A video endoscope is provided which has an inner cylindrical body member containing the optics and electronics in a manner which is impervious to liquid so that the inner member can be soaked in a disinfectant between uses. An outer rigid cylindrical sheath is provided into which the inner sterilizable and therefore is in a sterile condition at the time of use. The inner body releasably locks into the outer sheath. The outer sheath also includes an accordion shaped sleeve at the proximate end which can be drawn down around the trailing cables containing the optics and electronics so that the entire endoscope is sterile for use within the operating room. After use, the inner body member can be removed and the outer sheath can be disposed of or it can be resterilized by heat for use at a subsequent time. Any containments from the body of the patient will be removed with the outer sheath and kept completely separated from the inner body member so that there can be no transmittal of containments from the body of one patient to that of a subsequent patient.

Patent
   RE33854
Priority
Oct 15 1990
Filed
Oct 15 1990
Issued
Mar 24 1992
Expiry
Oct 15 2010
Assg.orig
Entity
Small
108
12
all paid
1. A rigid video endoscope comprising:
an inner cylindrical body member having a distal end and a proximate end;
a light transmitting element sealed to said distal end of said body member;
an image sensor mounted against said element within said body member;
an electronic cable within said body member, having a distal end connected to said image sensor and a proximate end extending beyond said proximate end of said body member and connectable to a video processing unit;
at least one fiber optic bundle within said body member, having a distal end adjacent said element and a proximate end extending beyond said proximate end of said body member and connectable to the video processing unit;
a strain relief fixture sealingly attached to said proximate end of said body member, said electronic cable and said fiber optic bundle extending through said fixture, said fixture being sealed thereto;
sterilizable sheath, having a distal end and a proximate end, for receiving said inner body member and being of substantially the same length as said body member;
a window sealed to said distal end of said sleeve;
sterilizable, cylindrical sleeve mounted adjacent said proximate end of said sheath and extendable along said electronic cable and said optical bundle for a substantial distance for maintaining sterility of said video endoscope within an operating room; and
means for releasably locking said body member within said sheath.
2. Apparatus, as claimed in claim 1, further including:
a tab on said sleeve for extending it along said electronic cable and said fiber optic bundle.
3. Apparatus, as claimed in claim 1, wherein said releasable locking means includes:
a bayonet slot at said proximate end of said sheath; and
a pin at said proximate end of said body member which is releasably .
4. Apparatus, as claimed in claim 1, wherein:
said window is a prism for viewing at an angle to the longitudinal axis of said endoscope.
5. Apparatus, as claimed in claim 1, wherein:
said light transmitting means includes optics for magnifying an image.
6. Apparatus, as claimed in claim 1, wherein:
said light transmitting means includes optics for changing the field of view.
7. Apparatus, as claimed in claim 1, wherein:
said body member is concentrically aligned within said sheath.
8. Apparatus, as claimed in claim 1, wherein:
said body member is eccentrically mounted within said sheath.
9. Apparatus, as claimed in claim 8, further including:
means defining at least one aperture in said window; and
at least one channel within said sheath between said sheath and said body member and having a distal end communicating with said aperture to provide access to a site under investigation.
10. Apparatus, as claimed in claim 9, wherein:
said aperture defining means defines a plurality of apertures;
having a distal end communicating respectively with one of said apertures;
means supplying a gas through at least one of said channels; and
valve means connected to a proximate portion of said one channel to control the flow of gas.
11. Apparatus, as claimed in claim 1, wherein:
a steerable device is inserted through one of said other channels for carrying out a procedure at the site under investigation.
12. Apparatus, as claimed in claim 1, wherein:
said body member is backfilled with nitrogen under pressure.

This invention relates to a video endoscope and more particularly to such an endoscope having a moisture tight inner cylindrical body containing electronics and optics which can be disinfected by soaking and an outer rigid sterilizable sheath for containing and covering the inner body during an operation, the outer sheath being sterilized by heat and having a sterilizable sleeve for extending over the trailing cable containing the electronic and optic fibers.

Over the years many developments have been made in the endoscope art. Particularly, these developments have been attempts to provide endoscopes which will serve a variety of functions and which are maintained in a sterile condition during use.

Ersek et al. U.S. Pat. Nos. 3,794,091 and 3,809,072 each disclose a flexible sheath which is sterile at the time of manufacture and can be rolled up onto an endoscope to provide sterility. However, there is no seal at the proximate end of the sheath and therefore bacteria can enter between the endoscope and sheath and there is no provision for maintaining the distal end of the endoscope in a sterile or protected condition.

Russel U.S. Pat. No. 3,866,601 discloses a speculum in which a penetrating tube slidably receives a guide tube and is surrounded by a flexible sheath.

Ibe U.S. Pat. No. 4,132,227 discloses an endoscope surrounded by a hollow cylindrical sheath extending toward but not to the distal end of the endoscope in order to create a fluid channel in the space between the sheath and the endoscope.

Smith U.S. Pat. No. 4,201,199 discloses an endoscope surrounded by a rigid glass or plastic tube having an enlarged bulb at its distal end to space tissue away from the viewing window of the endoscope. The window is formed at an angle to provide viewing of a site offset from the axis of the endoscope.

Yoon U.S. Pat. No. 4,254,762 discloses an endoscope surrounded by a sheath having a transparent lens at its distal end. The sheath may be at least partially open at its distal end for use with endoscopes having biopsy channels.

Hampson U.S. Pat. No. 4,327,735 discloses a catheter surrounded by a transparent, collapsible sleeve through which the catheter projects at its distal end.

Silverstein et al. U.S. Pat. No. 4,646,722 discloses another endoscope having a sterile flexible sheath which can be rolled up along the endoscope. A channel is provided between the endoscope and sheath through which biopsies can be taken. The sheath is not sealed at the upper end and will not maintain the sterility which is required within an operating room.

D'Amelio U.S. Pat. No. 4,721,097 discloses another flexible sheath for use on an endoscope which has no seal at the upper end and does not provide the sterility required in an operating room.

Sidall et al. U.S. Pat. No. 4,741,326 discloses a further flexible sheath which is rolled up along the endoscope and does not provide sterility or protection of the entire endoscopic device.

Brown British Patent No. 1,405,025 discloses a proctoscope surrounded by a concentric tube for providing a fluid channel.

In accordance with the present invention, a rigid video endoscope is provided which comprises an inner cylindrical body member having a distal end and a proximate end. A light transmitting element is sealed to the distal end of the body member. An image sensor is mounted against the light transmitting element within the body member. An electronic cable within the body member has a distal end connected to the image sensor and a proximate end extending beyond the proximate end of the body member and connectable to a video control unit. At least one fiber optic bundle for light transmission is provided within the body member and has a distal end adjacent the light transmitting element and a proximate end extending beyond the proximate end of the body member and connectable to a xenon, halogen or incandescent light source. A strain relief fixture is sealingly attached to the proximate end of the body member with the electronic cable and jacketed fiber optic bundle extending therethrough and sealed to the fixture. An outer rigid cylindrical heat sterilizable sheath, having a distal end and a proximate end, is provided for receiving the inner body member and is of substantially the same length as the body member. A window is sealed to the distal end of the sheath. An accordion-folded, heat sterilizable, cylindrical sleeve is mounted adjacent the proximate end of the sheath and is extendable along the electronic cable and the optical bundle for a substantial distance to maintain sterility of the video endoscope within the sterile field of the operating room. Means is provided for releasably locking the body member within the sheath.

A tab can be provided on the sleeve for extending it along the electronic cable and fiber optic bundle. A releasable locking means can include a bayonet slot at the proximate end of the sheath and a pin at the proximate end of the body member which is releasably engageable with the bayonet slot. If desired, the window can be a prism for viewing at an angle to the longitudinal axis of the endoscope.

In one embodiment the body member is concentrically aligned with the sheath. In another embodiment the body member is eccentrically mounted within the sheath. In this later arrangement the window has apertures therein and channels within the sheath corresponding in number to the apertures to provide access to the site under investigation. These channels can be used for providing gas or a steerable device can be inserted through one of them to carry out a procedure, such as taking a biopsy at the site. It also could provide a channel for a laser fiber. The body member may be backed filled with nitrogen under pressure to minimize the possibility of any liquids entering into that device.

With this arrangement, the inner cylindrical body member contains all of the optics and electronics and can be disinfected by soaking it in a disinfecting solution. However, disinfecting is not sterilization and therefore is generally not acceptable for use within the operating room. It particularly is not acceptable in open surgical procedures and in orthopedic surgery and neurosurgery. Thus, the rigid sterilizable sheath on the exterior can be properly sterilized by heat treatment and then slipped over the inner cylindrical body. The accordion-folded sleeve on the sheath can be extended along the optical bundle and electronic cable for a sufficient distance to provide a sterile barrier between them and the operating site. This outer sheath can be made of disposable material or it can be resterilized for subsequent usage. Thus, all portions of the device which come in contact with the patient can be sterilized even though the associated electronics and optics cannot be sterilized. After use, any contaminates from the patient's body will be removed with the outer sheath and not contact the inner body member. Thus, the contamination cannot to transmitted to the next patient since the body member will be inserted in another sterile sheath.

The term "light transmitting element" as used herein is intended to include any type of light transmitting device which may have any one or several optical qualities. For example, it may simply be a transparent panel made of glass, plastic or sapphire. On the other hand, it may comprise one or more lenses for magnification or to increase the field of view. It can include a series of adjustable lenses to provide variable magnification and serve as a microscope.

Additional advantages of this invention will become apparent from the description follows, taken in conjunction with the accompanying drawings.

FIG. 1 is a perspective view of the inner cylindrical body member which forms a part of the video endoscope of this invention;

FIG. 2 is a perspective view of the outer cylindrical heat sterilizable sheath which forms the other part of the video endoscope of this invention;

FIG. 3 is a condensed, longitudinal section, taken along line 3--3 of FIG. 1, showing the internal details of the cylindrical body member;

FIG. 4 is an enlarged vertical section, taken along line 4--4 of FIG. 3, showing the arrangement of the image sensor and optical fiber bundles;

FIG. 5 is an enlarged vertical section, taken along line 5--5 of FIG. 3, showing the position of the electronic cable and the fiber optic bundles within the body member;

FIG. 6 is a condensed longitudinal section, taken along line 6--6 of the FIG. 2, showing further details of the heat sterilizable sheath;

FIG. 7 is a condensed longitudinal section, showing the cylindrical body member positioned within the heat sterilizable sheath;

FIG. 8 is a fragmentary perspective view of an alternative video endoscope;

FIG. 9 is an enlarged vertical section, taken along line 9--9 of FIG. 8, showing the arrangement of the body member within the sheath and the positioning of the gas channels;

FIG. 10 is a fragmentary perspective view, similar to FIG. 8, but showing a passageway for use with a steerable device; and

FIG. 11 is a fragmentary section of an alternative construction wherein the window of the sheath is in the form of a prism.

In accordance with this invention a video endoscope is provided which has an inner body member B, shown in FIGS. 1 and 3, for containing the optics sterilizable sheath S for receiving the body member and providing a sterile outer casing for coming in contact with the patient and for extending over the connecting cables to provide a sterile environment for the operative procedure on the patient.

The inner body member M has a cylindrical housing 10 provided at its distal end with a light transmitting device 12 which is sealably attached thereto to minimize the possibility of any fluids entering at this location. An image sensor 14, such as a CCD is mounted on the inside of light transmitting device 12 for receiving light transmitted through the window at the investigative site, such as within a body cavity. The image sensor device, depending upon application. This CCD may be on the order of 1.0 mm×1.0 mm. A typical laproscope is 0.8 cm to 1.2 cm in diameter and would utilize a correspondingly larger CCD device, a typical arthroscope is 4.0 mm in diameter and would utilize a much smaller CCD sensor. The window may include optics to focus an image on the CCD and provide a focal length of 0.5 cm to 15 cm, depending on the intended use of the endoscope. Field of view may be altered by the use of different lenses and may range from 15° to 140° or more. An electronic cable 16 has a distal end connected to the image sensor 14 and runs longitudinally through housing 10, as shown in FIG. 3.

Conveniently, optical fiber bundles 18 have distal ends positioned adjacent light transmitting element 12 and spaced around image sensor 14. The exact number of optical fiber bundles and type of fiber will depend upon the particular usage of the endoscope. Four such optical fiber bundles have been shown in the drawings, one being positioned on each of the four sides of image sensor 14. However, a greater or smaller number could be provided, as required. The number of optical fiber bundles may be optimized to allow transmission of various light frequencies, including laser light. These optical fiber bundles 18 also run through housing 10 and pass through a strain relief fixture 20 which seals the proximate end of housing 10. This fixture is also sealed around these cables and extend beyond the fixture through the center of a connecting cable 22 whose opposite end is connected to a video processing unit 24 having a suitable viewing screen (not shown) and light sources (not shown) as required and as is apparent to one skilled in the art. The cylindrical housing is completely sealed against the entry of moisture by window 12 and fixture 20. It also may be backfilled with nitrogen gas under pressure to help keep moisture out. After each use, it can be soaked in a disinfectant, such as gluleraldehyde or Chlorox.

Conveniently, the distal end of housing 10 is provided with oppositely extending pins 26 for connection to a bayonet slot on sheath 5 as described below. Also, an 0-ring 28 is provided for forming a seal with outer sheath S, as described below. The seal could also be a threaded seal, with a threaded collar on the outer unit fitting into a threaded collar in the inner unit.

Sheath S comprises a cylindrical housing 30 which has a window 32 at its distal end and a bayonet slot 34 at its proximate end for cooperating with pins 26 to lock inner body member B within outer sheath S. Advantageously, an accordion-folded sleeve 36 is provided adjacent the proximate end of housing 30 and has a flange 38 attached to housing 30, as by adhesive and includes a pull tab 40 for extending the sleeve over strain relief fixture 20 and connecting cable 22 as best seen FIG. 7. These parts can be made of Teflon or other materials which can withstand high sterilization temperatures. The window can be made of glass or sapphire or polycarbonate which can stand the sterilization heat or other materials which are clear and withstand high temperatures of heat sterilization.

Referring to FIG. 7, it can be seen that when the endoscope is ready for use, the inner body member is locked within outer sheath S and light transmitting element 14 thereof is adjacent window 32 of the sheath. Thus, the inner body member is completely encased in the sterile outer sheath. Furthermore, the sterile sleeve 36 extends over the strain relief fixture and connecting cable to provide a completely sterile endoscope in the operating room and particularly at the site at which the operation or medical procedure is being conducted.

After use, the inner body member can be removed from the outer sheath S and sleeve 36 by twisting it slightly to release pins 26 from bayonet slot 34 whereupon it can be withdrawn. The outer sheath and sleeve 36 can be thrown away or it can be heated to a sufficient temperature and pressure for sterilization.

Also, it will be apparent that any contamination from the body of the patient which may repose on the outer sheath or the sleeve will be stripped away from the inner body member along with the outer sheath and therefore not be transmitted to the body member. The inner body member can then be soaked in a disinfectant and reinserted in another sterile outer sheath and sleeve for use on a subsequent operation. Obviously, a supply of the relatively inexpensive outer sheath and sleeve assemblies can be maintained so that the inner body member can be quickly made ready for a subsequent operation. The video endoscope of this invention can be used as a laparoscope, cystoscope, arthroscope, and for pelviscopy. With suitable optics, it could be used as a sterile operating microscope.

An alternative embodiment is shown in FIGS. 8-11 wherein a larger outer sheath S' is provided around inner body member B. This sheath S' has a cylindrical housing 30, with a lens 32, at the distal end and a sleeve 36, at the proximate end attached by means of a flange 38, The additional space is occupied by one or more tubes or channels, such as tubes 42 and 44 for supplying gas or fluids to the site under investigation. Conveniently, these tubes have control valves 46 and 48 respectively for controlling the flow of the gases and to prevent gas leakage during a procedure. The gas can be carbon dioxide which may be provided for the purpose of clearing and distending the site under investigation for better viewing. Also, a vacuum could be applied through one of the channels for aspiration of unwanted material from the viewing site. Conveniently, the distal ends of these tubes are connected to apertures 50 and 52, respectively in window 32'. These channels or tubes can be used for insertion of laser fibers, biopsy devices, grasping devices, etc.

In FIG. 10 the same device is shown for use with a steerable device. In this case, a channel or tube 54 is provided which enters through housing wall 30' and extends longitudinally therealong and through aperture 52. Within this tube 54 is a steerable device, such as a biopsy sampling device 56 which is operated by a joy stick 58, as shown.

Finally, a further alternative embodiment is shown in FIG. 11 wherein the outer sheath S is provided with a prism 60 in place of the front window 32 so that the device can be used to view at any suitable angle to the longitudinal axis of the endoscope. The image sensor may be placed at various angles to the longitudinal axis of the tubular housing, for instance at 30°, 45°, or 90°. In this variation, the sterilizable sheath would be placed at a corresponding angle to match the orientation of the sensor.

From the foregoing, the advantages of this invention are readily apparent. An endoscope has been provided which is formed in two parts, an inner body member and an outer sheath. The inner body member contains all of the optics and electronics and is sealed against moisture so that it can be soaked in a disinfectant between usages. However, in most situations such disinfecting is not sufficient for safe subsequent use in the operating room. Therefore, an outer sheath is provided which can be heat sterilized prior to use and can be slipped over the inner body member and releasably locked thereto to provide an outer sterile covering. The outer sheath includes an accordion shaped sleeve at the proximate end which can be extended over the trailing cables of the inner member which contain the optical fibers and electronic cables to provide a sterile covering so that the device can be used in the operating room at the operating site. After use, the inner body member can be removed from the outer sheath and the sheath can either be thrown away or resterilized. Also, any contamination from the body of the patient will be removed with the outer sheath and will not come in contact with the inner body member, thereby minimizing any transmittal of disease from one patient to the next.

This invention has been described in detail with reference to particular embodiments thereof, but it will be understood that various other modifications can be effected within the spirit and scope of this invention.

Adair, Edwin L.

Patent Priority Assignee Title
10075626, Jul 26 2012 DEPUY SYNTHES PRODUCTS, INC Camera system with minimal area monolithic CMOS image sensor
10084944, Mar 21 2014 DEPUY SYNTHES PRODUCTS, INC Card edge connector for an imaging sensor
10205877, Mar 15 2013 DePuy Synthes Products, Inc. Super resolution and color motion artifact correction in a pulsed color imaging system
10251530, Mar 15 2013 DEPUY SYNTHES PRODUCTS, INC Scope sensing in a light controlled environment
10277875, Jul 26 2012 DePuy Synthes Products, Inc. YCBCR pulsed illumination scheme in a light deficient environment
10517469, Mar 15 2013 DEPUY SYNTHES PRODUCTS, INC Image sensor synchronization without input clock and data transmission clock
10517471, May 12 2011 DePuy Synthes Products, Inc. Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects
10537234, May 12 2011 DePuy Synthes Products, Inc. Image sensor with tolerance optimizing interconnects
10568496, Jul 26 2012 DEPUY SYNTHES PRODUCTS, INC Continuous video in a light deficient environment
10631736, Dec 18 2012 KONINKLIJKE PHILIPS N V Reusable MR safe temperature probe for surface and body temperature measurement
10670248, Mar 15 2013 DePuy Synthes Products, Inc. Controlling the integral light energy of a laser pulse
10682046, Dec 21 2006 Intuitive Surgical Operations, Inc. Surgical system with hermetically sealed endoscope
10701254, Jul 26 2012 DePuy Synthes Products, Inc. Camera system with minimal area monolithic CMOS image sensor
10709319, May 12 2011 DePuy Synthes Products, Inc.; DEPUY SYNTHES PRODUCTS, INC System and method for sub-column parallel digitizers for hybrid stacked image sensor using vertical interconnects
10750933, Mar 15 2013 DEPUY SYNTHES PRODUCTS, INC Minimize image sensor I/O and conductor counts in endoscope applications
10785461, Jul 26 2012 DePuy Synthes Products, Inc. YCbCr pulsed illumination scheme in a light deficient environment
10863894, May 12 2011 DePuy Synthes Products, Inc. System and method for sub-column parallel digitizers for hybrid stacked image sensor using vertical interconnects
10881272, Mar 15 2013 DePuy Synthes Products, Inc. Minimize image sensor I/O and conductor counts in endoscope applications
10911649, Mar 21 2014 DePuy Synthes Products, Inc. Card edge connector for an imaging sensor
10917562, Mar 15 2013 DePuy Synthes Products, Inc. Super resolution and color motion artifact correction in a pulsed color imaging system
10980406, Mar 15 2013 DePuy Synthes Products, Inc. Image sensor synchronization without input clock and data transmission clock
11026565, May 12 2011 DePuy Synthes Products, Inc. Image sensor for endoscopic use
11039738, Dec 21 2006 Intuitive Surgical Operations, Inc. Methods for a hermetically sealed endoscope
11070779, Jul 26 2012 DePuy Synthes Products, Inc. YCBCR pulsed illumination scheme in a light deficient environment
11083367, Jul 26 2012 DePuy Synthes Products, Inc. Continuous video in a light deficient environment
11089192, Jul 26 2012 DePuy Synthes Products, Inc. Camera system with minimal area monolithic CMOS image sensor
11109750, May 12 2011 DePuy Synthes Products, Inc. Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects
11179029, May 12 2011 DePuy Synthes Products, Inc. Image sensor with tolerance optimizing interconnects
11185213, Mar 15 2013 DePuy Synthes Products, Inc. Scope sensing in a light controlled environment
11253139, Mar 15 2013 DePuy Synthes Products, Inc. Minimize image sensor I/O and conductor counts in endoscope applications
11344189, Mar 15 2013 DePuy Synthes Products, Inc. Image sensor synchronization without input clock and data transmission clock
11382496, Dec 21 2006 Intuitive Surgical Operations, Inc. Stereoscopic endoscope
11432715, May 12 2011 DePuy Synthes Products, Inc. System and method for sub-column parallel digitizers for hybrid stacked image sensor using vertical interconnects
11438490, Mar 21 2014 DePuy Synthes Products, Inc. Card edge connector for an imaging sensor
11674677, Mar 15 2013 DePuy Synthes Products, Inc. Controlling the integral light energy of a laser pulse
11682682, May 12 2011 DePuy Synthes Products, Inc. Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects
11690498, Mar 15 2013 DePuy Synthes Products, Inc. Viewing trocar with integrated prism for use with angled endoscope
11716455, Dec 21 2006 Intuitive Surgical Operations, Inc. Hermetically sealed stereo endoscope of a minimally invasive surgical system
11766175, Jul 26 2012 DePuy Synthes Products, Inc. Camera system with minimal area monolithic CMOS image sensor
11848337, May 12 2011 DePuy Synthes Products, Inc. Image sensor
11863878, Jul 26 2012 DePuy Synthes Products, Inc. YCBCR pulsed illumination scheme in a light deficient environment
11903564, Mar 15 2013 DePuy Synthes Products, Inc. Image sensor synchronization without input clock and data transmission clock
5349941, Mar 26 1993 OKTAS, INC ; Oktas Cleanable endoscope
5562602, Mar 15 1993 Olympus Optical Co., Ltd. Insert cover portion of endoscope cover, insert cover portion having channels of endoscope cover, endoscope-cover-type endoscope, endoscope-cover-system endoscope and endoscope apparatus
5575757, Oct 09 1992 Smith & Nephew, Inc Endoscope with focusing mechanism
5594497, Apr 07 1993 Endoscope provided with a distally located color CCD
5751341, Jan 05 1993 VIKING SYSTEMS, INC Stereoscopic endoscope system
5810790, Nov 19 1996 INTERNATIONAL BIOVIEW,INC Catheter with viewing system and port connector
5846221, Feb 09 1996 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
5857996, Jul 06 1992 Catheter Imaging Systems Method of epidermal surgery
5860953, Nov 21 1995 CATHETER IMAGING SYSTEMS, INC Steerable catheter having disposable module and sterilizable handle and method of connecting same
5929901, Oct 06 1997 MICRO-IMAGING SOLUTIONS, LLC Reduced area imaging devices incorporated within surgical instruments
5986693, Oct 06 1997 MICRO-IMAGING SOLUTIONS, INC Reduced area imaging devices incorporated within surgical instruments
6007531, Nov 21 1995 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
6010493, Jul 06 1992 Catheter Imaging Systems Method of epidural surgery
6017322, Nov 21 1995 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
6043839, Oct 06 1997 Cellect LLC Reduced area imaging devices
6275255, Oct 06 1997 Cellect LLC Reduced area imaging devices
6310642, Nov 24 1997 MICRO-IMAGING SOLUTIONS, INC Reduced area imaging devices incorporated within surgical instruments
6424369, Oct 06 1997 Cellect LLC Hand-held computers incorporating reduced area imaging devices
6452626, Oct 06 1997 Cellect LLC Communication devices incorporating reduced area imaging devices
6464682, Jul 06 1992 Catheter Imaging Systems, Inc. Method of epidural surgery
6470209, Jul 06 1992 Catheter Imaging Systems, Inc. System for enhancing visibility in the epidural space
6572536, Nov 05 1999 MYELOTEC CO , LTD Autoclavable flexible fiberscope
6862036, Oct 06 1997 Cellect LLC Communication devices incorporating reduced area imaging devices
6925323, Jul 06 1992 System for enhancing visibility in the epidural space
6982740, Nov 24 1997 Cellect LLC Reduced area imaging devices utilizing selected charge integration periods
6982742, Oct 06 1997 Cellect LLC Hand-held computers incorporating reduced area imaging devices
7002621, Oct 06 1997 Cellect LLC Communication devices incorporating reduced area imaging devices
7030904, Oct 06 1997 MICRO-IMAGING SOLUTIONS, INC Reduced area imaging device incorporated within wireless endoscopic devices
7410462, Dec 13 2004 GYRUS ACMI, INC Hermetic endoscope assemblage
7671302, Mar 23 2004 Microtek Medical Holdings, Inc; MICROTEK MEDICAL, INC Thermal treatment system instrument rack and method of selectively thermally treating medical instrument portions
7728262, Mar 23 2004 Microtek Medical Holdings, Inc; MICROTEK MEDICAL, INC Thermal treatment system instrument rack and method of selectively thermally treating medical instrument portions
7947220, Aug 07 2003 Smith & Nephew, Inc. Method of sterilizing an orthopaedic implant
8025841, Aug 07 2003 Smith & Nephew, Inc. Method of sterilizing an orthopaedic implant
8100984, Aug 07 2003 Smith & Nephew, Inc Acetabular shell and liner with sterilization channels
8148667, Mar 23 2004 Microtek Medical Holdings, Inc; MICROTEK MEDICAL, INC Thermal treatment system instrument rack and method of selectively thermally treating medical instrument portions
8153937, Mar 23 2004 Microtek Medical Holdings, Inc; MICROTEK MEDICAL, INC Thermal treatment system instrument rack and method of selectively thermally treating medical instrument portions
8277728, Aug 07 2003 Smith & Nephew, Inc. Method of sterilizing an orthopaedic implant
8556807, Dec 21 2006 Intuitive Surgical Operations, Inc Hermetically sealed distal sensor endoscope
8568300, Dec 13 2004 GYRUS ACMI, INC Hermetic endoscope assemblage
8710407, Sep 02 2010 Ecolab USA Inc Selective thermal treatment of medical instrument portions with thermal treatment system instrument holder
8885034, Oct 06 1997 Micro-Imaging Solutions LLC Reduced area imaging device incorporated within endoscopic devices
8952312, May 12 2011 DEPUY SYNTHES PRODUCTS, INC Image sensor for endoscopic use
9005113, Dec 21 2006 Intuitive Surgical Operations, Inc. Hermetically sealed endoscope
9123602, May 12 2011 DEPUY SYNTHES PRODUCTS, INC Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects
9153609, May 12 2011 DEPUY SYNTHES PRODUCTS, INC Image sensor with tolerance optimizing interconnects
9186052, Oct 06 1997 Cellect LLC Reduced area imaging device incorporated within endoscopic devices
9198565, Oct 06 1997 Cellect LLC Reduced area imaging device incorporated within endoscopic devices
9271633, Dec 21 2006 Intuitive Surgical Operations, Inc. Stereo camera for hermetically sealed endoscope
9307895, Oct 06 1997 MICRO-IMAGING SOLUTIONS, LLC Reduced area imaging device incorporated within endoscopic devices
9343489, May 12 2011 DEPUY SYNTHES PRODUCTS, INC Image sensor for endoscopic use
9433759, Dec 05 2003 FUJIFILM Corporation Insertion assisting tool for endoscope
9462234, Jul 26 2012 DEPUY SYNTHES PRODUCTS, INC Camera system with minimal area monolithic CMOS image sensor
9516239, Jul 26 2012 DEPUY SYNTHES PRODUCTS, INC YCBCR pulsed illumination scheme in a light deficient environment
9565997, Dec 21 2006 Intuitive Surgical Operations, Inc. Hermetically sealed endoscope with optical component attached to inner protective window
9622650, May 12 2011 DEPUY SYNTHES PRODUCTS, INC System and method for sub-column parallel digitizers for hybrid stacked image sensor using vertical interconnects
9641815, Mar 15 2013 DEPUY SYNTHES PRODUCTS, INC Super resolution and color motion artifact correction in a pulsed color imaging system
9667896, Oct 06 1997 Cellect LLC Reduced area imaging device incorporated within endoscopic devices
9762879, Jul 26 2012 DEPUY SYNTHES PRODUCTS, INC YCbCr pulsed illumination scheme in a light deficient environment
9763566, May 12 2011 DEPUY SYNTHES PRODUCTS, INC Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects
9777913, Mar 15 2013 DEPUY SYNTHES PRODUCTS, INC Controlling the integral light energy of a laser pulse
9907459, May 12 2011 DEPUY SYNTHES PRODUCTS, INC Image sensor with tolerance optimizing interconnects
9962069, Dec 21 2006 Intuitive Surgical Operations, Inc. Endoscope with distal hermetically sealed sensor
9980633, May 12 2011 DePuy Synthes Products, Inc. Image sensor for endoscopic use
D349340, Oct 19 1992 Catheter Imaging Systems Catheter imaging light source
D398986, Nov 21 1995 CATHETER IMAGING SYSTEMS, INC Handle interface for steerable catheter
D405881, Nov 21 1995 CATHETER IMAGING SYSTEMS, INC Handle for steerable catheter
Patent Priority Assignee Title
3794091,
3809072,
3866601,
4132227, Aug 08 1974 Winter & Ibe Urological endoscope particularly resectoscope
4201199, Jan 13 1978 Endoscope attachment to a viewing instrument for insertion into the uterine cavity
4254762, Oct 23 1979 Safety endoscope system
4327735, Oct 22 1980 Cordis Corporation Catheter assembly
4646722, Dec 10 1984 OPIELAB, INC , A CORP OF WASHINGTON Protective endoscope sheath and method of installing same
4721097, Oct 31 1986 CIRCON CORPORATION A CORP OF DE Endoscope sheaths and method and apparatus for installation and removal
4741326, Oct 01 1986 FUJI PHOTO OPTICAL CO , LTD Endoscope disposable sheath
4772275, Mar 09 1987 MOSS, RICHARD; ERLICH, FRED; KAMIENNY, FRED Sheath for devices for injecting or withdrawing body fluids
GB1405025,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 29 2002ADAIR, EDWIN L MICRO-MEDICAL DEVICES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0136160130 pdf
Date Maintenance Fee Events
Apr 22 1993M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Apr 24 1997M284: Payment of Maintenance Fee, 8th Yr, Small Entity.
Apr 26 2001M285: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Mar 24 19954 years fee payment window open
Sep 24 19956 months grace period start (w surcharge)
Mar 24 1996patent expiry (for year 4)
Mar 24 19982 years to revive unintentionally abandoned end. (for year 4)
Mar 24 19998 years fee payment window open
Sep 24 19996 months grace period start (w surcharge)
Mar 24 2000patent expiry (for year 8)
Mar 24 20022 years to revive unintentionally abandoned end. (for year 8)
Mar 24 200312 years fee payment window open
Sep 24 20036 months grace period start (w surcharge)
Mar 24 2004patent expiry (for year 12)
Mar 24 20062 years to revive unintentionally abandoned end. (for year 12)