The invention is a zero insertion force printed circuit board edge connector that ensures electrical connection under a worst-case accumulation of mechanical tolerances while precluding the short circuiting of connector contact pins in the absence of a board within the connector. The contact pins of the connector are formed so that the contact regions of the contact pins lie in at least two horizontal planes. The longer pins located on one side of the connector are located opposite the shorter pins on the other side of the connector. When the connector is actuated in the absence of a printed circuit board, the short pins will move under the opposing long pins but the pins will not short circuit. During actuation, the pins will move more than half way across the connector opening thereby guaranteeing connection to any card regardless of dimensional tolerance or of card position within the connector opening.
|
3. A zero insertion force, card edge connector, adapted to engage the conductive traces on a card inserted in a card receiving slot in the connector, comprising:
a. an elongated first housing with a base; b. an elongated second housing positioned over the first housing having a longitudinally extending card receiving slot and cam surfaces facing the slot with said cam surfaces being located at more than one level position; c. cam means positioned between the first and second housings for moving the second housing away from said first housing; and d. contact elements arranged in a pair of rows and retained in the base in the first housing, each element having a cantilevered portion extending into the second housing between the slot and cam surfaces with a contact surface facing the slot for engagement with a conductive trace on a card inserted in the slot, and a convex surface positioned adjacent a cam surface on the second housing for engagement with the cam surface during movement of the second housing away from said first housing to move the contact surface into engagement with a trace on a card positioned in the slot,
the cantilevered portions of the elements on each side of the slot being longitudinally spaced from each other, the elements being arranged in opposing pairs whose contact surfaces face one another across the slot, the contact surfaces on adjacent elements along each side of the slot being located at different positions, and the facing contact surfaces on elements located on opposite sides of the slot located at different level positions and further with all elements having contact surfaces at each level position having their associated cam surfaces located at one level position. 2. A zero insertion force type electrical connector for receiving an electrical component having a plurality of rows of contact pads disposed on opposite sides of a flat surface thereof comprising:
a housing of electrically insulating material having a base and two side walls together defining an elongated opening at one end of said housing for receiving therein said electrical component; first inclined surfaces on the inside of each side wall of said housing facing the elongated opening in said housing; second inclined surfaces on the inside of each side wall of said housing facing the elongated opening in said housing and further removed from said opening than said first inclined surfaces; a first row of spring-like contact pins having alternating long and short pins on one side of said elongated opening; a second row of spring-like contact pins having alternating long and short pins on the other side of said elongated opening in staggered relation to said first row of contact pins wherein the long pins of said first row are opposite said short pins of said second row and the short pins of said first row are opposite said long pins of said second row; actuating means for moving said side walls of said housing away from said base wherein said second inclined surfaces urge said short contact pins and said first inclined surfaces urge said long contact pins in a direction toward the center of said elongated opening; said contact regions of said short pins passing through said centerline of said elongated opening wherein the contact region of each short pin is under said contact region of said opposite long pin thereby precluding opposite facing contact pins from contacting and short circuiting when the contact pins are actuated in the absence of an electrical component within the connector; and said contact regions of said long pins passing through said centerline of said elongated opening wherein the contact region of each long pin is over said contact region of said opposite short pin thereby precluding opposite facing contact pins from contacting and short circuiting when the contact pins are actuated in the absence of an electrical component within the connector.
1. In a zero insertion force type electrical connector for receiving an electrical component type having a plurality of rows of contact pads disposed on opposite sides of a flat surface thereof, said contact pads including a first row of pads on a given side of said electrical component offset and interleaved with respect to pads in an adjacent second row and on the same side of said electrical component, insulating gaps separating said pads in said first row narrower than the width of the contacting region of said pads in said second row to provide a high density contact pad pattern, an electrical connector comprising:
a housing of electrically insulating material having a base and two side walls together defining an elongated opening at the top of said housing for receiving therein said electrical component; upper inclined surfaces on the inside of each side wall of said housing facing the elongated opening in said housing; lower inclined surfaces on the inside of each side wall of said housing facing the elongated opening in said housing; a first row of spring-like contact pins having alternating long and short pins on one side of said elongated opening; a second row of spring-like contact pins having alternating long and short pins on the other side of said elongated opening in staggered relation to said first row of contact pins wherein the long pins of said first row are opposite said short pins of said second row and the short pins of said first row are opposite said long pins of said second row; contact regions of said short contact pins for contacting the interleaved contact pads located in the row of pads nearest to the edge of the electrical component; contact regions of said long contact pins for contacting the interleaved contact pads located in the row of pads farthest from the edge of the electrical component; actuating means for moving said side walls of said housing away from said base in a vertical plane wherein said lower inclined surfaces urge said short contact pins and said upper inclined surfaces urge said long contact pins in a direction toward the center of said elongated opening; said contact regions of said short pins passing through said centerline of said elongated opening wherein the contact region of each short pin is below said contact region of said opposite long pin thereby precluding opposite facing contact pins from contacting and short circuiting when the contact pins are actuated in the absence of an electrical component within the connector; and said contact regions of said long pins passing through said centerline of said elongated opening wherein the contact region of each long pin is above said contact region of said opposite short pin thereby precluding opposite facing contact pins from contacting and short circuiting when the contact pins are actuated in the absence of an electrical component within the connector; . upon insertion of an electrical component vertically into said elongated opening of said housing through a vertical plane oriented substantially parallel with the longitudinal dimension of said elongated opening, electrical connection is completed.
|
This is a reissue of U.S. Pat. No. 4,598,966 issued July 8, 1986 which application was Ser. No. 471,955 filed Mar. 3, 1983.
1. Field of the Invention
The invention relates to a non-shorting pin configuration used in a zero insertion force (ZIF) type printed circuit board edge connector.
2. Background Art
It is well known in the art that substantial force is required to insert a printed circuit board into an other-than-ZIF mating edge connector due to the wiping engagement between the electrical contact pads on the board and the contact regions of the pins or springs in the mating connector. As the number of contacts increases, the force required to effect insertion also increases and will eventually reach a point where the force required will be excessive for practical use. Also, repeated insertion and extraction of a board into and from a corresponding mating connector will cause repeated wipings to occur between the contact pads and the contact springs and may result in excessive wear to the contact pads.
A common solution to this problem is the zero insertion force (ZIF) type connector. In these connectors, the contact pins located in the connector are movable between two positions. In the first position, the pins are retracted from the board insertion path thereby allowing the unobstructed and low force insertion of the printed circuit board into the connector. In the second position, the contact pins are moved by an actuator into engaging contact with the contact pads of the board.
When designing a zero insertion force connector, mechanical tolerances of the printed circuit board and of the mating connector must be considered. These mechanical tolerances stem from unavoidable manufacturing deviations from piece to piece and from lot to lot as well as variations in mechanical dimensions due to environmental operating conditions. A prudent design of a zero insertion force connector intended for large volume production will ensure that every printed circuit board can mate with every connector under a worst-case accumulation of mechanical tolerances. Further, previous connectors have oppositely aligned contact pins which, under a worst-case design will cause the contact pins of a dimensionally nominal connector to touch the opposite facing pins when the pins are actuated in the absence of a printed circuit board in the connector. This invention avoids such problems.
In a modular or expandable system using a plurality of zero insertion force connectors, often several of the connectors are vacant, i.e., without printed circuit boards. Esthetics or other constraints often require these vacant connectors to be in the actuated or closed state. If the opposite facing contact pins of the vacant and closed connectors touch each other thereby producing electrical short circuits, damage to the remaining electrical circuitry may result or erroneous signals may be generated.
It is therefore desirable to provide a zero insertion force type electrical connector that will not cause opposite facing contact pins to contact and short circuit when the pins are actuated in the absence of a printed circuit board within the connector. This connector must also maintain a conservative worst-case design philosophy to ensure compatibility between any board/connector combination.
The invention as herein described and claimed will resolve the drawbacks of the prior art. It solves the problem of providing a zero insertion force printed circuit board edge connector that will ensure electrical connection under a worst-case accumulation of mechanical tolerances while precluding the short circuiting of connector contact pins when the connector is actuated in the absence of a board within the connector. The invention includes a unique connector contact pin configuration and a unique contact pad pattern for the edge of the mating printed circuit board.
Self-based, spring-like contact pins of the connector are formed so that the contact regions of the contact pins lie in at least two horizontal planes. The longer pins located on one side of the connector are located opposite the shorter pins on the other side of the connector. When the connector is actuated in the absence of a printed circuit board, the short pins will move under the opposing long pins but the pins will not contact or short circuit. During actuation, contact regions of the pins will move more than half way across the connector opening, thereby guaranteeing wiping contact with and electrical connection to any card regardless of dimensional tolerance or of card position within the connector opening.
The formed pins will mate with a unique pattern of contact pads disposed along at least one edge of the printed circuit board. The rows of contact pads are offset and slightly interleaved in order to minimize the board area required for electrical connections while maintaining a high probability of contact.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of the preferred embodiments of the invention, as illustrated in the accompanying drawing.
FIG. 1 illustrates a ZIF type connector in partial cross section showing a row of electrical contact pins and a printed circuit board with a two row contact pad pattern.
FIG. 2 shows a two row electrical contact pad pattern and a three row electrical contact pad pattern disposed on the edge of a printed circuit board.
FIG. 3A shows a cross section of a connector like that in FIG. 1 illustrating the actuation sequence of a pair of opposing contact pins with certain other pins removed for clarity.
FIG. 3B shows a view of the connector of FIG. 3A taken through section 3B--3B.
FIG. 4 shows a ZIF type connector in partial cross section showing a row of electrical contact pins and a printed circuit board with a three row electrical contact pad pattern.
Referring to FIG. 1, mother board 101 has mounted thereon a connector 102 of the zero insertion force (ZIF) type. Connector 102 is shown in partial cross-section to better illustrate the internal actuator mechanism. ZIF connector 102 is used to make electrical contact between printed circuit board unit 103 and mother board 101. Printed circuit board unit 103 includes a printed circuit board 104 with electrical components 105 mounted thereon. Although only one electrical component 105 is shown in FIG. 1, it will be understood that more than one component 105 can be mounted on printed circuit board 104. Circuit traces 106 are used to electrically connect components 105 with each other and with electrical contact pads 107 disposed in rows along the edge of printed circuit board 104.
Electrical contact pads 107 are shown in FIG. 1 arranged in two rows near the edge of printed circuit board 104. Long electrical contact pins 108 have contact regions 109 for contacting pads 107 located in the row farthest from the edge of printed circuit board 104. Short electrical contact pins 110 have contact regions 111 for contacting pads 107 located in the row nearest to the edge of printed circuit board 104.
Actuating handle 112 of connector 102 pivots about hinge pin 113 and moves linear cam 114 longitudinally of connector 102. When handle 112 pivots in a counterclockwise direction, linear cam 114 moves to the right parallel to the longitudinal dimension of connector 102. When handle 112 pivots in a clockwise direction, linear cam 114 moves to the left.
Linear cam 114 includes cam lobes 115 which ride on cam followers 116 during the motion of linear cam 114. The interaction between cam followers 116 and cam lobes 115 during the motion of linear cam 114 cause linear cam 114 to move perpendicular with the surface of mother board 101 thereby moving housing 117 in the same direction.
Housing 117 is made of an electrically insulating material and is formed with an elongated opening 122 at the top thereof. Printed circuit board 103 is received into housing 117 through elongated opening 122 along a board insertion path. The board insertion path can be generally described as a vertical plane passing through elongated opening 122 and oriented substantially parallel with the longitudinal dimension of elongated opening 122.
Housing 117 contains upper inclined surfaces 118 that cooperate with long contact pins 108 and lower inclined surfaces 119 that cooperate with short contact pins 110. As housing 117 is urged by linear cam 114 to move away from mother board 101, inclined surfaces 118 and 119 move electrical contact pins 108 and 110, respectively, toward electrical contact pads 107 located on printed circuit board 104. Electrical contact pins 108 and 110 are self-biased to assume a normal position retracted from printed circuit board 104 and as housing 117 moves toward mother board 101, electrical contact pins 108 and 110 move away from printed circuit board 104. In this manner, electrical contact pins 108 and 110 will move into and out of contact with pads 107 as handle 112 is pivoted.
Electrical contact pins 108 and 110 extend through base portion 120 of ZIF connector 102 and through vias 121 in mother board 101. Vias 121 will typically be connected to circuit traces (not shown) disposed on the surface of mother board 101. These traces will serve to make electrical connections between pins 108 and 110 and electronic circuitry located elsewhere on mother board 101.
Another row of contact pins within housing 117, similar to pins 108 and 110, is located on the hidden side of printed circuit board unit 103 in FIG. 1. This other row is also moved into and out of contact with electrical contact pads located along the edge of the hidden surface of printed circuit board 104 as handle 112 is pivoted. The configuration of opposing pin rows will be detailed in FIG. 3.
Here it should be noted that the particular actuator mechanism in ZIF connector 102, used to urge pins 108 and 110 toward printed circuit board 104, herein described and illustrated in FIG. 1, is but one of several possible mechanisms that are well known to one skilled in the art. The presentation of this particular actuation mechanism is for illustrative purposes only and should not be construed to limit the scope of the claimed invention.
FIG. 2 illustrates an offset and interleaved electrical contact pad pattern disposed along the edge of a printed circuit board 200 according to this invention.
The pad pattern is based on the understanding that the ideal target area for a contact pin to touch and wipe a contact pad is an elliptical area 201. This elliptical area 201 is derived by statistical mechanical tolerance analysis techniques well known to a skilled artisan.
Area 201 is calculated by consideration of mechanical dimensional tolerances including tolerances associated with contact pin length and width as well as tolerances associated with printed circuit board 200 dimensions and horizontal and vertical position within a mating connector. The border (dashed line) of elliptical area 201 represents a contour of equal probability of contact between a contact pin and the surface of printed circuit board 200. Area 201 represents the area of high probability of contact while the area outside of area 201 represents the area of low probability of contact. A particular elliptical area 201 is chosen according to the requirements of the particular printed circuit board application. If a small elliptical area 201 is chosen, electrical contact pads 202 can be closely spaced but at the cost of reducing the probability of electrical contact. If a large area 201 is chosen, the probability of electrical contact will increase but electrical contact pads 202 will be required to be spaced further apart.
A two row pad pattern is shown in solid lines in FIG. 2. Row 203 is located nearest the edge of printed circuit board 200 and row 204 is located farthest from the edge. Each individual contact pad 202 and 206 encloses a single elliptical area 201. The edges of pads 202 and 206 are straight lines in order to facilitate the layout of printed circuit board 200.
Pads 206 of row 204 are slightly interleaved with and offset with respect to pads 202 of row 203. Offsetting and interleaving the pad patterns in this manner will allow row 204 to be located closer to the edge of printed circuit board 200 thereby reducing the area required for electrical connections while preserving the remaining interior area of printed circuit board 200 for the mounting of electrical components.
A third row 207 of electrical contact pads 208 can be added as shown by dashed lines in FIG. 2. In order to accommodate row 207, pads 206 must be modified to the diamond-shape shown in dashed lines. In a three row pad pattern each individual pad (202, 206, 208) contains an elliptical area 201 of high probability of contact.
The pads 208 of third row 207 are slightly interleaved and offset with respect to pads 206 of row 204. Once again, this allows third row 207 to be located closer to the edge of printing circuit board 200 thereby preserving the remaining interior area of printed circuit board 200 for the mounting of electrical components.
Any number of rows of electrical contact pads can be added in the same manner as the addition of row 207 herein described. The favorable overall effect of this new pad pattern is to minimize the printed circuit board area required for electrical connection while maintaining a high probability of making contact between contact pins and contact pads.
Referring to FIG. 3, a ZIF connector 300 mounted to mother board 301, is shown in cross-section and is similar to ZIF connector 102 shown in FIG. 1. In FIG. 3, the printed circuit board unit is removed from connector 300 and short contact pin 302 and long contact pin 303 are shown opposite each other. ZIF connector 300 is shown in the actuated position as linear cams 304 urge housing 305 away from mother board 301. Inclined surfaces 306 and 307, contained within housing 305, force short contact pin 302 and long contact pin 303, respectively, toward the center line 308 of connector 300. Center line 308 is substantially coplanar with the board insertion path described during the discussion of FIG. 1.
In FIG. 3A, contact regions 309 and 310 of contact pins 302 and 303, respectively, have passed through center line 308 but as shown in FIG. 3A, they do not touch one another. Contact region 309 of short pin 302 is under contact region 310 of long contact pin 303.
Here it should be noted that not all of the contact regions of all of the opposed contact pin pairs of every connector must pass through center line 308. The mechanical tolerances mentioned earlier may accumulate such that none or only some of the contact regions pass through center line 308 in any one given connector of a production lot. However, in another given connector, mechanical tolerances may accumulate such that all contact regions of all opposed contact pin pairs pass through center line 308. The offset pin configuration herein described and claimed will guarantee that no opposed pins will touch and short circuit in any connecter of the production lot.
Contact pins 302' and 303' show the positions of pins 302 and 303, respectively, when they are in the self-biased, retracted position thereby clearing center line 308 allowing a printed circuit board unit to enter connector 300. Pins 302 and 303 assume the retracted positions of 302' and 303' when linear cam 304 is moved thereby allowing housing 305 to move closer to mother board 301.
Inclined surfaces 311 and 312 are contained within housing 305 and serve to move the set of contact pins adjacent pins 302 and 303. This set of adjacent pins is not shown in FIG. 3A in order to eschew obfuscation.
FIG. 3B is a view taken through section 3B--3B of FIG. 3A. In FIG. 3B, long pin 313 is shown adjacent short pin 302. Inclined surface 311 is attached to housing 305 and serves to move long pin 313 when housing 305 is moved by linear cam 304. Long pin 313 has a contact region 314 that lies substantially in a first horizontal plane with contact region 310 of long pin 308 shown in FIG. 3A. The contact regions of all remaining long contact pins in ZIF connector 300 also substantially lie in this first horizontal plane.
Adjacent long pin 313 in FIG. 3B is short pin 315 with cooperating inclined surface 316 attached to housing 305. Contact region 317 of short pin 315 substantially lies in a second horizontal plane with contact region 309 of short pin 302. The contact regions of all remaining short pins in ZIF connector 300 also substantially lie in this second horizontal plane.
The preferred configuration of alternating long pins and short pins within a single row is shown in FIG. 3B and also in FIG. 1. In FIG. 3, contact regions are shown to lie in only two horizontal planes because the connector illustrated in FIG. 3 is disposed to contact and wipe a two row pad pattern (e.g., rows 203 and 204 of FIG. 2). In order to contact and wipe a three row pad pattern (e.g., rows 203, 204, and 207 of FIG. 2) the contact regions of the contact pins would lie substantially in three different horizontal planes and the contact pins would be of three different lengths. This is illustrated in FIG. 4.
In general, the contact regions of the contact pins will substantially lie in a number of horizontal planes equal to the number of contact pad rows on the corresponding mating printed circuit board. Also, due to the alternating pin lengths hereinbefore described, the contact regions of the pins will be distributed among these horizontal planes in substantially equal proportion.
FIG. 4 shows a ZIF connector 400 in partial cross section with a corresponding printed circuit board 401. ZIF connector 400 includes an actuator mechanism comprising the following elements: handle 402, linear cam 403 with cam lobes 404, cam followers 405, and housing 406. The components of this actuator mechanism cooperate in the same manner as the actuator mechanism of FIG. 1 to move housing 406 upward as handle 402 pivots counterclockwise. Once again, the illustration of this particular actuator mechanism should not be construed to delimit the invention in any manner.
Housing 406 contains inclined surfaces 407, 408 and 409 that cooperate with short pins 410, mid-length pins 411, and long pins 412, respectively. As housing 406 moves upward, in response to the counterclockwise pivoting of handle 402, inclined surfaces 407, 408, and 409 move pins 410, 411 and 412, respectively, toward printed circuit board 401 when printed circuit board 401 is inserted into ZIF connector 400.
Long pins 412 are disposed to contact and wipe electrical contact pads in row 413 located along the edge of printed circuit board 401. Mid length pins 411 are disposed to contact and wipe electrical contact pads in row 414 located along the edge of printed circuit board 401. Short pins 410 are disposed to contact and wipe electrical contact pads in row 415 located along the edge of printed circuit board 401.
Once again, the contact regions of the contact pins pass through the planar board insertion path when connector 400 is actuated in the absence of printed circuit board 401 within connector 400. In order to avoid contact between opposing pins, a mid length pin is located opposite a short pin and a long pin so that the contact region associated with the mid length pin will pass over the top of the contact region associated with the opposing short pin, and will pass under the contact region associated with the opposing long pin. In this manner, the contact regions of opposing pins will not touch and short circuit when ZIF connector 400 is actuated in the absence of printed circuit board 401 within connector 400.
This scheme of opposing contacts can be expanded to encompass a ZIF connector capable of contacting a printed circuit board with any number of rows of contact pads disposed along an edge thereof. Short circuiting of opposing contact pins is precluded by ensuring that each contact pin in the connector is never opposite a contact pin of equal length having a contact region in the same horizontal plane.
It will be understood that the preferred embodiments herein presented are for illustrative purposes, and, as such, will now be construed to place limitations on the invention. Those skilled in the art will understand that changes in the form and detail of the preferred embodiments recited may be made without departing from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
7391588, | Jun 27 2005 | SAMSUNG ELECTRONICS CO , LTD | Hard disk drive connector having connector pins that deform away from a central shorting post in response to an external force |
7438578, | Mar 17 2008 | Nanya Technology Corp. | Connector socket for memory module |
Patent | Priority | Assignee | Title |
3137537, | |||
3399372, | |||
3660803, | |||
3697929, | |||
3793609, | |||
3848221, | |||
3899234, | |||
3963317, | Apr 03 1975 | Berg Technology, Inc | Zero force edge connector block |
4021091, | Jun 13 1975 | ITT Corporation | Zero force printed circuit board connector |
4068170, | Dec 15 1975 | AT & T TECHNOLOGIES, INC , | Method and apparatus for contacting the lead of an article |
4089581, | May 03 1977 | Litton Systems, Inc. | Printed circuit board connector |
4159861, | Dec 30 1977 | ITT Corporation | Zero insertion force connector |
4179177, | Aug 23 1978 | GTE Sylvania Incorporated | Circuit board connector |
4279459, | Dec 20 1979 | Bell Telephone Laboratories, Incorporated | Printed wiring board and connector apparatus |
4288140, | Dec 20 1979 | Bell Telephone Laboratories, Incorporated | Printed wiring board interconnection apparatus |
4303294, | Mar 17 1980 | AMP Incorporated | Compound spring contact |
4343523, | May 27 1980 | Ford Motor Company | Printed circuit board edge connector |
4357066, | May 27 1980 | Ford Motor Company | Printed circuit board edge terminal |
4428635, | Feb 24 1982 | AMP Incorporated | One piece zif connector |
4431252, | May 27 1980 | FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION | Printed circuit board edge connector |
DE2341770, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 30 1987 | International Business Machines Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 23 1993 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 24 1996 | ASPN: Payor Number Assigned. |
Nov 12 1997 | M185: Payment of Maintenance Fee, 12th Year, Large Entity. |
Dec 13 2000 | ASPN: Payor Number Assigned. |
Dec 13 2000 | RMPN: Payer Number De-assigned. |
Date | Maintenance Schedule |
Feb 25 1995 | 4 years fee payment window open |
Aug 25 1995 | 6 months grace period start (w surcharge) |
Feb 25 1996 | patent expiry (for year 4) |
Feb 25 1998 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 25 1999 | 8 years fee payment window open |
Aug 25 1999 | 6 months grace period start (w surcharge) |
Feb 25 2000 | patent expiry (for year 8) |
Feb 25 2002 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 25 2003 | 12 years fee payment window open |
Aug 25 2003 | 6 months grace period start (w surcharge) |
Feb 25 2004 | patent expiry (for year 12) |
Feb 25 2006 | 2 years to revive unintentionally abandoned end. (for year 12) |