Ultrasound medical system and method
7494467, Apr 16 2004 Cilag GmbH International Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode
7520856, Sep 17 1999 University of Washington Image guided high intensity focused ultrasound device for therapy in obstetrics and gynecology
7591996, Aug 17 2005 University of Washington Ultrasound target vessel occlusion using microbubbles
7610095, Apr 27 2001 BIOPHYSICAL MIND TECHNOLOGGIES, LTD Diagnosis, treatment, and research of brain disorders
7615015, Jan 19 2000 Medtronic, Inc. Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
7621873, Aug 17 2005 University of Washington Method and system to synchronize acoustic therapy with ultrasound imaging
7670291, Sep 16 2004 University of Washington Interference-free ultrasound imaging during HIFU therapy, using software tools
7722539, Sep 18 1998 MIRABILIS MEDICA, INC Treatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
7806839, Jun 14 2004 Cilag GmbH International System and method for ultrasound therapy using grating lobes
7806892, May 29 2001 Ethicon Endo-Surgery, Inc Tissue-retaining system for ultrasound medical treatment
7833221, Oct 22 2004 Ethicon Endo-Surgery, Inc. System and method for treatment of tissue using the tissue as a fiducial
7846096, May 29 2001 Ethicon Endo-Surgery, Inc Method for monitoring of medical treatment using pulse-echo ultrasound
7850626, Sep 17 1999 University of Washington Method and probe for using high intensity focused ultrasound
7883468, May 18 2004 Cilag GmbH International Medical system having an ultrasound source and an acoustic coupling medium
7951095, May 20 2004 Cilag GmbH International Ultrasound medical system
8016757, Sep 30 2005 University of Washington Non-invasive temperature estimation technique for HIFU therapy monitoring using backscattered ultrasound
8057408, Sep 22 2005 The Regents of the University of Michigan Pulsed cavitational ultrasound therapy
8137274, Oct 25 1999 OTSUKA MEDICAL DEVICES CO , LTD Methods to deliver high intensity focused ultrasound to target regions proximate blood vessels
8167805, Oct 20 2005 OTSUKA MEDICAL DEVICES CO , LTD Systems and methods for ultrasound applicator station keeping
8197409, Sep 17 1999 University of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
8206299, Dec 16 2003 University of Washington Image guided high intensity focused ultrasound treatment of nerves
8211017, Dec 16 2003 University of Washington Image guided high intensity focused ultrasound treatment of nerves
8235902, Sep 11 2007 FOCUS SURGERY, INC System and method for tissue change monitoring during HIFU treatment
8277398, Oct 25 1999 OTSUKA MEDICAL DEVICES CO , LTD Methods and devices to target vascular targets with high intensity focused ultrasound
8295912, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Method and system to inhibit a function of a nerve traveling with an artery
8328798, Oct 02 1999 VALVECURE, INC Method for treating and repairing mitral valve annulus
8337434, Sep 17 1999 University of Washington Methods for using high intensity focused ultrasound and associated systems and devices
8372009, Oct 20 2005 OTSUKA MEDICAL DEVICES CO , LTD System and method for treating a therapeutic site
8374674, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Nerve treatment system
8388535, Oct 25 1999 OTSUKA MEDICAL DEVICES CO , LTD Methods and apparatus for focused ultrasound application
8414494, Sep 16 2005 University of Washington Thin-profile therapeutic ultrasound applicators
8469904, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
8512262, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
8517962, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
8539813, Sep 22 2009 The Regents of the University of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
8556834, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Flow directed heating of nervous structures
8611189, Sep 16 2004 University of Washington Acoustic coupler using an independent water pillow with circulation for cooling a transducer
8622937, Nov 26 1999 OTSUKA MEDICAL DEVICES CO , LTD Controlled high efficiency lesion formation using high intensity ultrasound
8715209, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Methods and devices to modulate the autonomic nervous system with ultrasound
8845629, Apr 08 2002 MEDTRONIC IRELAND MANUFACTURING UNLIMITED COMPANY Ultrasound apparatuses for thermally-induced renal neuromodulation
8986211, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
8986231, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
8992447, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
9005143, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD External autonomic modulation
9005144, May 29 2001 Tissue-retaining systems for ultrasound medical treatment
9049783, Apr 13 2012 HISTOSONICS, INC Systems and methods for obtaining large creepage isolation on printed circuit boards
9061131, Aug 17 2009 HISTOSONICS, INC Disposable acoustic coupling medium container
9066679, Aug 31 2004 University of Washington Ultrasonic technique for assessing wall vibrations in stenosed blood vessels
9119951, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
9119952, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Methods and devices to modulate the autonomic nervous system via the carotid body or carotid sinus
9125642, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD External autonomic modulation
9132287, Jun 14 2004 Cilag GmbH International System and method for ultrasound treatment using grating lobes
9144694, Aug 10 2011 The Regents of the University of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
9174065, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
9186198, Apr 08 2002 MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
9198635, Oct 31 1997 University of Washington Method and apparatus for preparing organs and tissues for laparoscopic surgery
9199097, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Energetic modulation of nerves
9220488, Oct 20 2005 OTSUKA MEDICAL DEVICES CO , LTD System and method for treating a therapeutic site
9261596, May 29 2001 Method for monitoring of medical treatment using pulse-echo ultrasound
9352171, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Nerve treatment system
9358401, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Intravascular catheter to deliver unfocused energy to nerves surrounding a blood vessel
9526923, Aug 17 2009 HistoSonics, Inc.; The Regents of the University of Michigan Disposable acoustic coupling medium container
9579518, Oct 12 2009 OTSUKA MEDICAL DEVICES CO , LTD Nerve treatment system
9636133, Apr 30 2012 The Regents of the University of Michigan Method of manufacturing an ultrasound system
9642634, Sep 22 2005 The Regents of the University of Michigan Pulsed cavitational ultrasound therapy
9901753, Aug 26 2009 HISTOSONICS, INC Ultrasound lithotripsy and histotripsy for using controlled bubble cloud cavitation in fractionating urinary stones
9943708, Aug 26 2009 HISTOSONICS INC Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
Patent Priority Assignee Title
E3146626,
2484626,
2632634,
2645727,
2792829,
3168659,
3237623,
3338235,
3560913,
3735755,
3756071,
3785382,
3810174,
3879698,
3911730,
3924259,
3927557,
3942531, Oct 12 1973 Dornier System GmbH Apparatus for breaking-up, without contact, concrements present in the body of a living being
3958559, Oct 16 1974 New York Institute of Technology Ultrasonic transducer
3974682, Jun 05 1973 Siemens Aktiengesellschaft Ultra sound examining device
4005258, Nov 26 1973 Realization Ultrasoniques Ultrasonic examination
4046149, Jan 31 1975 Olympus Optical Co., Ltd. Instrument for removing a foreign substance from the body cavity of human being
4058114, Sep 11 1974 Siemens Aktiengesellschaft Ultrasonic arrangement for puncturing internal body organs, vessels and the like
4070905, Oct 13 1975 The Commonwealth of Australia Ultrasonic beam scanning
4084582, Mar 11 1976 New York Institute of Technology Ultrasonic imaging system
4094306, May 01 1975 The Commonwealth of Australia, c/o The Department of Health Apparatus for ultrasonic examination
4097835, Sep 20 1976 SRI International Dual transducer arrangement for ultrasonic imaging system
4163394, Jun 30 1975 Siemens Aktiengesellschaft Method of ultrasonic scanning of bodies
4174634, Jan 04 1977 C.G.R. Ultrasonic Echographic device for the real-time display of internal discontinuities of a test object
4181120, Apr 23 1976 Tokyo Shibaura Electric Co., Ltd. Vessel for ultrasonic scanner
4199246, Oct 04 1976 Polaroid Corporation Ultrasonic ranging system for a camera
4204435, Apr 29 1977 Agence Nationale de Valorisation de la Recherche (ANVAR) Devices using ultrasounds for forming images, in particular for _the internal examination of the human body
4205686, Sep 09 1977 Picker Corporation Ultrasonic transducer and examination method
4209022, Jun 03 1976 CGR Ultrasonic Echography apparatus for medical diagnosis, using a multiple-element probe
4218768, Dec 22 1976 Siemens Aktiengesellschaft Apparatus for ultrasonic scanning
4235111, Sep 29 1976 Siemens Aktiengesellschaft Apparatus for ultrasonic scanning
4245511, Jun 30 1975 Siemens Aktiengesellschaft Ultrasonic applicator for ultrasonic scanning of bodies and method of using the same
4274421, Nov 23 1977 C. G. R. Ultra Sonic Echo sound apparatus including an oscillating mirror for use in medical diagnosis
4281550, Dec 17 1979 North American Philips Corporation Curved array of sequenced ultrasound transducers
4281661, Nov 23 1977 C. G. R.-Ultrasonic Medical echo sounding apparatus with a wide sector scanning angle
4287770, Dec 20 1978 Siemens Aktiengesellschaft Method for the manufacture of ultrasonic transducers
4294119, Jun 30 1975 Siemens Aktiengesellschaft Ultrasonic applicator for ultrasonic scanning of bodies
4305296, Feb 08 1980 SRI International Ultrasonic imaging method and apparatus with electronic beam focusing and scanning
4311147, May 26 1979 EBERHARD HAEUSLER Apparatus for contact-free disintegration of kidney stones or other calculi
4315514, May 08 1980 William, Drewes Method and apparatus for selective cell destruction
4340944, Mar 07 1980 CGR Ultrasonic Ultrasonic echographic probe having an acoustic lens and an echograph incorporating said probe
4350917, Jun 09 1980 Riverside Research Institute Frequency-controlled scanning of ultrasonic beams
4368410, Oct 14 1980 Dynawave Corporation Ultrasound therapy device
4373395, Oct 17 1979 Siemens Aktiengesellschaft Apparatus for ultrasonic scanning
4375818, Mar 12 1979 Olympus Optical Company Ltd. Ultrasonic diagnosis system assembled into endoscope
4385255, Nov 02 1979 Yokogawa Electric Corporation Linear array ultrasonic transducer
4412316, May 21 1980 Siemens Aktiengesellschaft Ultrasonic transducer arrangement
4417582, Aug 05 1981 Technicare Corporation Resolution measuring device for acoustical imaging systems and method of use
4434341, Feb 20 1980 Selective, locally defined heating of a body
4440025, Jun 27 1980 Matsushita Electric Industrial Company, Limited Arc scan transducer array having a diverging lens
4441486, Oct 27 1981 BOARD OF TRUSTEES OF LELAND STANFORD JR UNIVERSITY STANFORD UNIVERSITY Hyperthermia system
4458533, Jun 02 1980 Siemens Aktiengesellschaft Apparatus for ultrasonic scanning
4462092, May 15 1980 Matsushita Electric Industrial Company, Limited Arc scan ultrasonic transducer array
4470308, Jun 27 1980 Matsushita Electric Industrial Co., Ltd. Arc scan ultrasonic imaging system having diverging lens and path-length compensator
4474180, May 13 1982 The United States of America as represented by the Administrator of the Apparatus for disintegrating kidney stones
4478083, Jun 30 1982 Siemens Aktiengesellschaft Plane reconstruction ultrasound tomography device
4484569, Mar 13 1981 CORNELL RESEARCH FOUNDATION, INC EAST HILL PLAZA, ITHACA, N Y 14850 Ultrasonic diagnostic and therapeutic transducer assembly and method for using
4486680, Mar 04 1982 Richard Wolf GmbH Ultrasonic piezoelectric disintegrater
4501277, Nov 12 1981 Tokyo Shibaura Denki Kabushiki Kaisha Selected beam marking system for rapid ultrasound measurements
4526168, May 14 1981 Siemens Aktiengesellschaft Apparatus for destroying calculi in body cavities
4535771, Dec 22 1981 Olympus Optical Co., Ltd. Calculus disintegrating apparatus
4536673, Jan 09 1984 Siemens Aktiengesellschaft Piezoelectric ultrasonic converter with polyurethane foam damper
4545385, Mar 23 1982 Siemens Aktiengesellschaft Ultrasound examination device for scanning body parts
4550606, Sep 28 1982 Cornell Research Foundation, Inc. Ultrasonic transducer array with controlled excitation pattern
4561019, May 16 1983 Riverside Research Institute Frequency diversity for image enhancement
4564980, Jun 06 1980 Siemens Aktiengesellschaft Ultrasonic transducer system and manufacturing method
4570634, Nov 06 1982 Dornier Medizintechnik GmbH Shockwave reflector
4586512, Jun 26 1981 Thomson-CSF Device for localized heating of biological tissues
4608983, May 07 1983 Dornier System GmbH Generation for shock waves for contactless destruction of concrements in a living being
4610249, May 08 1984 The Johns Hopkins University Means and method for the noninvasive fragmentation of body concretions
4618796, Oct 12 1984 Richard Wolf GmbH Acoustic diode
4618887, Mar 14 1983 Siemens Aktiengesellschaft; SIEMENS AKTIENGESELLSCHAFT, A GERMAN CORP Method and apparatus for representing ultrasonic echo signals arriving in polar coordinates
4620545, Oct 31 1984 NORTHGATE RESEARCH, INC , 3930 VENTURA DRIVE, SUITE 150, ARLINGTON HEIGHTS, ILLINOIS 60004, A ILLINOIS CORP Non-invasive destruction of kidney stones
4622969, Jun 06 1984 Dornier System GmbH Shock wave matching in therapeutic equipment
4622972, Oct 05 1981 Varian Associates, Inc. Ultrasound hyperthermia applicator with variable coherence by multi-spiral focusing
4639904, Mar 22 1985 Richard Wolf GmbH Sonic transmitters
4646756, Oct 26 1982 The University of Aberdeen; Carlton Medical Products Ltd. Ultra sound hyperthermia device
4671292, Apr 30 1985 Dymax Corporation Concentric biopsy probe
4674505, Aug 03 1983 Siemens Aktiengesellschaft Apparatus for the contact-free disintegration of calculi
4685461, Nov 25 1981 Dornier System GmbH Apparatus and method for triggering shock waves in lithotripsy
4721106, Jul 14 1984 Richard Wolf GmbH Piezoelectric transducer for destruction of concretions inside the body
4721108, Nov 04 1982 Dornier Medizintechnik GmbH Generator for a pulse train of shockwaves
4858597, Jun 01 1983 Richard Wolf GmbH Piezoelectric transducer for the destruction of concretions within an animal body
DE2018468,
DE2053982,
DE2202989,
DE2223319,
DE2351247,
DE2538960,
DE2635635,
DE2645738,
DE2648908,
DE2654673,
DE2712341,
DE2718847,
DE2722252,
DE2826828,
DE2904115,
DE2913251,
DE2921444,
DE2925933,
DE3119295,
DE3120611,
DE3122056,
DE3142639,
DE3150513,
DE3210919,
DE3220751,
DE3240691,
DE3241026,
DE3316837,
DE3320998,
DE3328068,
DE3426398,
EP36353,
EP45265,
EP68961,
EP72498,
EP81639,
EP90138,
EP10000058,
EP108190,
EP124686,
EP133946,
EP155028,
FR1215631,
FR1334210,
FR2222658,
FR2247195,
FR2275771,
FR2298107,
FR2410276,
FR2477723,
FR2487664,
FR2487665,
FR2546737,
FR2589715,
GB2113099,
GB2126901,
GB2140693,
GB998173,
JP4418782,
JP4526168,
JP5795795,
NL8400504,
SU1114409,
SU179076,
SU221209,
SU423033,
SU469462,
SU602180,
WP7900371,
WP8402350,
WP8503631,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 19 1988DORY, JACQUESEDAP INTERNATIONAL, A CORP OF FRANCEASSIGNMENT OF ASSIGNORS INTEREST 0050010646 pdf
Nov 22 1988EDAP International, S.A.(assignment on the face of the patent)
Apr 14 1997EDAP INTERNATIONAL S A TECHNOMED MEDICAL SYSTEMS, S A ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0084700235 pdf
Date Maintenance Fee Events
Nov 29 1994REM: Maintenance Fee Reminder Mailed.
Feb 07 1995R169: Refund of Excess Payments Processed.
Feb 22 1995SM02: Pat Holder Claims Small Entity Status - Small Business.
Oct 19 1998M285: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
May 21 19944 years fee payment window open
Nov 21 19946 months grace period start (w surcharge)
May 21 1995patent expiry (for year 4)
May 21 19972 years to revive unintentionally abandoned end. (for year 4)
May 21 19988 years fee payment window open
Nov 21 19986 months grace period start (w surcharge)
May 21 1999patent expiry (for year 8)
May 21 20012 years to revive unintentionally abandoned end. (for year 8)
May 21 200212 years fee payment window open
Nov 21 20026 months grace period start (w surcharge)
May 21 2003patent expiry (for year 12)
May 21 20052 years to revive unintentionally abandoned end. (for year 12)