The invention relates to the field of fabric softening. It provides for fabric softening compositions comprising a relatively water-insoluble cationic detergent surfactant and a free c8 -c24 alkyl- or alkenylmonocarboxylic acid. These compositions are significantly more storage stable than compositions, wherein the monocarboxylic is present as a soap. Further inclusion of a relatively water-soluble cationic detergent surfactant or cationic polymer significantly increases the softening performance.

Patent
   RE34062
Priority
Nov 03 1978
Filed
Oct 03 1984
Issued
Sep 15 1992
Expiry
Sep 15 2009
Assg.orig
Entity
unknown
11
38
EXPIRED
1. A fabric softening composition consisting essentially of an aqueous liquid containing from 20-95 mole % of a relatively water-insoluble cationic detergent surfactant having two c12 -c22 alkyl-or alkenyl groups, and from 5-80 mole % of a free c8 -c24 alkyl-or alkenylmonocarboxylic acid, the total amount of cationic detergent surfactant plus alkyl- or alkenylmonocarboxylic acid being from 2-20% by weight of the aqueous liquid, the composition having a ph of 5 or less.
2. A composition according to claim 1, consisting essentially of from 40-80 mole % of the cationic detergent surfactant and from 10-40 mole % of the alkyl- or alkenylmonocarboxylic acid.
3. A composition according to claim 1, wherein the cationic detergent surfactant contains two c16 -c18 alkyl-or alkenyl groups.
4. A composition according to claim 1, wherein the alkylmonocarboxylic acids are the hardened tallow c16 -c18 saturated fatty acids.
5. A composition according to claim 1, further consisting essentially of up to 50 mole % of a relatively water-soluble cationic detergent surfactant having a quaternary ammonium group and only one c10-24 alkyl group.
6. A composition according to claim 5, consisting essentially of from 5-30 mole % of the relatively water-soluble cationic detergent surfactant.
7. A composition according to claim 1, further comprising a cationic polymer selected from the group consisting of cationic polysaccharide gums, cationic starch, cationic polyvinyl alcohol, cationic polyvinylpyrrolidone, quaternized dextrans, quaternized hydroxy ethyl cellulose, cationic guar gum, and copolymers of dialkylamino alkylmethacrylate.
8. A composition according to claim 7, wherein the cationic polymer is a cationic guar gum, a quaternized dextran or a quaternized hydroxyethylcellulose.
9. A process for preparing aqueous compositions of claim 1, comprising premixing the cationic detergent surfactant and the alkyl- or alkenylmonocarboxylic acid, heating the resulting premix until it becomes clear, and adding the resulting, clear premix to water with stirring.
10. A method for softening fabrics comprising treating said fabrics with the composition of any of claims 1 to 6, 8 or 7.
11. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) from 17.4% to 19.1% of a water-insoluble cationic fabric softener and
(b) from 0.9% to 2.6% of a viscosity control agent selected from the group consisting of c9 -c24 fatty acids and mixtures thereof,
wherein the ratio of (a) to (b) is from 6.7:1 to 21.2:1, the total of (a) and (b) is between 2 and 20%, and the ph of the composition is 5 or less. 12. A composition according to claim 11 wherein the fabric softener is from 17.9% to 19.1% of a di-c12 -c22 alkyl imidazolinium salt. 13. A composition according to claim 12 wherein the imidazolinium salt has the formula: ##STR4##
14. A composition according to claim 13 where the ratio of (a) to (b) is from 8.5:1 to 21.2:1. 15. A composition according to claim 14 additionally consisting essentially of from 800 to 1600 ppm. of electrolyte. 16. A composition according to claim 15 additionally consisting essentially of up to 5% of a water-insoluble non-ionic softener. 17. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) from 16.4% to 19.1% of a water-insoluble cationic fabric softener and
(b) from 0.9 to 3.6% of a viscosity control agent selected from the group consisting of c9 -c24 fatty acids and mixtures thereof,
wherein the ratio of (a) to (b) is from 4.6:1 to 21.2:1 the total of (a) and (b) is between 2 and 20%, and the ph of the composition is 5 or less. 18. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 17.8% of a water-insoluble cationic fabric softener which is di(hardened tallow) dimethyl ammonium chloride and
(b) 2.2% of a viscosity control agent which is hardened tallow fatty acids,
wherein the ratio of (a) to (b) is 8.1:1 and the ph of the composition is 5
or less. 19. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 17.4% of a water-insoluble cationic fabric softener which is di(hardened tallow) dimethyl ammonium chloride and
(b) 2.6% of a viscosity control agent which is behenic acid,
wherein the ratio of (a) to (b) is 6.7:1 and the ph of the composition is 5 or less. 20. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 18.3% of a water-insoluble cationic fabric softener which is a 2-heptadecyl-1-methylstearoyl amido ethyl imidazoline methosulphate salt and
(b) 1.7% of a viscosity control agent which is hardened tallow fatty acids,
wherein the ratio of (a) to (b) is 10.8:1 and the ph of the composition is 5 or less. 21. A composition according to claim 20 wherein the imidazolinium salt has the formula: ##STR5##
22. A composition according to claim 21 wherein the ratio of (a) to (b) is 10.8:1. 23. A composition according to claim 22 additionally consisting essentially of 800 ppm. of sodium chloride. 24. A composition according to claim 22 additionally consisting essentially of up to 5% of glycerol monostearate. 25. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 17.9% or 18.9% of a water-insoluble cationic fabric softener which is a 2-heptadecyl-1-methylstearoyl amido ethyl imidazoline methosulphate salt and
(b) 1.1% or 2.1% of a viscosity control agent which is behenic acid,
wherein the ratio of (a) to (b) is 8.5:1 or 17.2:1 and the ph of the
composition is 5 or less. 26. A composition according to claim 25 wherein the imidazolinium salt has the formula: ##STR6##
27. A composition according to claim 26 wherein the ratio of (a) to (b) is 8.5:1. 28. A composition according to claim 27 additionally consisting essentially of 800 ppm. of sodium chloride. 29. A composition according to claim 28 additionally consisting essentially of up to 5% glycerol monostearate. 30. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 18.3% or 19.1% of a water-insoluble cationic fabric softener which is di-c12 alkyl or alkenyl mono-quaternary ammonium salt and
(b) 0.9% or 1.7% of a viscosity control agent which is c9 fatty acid,
wherein the ratio of (a) to (b) is 4.6:1 or 9.1, the total of (a) and (b) is between 2 and 20% and the ph of the composition is 5 or less. 31. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 16.4% or 18.0% of a water-insoluble cationic fabric softener which is di-c12 alkyl or alkenyl mono-quaternary ammonium salt and
(b) 2.0% or 3.6% of a viscosity control agent which is c24 fatty acid,
wherein the ratio of (a) to (b) is 4.6:1 or 9.1, the total of (a) and (b) is between 2 and 20% and the ph of the composition is 5 or less. 32. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 18.9% of a water-insoluble cationic fabric softener which is di-c12 alkyl or alkenyl mono-quaternary ammonium salt and
(b) 1.1% of a viscosity control agent which is c9 fatty acid,
wherein the ratio of (a) to (b) is 17.2:1 and 20% and the ph of the
composition is 5 or less. 33. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 17.7 or 18.8% of a water-insoluble cationic fabric softener which is di-c22 alkyl or alkenyl mono-quaternary ammonium salt and
(b) 1.2% or 2.3% of a viscosity control agent which is c9 fatty acid,
wherein the ratio of (a) to (b) is 7.7:1 or 15.7:1, the total of (a) and (b) is between 2 and 20% and the ph of the composition is 5 or less. 34. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 18.9% of a water-insoluble cationic fabric softener which is di(hardened tallow) dimethyl ammonium chloride and
(b) 1.1% of a viscosity control agent which is hardened tallow fatty acids,
wherein the ratio of (a) to (b) is 17.2:1 and the ph of the composition is 5 or less. 35. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 18.6% of a water-insoluble cationic fabric softener which is di(hardened tallow) dimethyl ammonium chloride and
(b) 1.4% of a viscosity control agent which is behenic acid,
wherein the ratio of (a) to (b) is 13.3:1 and the ph of the composition is 5 or less. 36. A fabric softening composition in the form of an aqueous dispersion consisting essentially of
(a) 19.1% of a water-insoluble cationic fabric softener which is a 2-heptadecyl-1-methylstearoyl amido ethyl imidazoline methosulphate salt and
(b) 0.9% of a viscosity control agent which is hardened tallow fatty acids,
wherein the ratio of (a) to (b) is 21.2:1 and the ph of the composition is 5 or less.

The present invention relates to a fabric softening composition and a process for preparing it.

Fabric softening compositions are compositions that are used in the textile and detergent industry to impart a softness or soft feel to textile fabrics, as well as a certain antistatic effect.

In particular in the household laundering operations, fabrics, when washed and dried, may tend to give a certain harsh feel to the skin, and in order to restore or improve the softness of the laundered fabric it has become common usage to treat the laundered fabrics, prior to drying, e.g. in a rinse bath, with so-called fabric softeners, which impart, through different mechanisms, a certain soft feel to the fabrics.

In the art of fabric softeners, a host of materials, compounds and compositions have been proposed. Commercially, however, a very restricted amount of compounds is being used, and thereof the class of cationic detergent surfactants is the commercially important area.

Cationic detergent surfactants, either alone or in admixture with other surfactants, additives, etc. have indeed been proposed and used in the art quite extensively. This is particularly true for quaternary ammonium compounds having two long-chain aliphatic hydrocarbon groups, such as distearyldimethyl ammoniumchloride. Thus, combinations of such cationic detergent surfactants and fatty acid soaps have been proposed in the art, e.g. in British Pat. Specification Nos. 1,456,913 (Proctor & Gamber) and 1,453,093 (Colgate). However, the storage stability of these soap-based systems over longer periods is not optimal for practical purposes, particularly when they contain a certain amount of electrolyte. Furthermore, this prior art describes wide ranges of cationic detergent surfactants and soap, whereas it has been found in the present invention that there are critical fatty acid/cationic ratios, above which the preparation of a stable product becomes very difficult, if not impossible. This critical ratio has been found to be for hardened tallow fatty acids for instance about 0.8/1 (mole ratio). Beyond these critical ratios the products may become undesirably viscous or even inhomogeneous.

The present invention is based in part on the discovery that the above drawbacks can be significantly reduced, and a composition with quite satisfactory softening properties obtained, when using these cationic detergent surfactants in combination with a fatty acid under certain conditions, to be discussed hereafter.

The present invention therefore relates to a fabric softening composition comprising a cationic detergent surfactant having two C12 -C22 alkyl or alkenyl groups, and a fatty acid--the latter being present in a relative proportion of 5-80 mole percent.

The composition may be in any physical form, such as powders, flakes, granules, pellets, marumes, or liquids. Preferably they are in the form of an aqueous liquid.

The amount of cationic detergent surfactant in the composition varies from 20-95 mole %, preferably 40-80 mole %, and the amount of fatty acid varies from 5-80, preferably 10-40 mole %. The total weight of cationic detergent surfactant plus fatty acid is from 2-20% by weight of the total composition.

The cationic detergent surfactant (which is relatively water-insoluble) to be used according to the present invention contains two aliphatic alkyl or alkenyl chains having from 12-22, preferably 16-18 carbon atoms, therein. Typical examples thereof are di(hardened tallow) dimethyl ammoniumchloride and 2-heptadecyl-1-methylstearoyl amido ethyl imidazoline methosulphate. Other suitable examples of such cationic detergent surfactants having two long-chain alkyl groups can be readily found in the art, e.g. in the above-cited patents and in Schwartz-Perry, Vol. II, 1958, "Surface-active Agents and Detergents". Mixtures of two or more of these cationics may also be used. It is to be understood, however, that di(coco)dimethyl ammoniumchloride is not included within the above definition, as this compound is relatively water-soluble.

The fatty acids to be used in the present invention are C8 -C24 alkyl- or alkenylmonocarboxylic acids, or polymers thereof. Preferably the saturated fatty acids are used, and of these the hardened tallow C16 -C18 fatty acids. Mixtures of various fatty acids may also be used.

Although the above combination produces already a satisfactory softening composition, it has quite unexpectedly been found that a very significant further improvement can be obtained if the above combination further comprises a relatively watersoluble cationic detergent surfactant. Hereby a significant softening advantage is obtained, particularly in the presence of anionic detergents, which may be carried over from the main wash and which may render conventional softeners less effective through complexation.

These ternary compositions are also easier to process than the above binary mixtures, which give viscoelastic products at processing temperatures of about 60°-70°C

The present invention therefore also relates to (and this is the preferred embodiment) a fabric softening composition comprising a relatively water-insoluble cationic detergent surfactant, a relatively water-soluble cationic detergent surfactant, and a free fatty acid. The amount of the relatively water-soluble cationic detergent surfactant is from 0-50, preferably 5-30 mole %, the other amounts being as indicated above.

Typical examples of relatively water-soluble cationic detergent surfactants are those having only one long-chain alkyl group, such as ##STR1## wherein R1 =C10 -C24, preferably C16 -C18 alkyl or alkenyl group

R2, R3 and R4 are each C1 -C4, preferably methyl groups and

X is a halide or methosulphate.

Other such single long-chain cationic detergent surfactants are cetylbenzyl dimethyl ammoniumchloride, myristoyloxyethyl trimethyl ammoniumiodide, stearoyloxyethyl trimethyl ammoniumchloride, tallow fatty acylcholinechloride, eicosyloxycarbonylmethyl trimethyl ammoniumchloride, stearoylaminoethyl triethyl ammoniumchloride, behenoylaminopropyl trimethyl ammoniumchloride, cetylsulphonylaminoethyl trimethyl ammoniummethosulphate, stearyloxyethylene oxyethyl tripropyl ammoniumchloride, cetylpyridiniumchloride, 3-cetyloxy-2-hydrocypropyl trimethyl ammoniumchloride and 3-behenoyloxy-2-hydrocypropyltrimethyl ammoniumchloride. Di(coco)dimethylammoniumchloride, being relatively water-soluble, is also embraced by the above definition of suitable, relatively water-soluble cationic detergent surfactants.

Other suitable relatively water-soluble cationic detergent surfactants are ##STR2## wherein R1 =C10 -C24, preferably C16 -C18 alkyl or alkenyl group

R2 =H or (C2 H4 O)p H or (C3 H6 O)q H or C1 -C3 alkyl in which

p and q are 0 or a number such that p+q is at most 25,

n=a whole number from 2-6, preferably 3,

m=a whole number from 1-9, preferably 1-4,

A.theta. =an anion, preferably a halide or acetate.

Mixtures of the above cationic detergent surfactants may also be used.

Instead of the above, relatively water-soluble cationic detergent surfactants, or in addition thereto, cationic polymers can be used, such as cationic polysaccharide gums, cationic starches or starch derivatives, cationic polyvinyl alcohol or polyvinylpyrrolidone, quaternized dextrans, quaternized hydroethylcellulose, cationic guar gum, copolymers of dialkylamino alkylmethacrylate etc. Suitable preferred examples are cationic guar gum, dextran (M.W. 500,000) substituted with diethylaminoethylgroups to give3.2% N in the molecule, and hydroxyethylcelluose (M.W. 400,000), quaternized with 2,3-epoxypropyltrimethyl ammoniumchloride or 3-chloro 2-hydroxylpropyltrimethyl ammoniumchloride.

The compositions of the invention may furthermore comprise the normal adjuvants, usually present in such compositions. Examples thereof are inorganic salts in minor amounts, such as sodium chloride, solvents such as ethyl- or isopropylalcohol or hexyleneglycol (up to 15%), nonionic surfactants such as condensates of ethylene oxide and/or propylene oxide with fatty alcohols or fatty acids, esters of fatty acids with polyols e.g. glycerolmonostearate, ethoxylated sorbitan esters, in minor amounts (up to 5%), furthermore emulsifiers, perfumes, colourants, germicides, hydrotropes and so on. Clays, such as smectite-type clays, should not be included in any significant amount, as this may cause unstable products. The pH of the composition is 5 or below, or adjusted thereto.

The compositions of the invention may be made in any suitable manner. Preferably, however, the two or three essential ingredients are premixed, heated together until clear and then the molten mixture is added to water with stirring.

The invention will further be illustrated by the following Examples.

Samples 1-10 were made using the following raw materials

______________________________________
di(hardened tallow)dimethyl ammonium-
(A) 75.5% active
chloride
C10 -trimethyl ammoniumchloride
(B) 45.0% active
fatty acids mixture, from hardened tallow
(C) 100% active
______________________________________

The chain length distributions (in %) of these last two chemicals are:

______________________________________
C12 /C14
C16
C18
Oleic C20/22
______________________________________
C10 -trimethyl ammonium
-- 6 93 1 --
fatty acids mixture,
4 28 65 2 1
from hardened tallow
______________________________________

The hardened tallow alkyl radical in compound A had the above hardened tallow fatty acid distribution; compound A contained 74% quaternary ammonium compound, of which 92.35% by weight was the dialkyl compound (3.75% being the monoalkyl compound and 3.90% the trialkyl compound).

Each of the examples has been made by the same processing route, unless otherwise stated. This was:

The mixture of the three components A, B and C was heated to and maintained at 70°C until it was wholly liquid. This premix was then added over a period of 1 minute to stirred water at 70°C containing 0.10 g NaCl. The volume of water was such as to bring the total composition weight to 400 g. Stirring was continued for 15 minutes, and the resulting mixture allowed to cool to ambient temperatures.

The composition of Examples 1-10 were as shown in the following Table. The weight percentages in this Table are in each case the % by weight of the 100% active ingredient in the final composition. The mole percentages refer to the relative proportions of the active ingredients among themselves:

__________________________________________________________________________
Sample No.
1 2 3 4 5 6 7 8 9 10
__________________________________________________________________________
A(wt %)
4.88
4.44
3.95
3.38
4.38
3.89
3.84
2.64
3.23
4.98
B(wt %)
0.42
0.45
0.48
0.51
0.89
0.94
1.40
1.60
1.96
--
C(wt %)
0.70
1.11
1.57
2.11
0.73
1.17
0.77
1.76
0.81
1.02
Total wt %
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
of active
ingredients
A(mole %)
70 60 50 40 60 50 50 30 40 70
B(mole %)
10 10 10 10 20 20 30 30 40 --
C(mole %)
20 30 40 50 20 30 20 40 20 30
__________________________________________________________________________

Samples 1-8 and 10 were stable liquid products. Sample 9 separated because it was too thin. It was nevertheless included in some of the softening tests.

The superior softening properties of these mixtures was shown by the following tests.

Compositions 1-4 and a commercial rinse conditioner based solely on di(hardened tallow) dimethyl ammoniumchloride were dispersed in demineralised water to give dilute aqueous dispersions containing 0.01% of the active ingredients in each case. Three pieces of clean cotton towelling (40 g) were rinsed in a Tergotometer pot with 800 ml of the aqueous dispersion at ambient temperatures for 10 minutes, followed by spin-drying and drying in a hot air cabinet.

This rinsing process using the five compositions was carried out in a series of Tergotometer pots, with each of the compositions used 4 times according to a balanced statistical design.

The resulting cloth pieces were assessed for relative softness in ranking order by a panel of 5 people. Rankings were confined to each Tergotometer run (containing 4 compositions in 4 pots).

The average rankings for the 5 formulations are shown below (lower ranking=better softness):

______________________________________
Example No. Average Ranking
______________________________________
1 2.97
2 2.15
3 1.53
4 2.20
control 3.65
______________________________________

The superior softening of the compositions over the control can clearly be seen.

In this test compositions 5, 7 and 9 were compared with a control containing only di(hardened tallow) dimethyl ammoniumchloride, and a formulation 10 containing A and C but no B. The test was carried out in water of hardness 24° (French). The average ranking obtained among the five products was:

______________________________________
Example No. Average Ranking
______________________________________
5 2.57
7 2.17
9 2.38
10 1.90
control 3.48
______________________________________

The superior softening of the compositions can again be seen.

In this test compositions 6 and 8 were compared with the control under the same conditions as tests 1 and 2. The average softness rankings obtained were:

______________________________________
Example No. Average Ranking
______________________________________
6 1.69
8 1.58
control 2.73
______________________________________

Again the superior softening is demonstrated.

This test demonstrates the advantage of having a triple rather than a double active system, particularly in rinses where a substantial amount of anionic detergent has been carried over from the wash. Test 4 shown below was carried out with dispersions containing 0.005% of the active ingredients to which had been added 0.002% of calcium dodecyl benzene sulphonate. Test 5 was carried out in idential fashion but without the calcium dodecylbenzene sulphonate.

______________________________________
Change in Ranking
Average Ranking
after adding
Example No. Ca DOBS added
Anionic
______________________________________
10 2.88 +1.06
5 2.40 0
7 2.22 -0.48
9 2.30 -0.52
control 2.70 -0.07
______________________________________

Formulations 5, 7 and 9 contain added B. In the presence of Ca dodecylbenzene sulphonate these triple active formulations produce better softening than the control. In contrast formulation 10 (a double active system) performs very well under clean conditions but slightly worse than the control in the presence of anionic detergent.

Five formulations were made in the manner described previously but containing a commercial behenic acid in place of the hardened tallow fatty acid. This fatty acid has the chain length distribution: (percentages)

______________________________________
C16 C18
C20 C22
C24
______________________________________
0.9 22.3 12.4 63.7 0.7
______________________________________

The formulations of these Examples were:

______________________________________
Sample No. 11 12 13 14
______________________________________
A(wt %) 4.80 3.81 3.77 4.64
B(wt %) 0.42 0.45 1.37 0.70
Behenic Acid (wt %)
0.78 1.74 0.86 0.00
Total wt % of active
6.00 6.00 6.00 6.00
A(mole %) 70 50 50 662/3
B(mole %) 10 10 30 162/3
Behenic Acid 20 40 20 162/3
(mole %)
______________________________________

These four Examples were then tested for softness against a di(hardened tallow) dimethyl ammoniumchloride control in the manner and conditions described in Test 2. The results were as shown below:

______________________________________
Example No. Average Ranking
______________________________________
11 2.33
12 2.90
13 2.17
14 1.78
control 3.32
______________________________________

Superior softening is again demonstrated.

A further five formulations were made in the manner described previously, but containing the following compound (D) ##STR3## in place of the C18 -trimethyl ammoniumchloride (B). The formulations of these Examples were:

______________________________________
Sample No. 15 16 17 18
______________________________________
A(wt %) 4.96 4.02 4.06 3.59
D(wt %) 0.29 0.37 1.13 1.34
C(wt %) 0.74 1.61 0.81 1.06
Total wt % of active
6.00 6.00 6.00 6.00
A(mole %) 70 50 50 662/3
D(mole %) 10 10 30 162/3
C(mole %) 20 40 20 162/3
______________________________________

Formulations 15-18 were compared in a softening test with a control based solely on di(hardened tallow) dimethyl ammoniumchloride. The conditions were exactly as outlined in softness Test 2. The average softness rankings obtained for these five formulations were as shown below:

______________________________________
Example No. Average Ranking
______________________________________
15 2.78
16 2.33
17 2.35
18 1.97
control 3.22
______________________________________

The superior softening of the mixed active formulations over the control is evident.

Three products werd made from A and stearic acid (E).

______________________________________
A/Stearic
Weight of Acid Mole
Percent
Example
Weight of A
Stearic Acid
Ratio Active
______________________________________
19 19.61 4.98 5/1 4
20 22.40 2.84 3/1 4
21 23.75 1.81 1.5/1 4
______________________________________

A premix of A and stearic acid was made at 70°C and added slowly to demineralised water at the same temperature. Stirring was continued for 15 min. and the formulation weight taken to 500 g.

A Tergotometer test was carried out in London hard (24° hardness) water containing 0.005% of active ingredients. Two controls were included in the three test formulations: di(hardened tallow) dimethyl ammoniumchloride and dicoco dimethyl ammoniumchloride. The softness results expressed as average rankings were as follows:

______________________________________
Product Ranking
______________________________________
di(hardened tallow) 2.77
dimethyl ammoniumchloride
dicoco dimethyl ammonium-
3.60
chloride
19 2.32
20 1.45
21 2.37
______________________________________

Three compositions 22-24, containing fatty acids, were made by the following procedure:

27.2 g of A and 4.88 g of C were melted together at 55°C until a clear homogeneous liquid was obtained. This clear liquid was then poured into a stirred vessel containing 467.92 g of distilled water at 55° C. containing:

for product 22-0 g NaCl

for product 23-0.4 g NaCl

for product 24-0.08 g NaCl

Stirring was continued for 10 minutes at which point the resulting dispersions were set on one side and allowed to cool to room temperature.

Another three compositions 25-27, containing however a soap instead of fatty acids, were made by an identical procedure except that the active premix contained 26.78 g of A, 5.18 g of sodium stearate, with 2 g of isopropyl alcohol and 2 g of water, to aid the production of a clear homogeneous premix. The clear premix was added to 464.04 g of distilled water at 55°C containing the same quantities of NaCl.

The 6 products 22-27, all 5% total active, 2/1 cationic/anionic mole ratio with 0, 0.08% and 0.16% NaCl were observed over a period of 2 weeks.

The results obtained are tabulated below:

______________________________________
Formulation % NaCl Stability after 2 weeks
______________________________________
5% 22 0 stable - no separation
5% 23 0.08 "
5% 24 0.16 "
5% 25 0 "
5% 26 0.08 separated into 2 layers
5% 27 0.16 "
______________________________________

It can be seen that the products of the invention can tolerate NaCl up to 0.16% without any deleterious effect on stability. The same is not true of the soap-containing products.

Four products 28-31 were made from the following raw materials. The composition of these 4 Examples is shown in the table below. The weight percentages in this table are in each case the % by weight of the 100% active ingredient in the final composition.

______________________________________
Product
composition in % by weight
Ingredients 28 29 30 31
______________________________________
A(79.4% active) 2.96 2.99 2.96 2.99
Di(coco)dimethyl ammonium-
0.60 0.30 -- --
chloride (79.4% active)
C(100% active) 0.48 0.72 0.48 0.72
C16 -trimethylammonium-
-- -- 0.60 0.30
chloride (47.7% active)
______________________________________

These four products were made by the following method. The mixture of the 3 components was heated to and maintained at 60°C until wholly liquid. This premix was added to stirred deionised water at 60°C The volume of water was such as to bring the total composition weight to 500 g. Stirring was continued for 10 minutes.

All samples were stable liquid products.

The softness performance of these 4 formulations was compared with that of a commercial rinse conditioner based solely on di(hardened tallow) dimethyl ammoniumchloride. (The method of testing is that described on page 8 of the specification except that the aqueous dispersions contained 0.015% of active ingredients.)

The average rankings for the 5 formulations were as shown below:

______________________________________
Product Average ranking
______________________________________
28 2.43
29 1.73
30 2.73
31 2.03
control 3.57
______________________________________

The superior softening of all the mixed active formulations is clearly seen.

Six compositions 32-37 were made, four of which contained a cationic polymer. These polymers were:

E-a cationic guar gum, known under the tradename Gendriv 162 from General Mills Corp.

F-a dextran of MWt∼500,000 substituted with diethyl aminoethyl groups to give 3.2% N in the molecule.

G-a hydroxyethyl cellulose of MWt∼400,000 quaternised with 2,3-epoxypropyl trimethylammoniumcloride or 3-chloro-2-hydroxypropyl trimethylammoniumchloride.

These polymers were included in products based on the raw materials

A (74% active)

C (100% active)

The compositions of the products containing these polymers and the controls are shown below:

______________________________________
Product No.
Ingredient
(% by weight)
32 33 34 35 36 37
______________________________________
A 4.0 4.0 4.0 4.0 4.32 4.32
C 1.0 1.0 1.0 1.0 0.68 0.68
E -- 0.2 -- -- -- --
F -- -- 0.2 -- -- --
G -- -- -- 0.2 -- 0.2
______________________________________

These examples were made by the following method. A and C were heated to and maintained at 65°C until wholly liquid. This premix was added to 300 ml stirred deionised water at 65°C Immediately afterwards a solution/dispersion of the polymer in 100 ml of deionised water was added, followed by sufficient water to bring the total composition weight to 500 g. Stirring was continued for 10 minutes.

The softness performance of formulations 32-35 was compared with that of a commercial rinse conditioner based solely on di(hardened tallow) dimethyl ammoniumchloride. (The method is the same as that described on page 8 except that aqueous dispersions contained 0.01% of active ingredients and 0.002% of added sodium dodecylbenzenesulphonate.) The average rankings in this test were

______________________________________
Product Average ranking
______________________________________
32 3.27
33 2.17
34 2.90
35 2.45
control 2.12
______________________________________

It can be seen that the presence of polymer has greatly improved softness performance in the presence of anionic detergent carryover. (product 33-35 vs 32).

Under identical conditions the performance of formulations 36 and 37 was compared with a control. The results are shown below

______________________________________
Formulation Average ranking
______________________________________
36 2.38
37 1.64
control 1.98
______________________________________

Wells, Martin A.

Patent Priority Assignee Title
5492636, Sep 23 1994 Quest International Fragrances Company Clear concentrated fabric softener
6093336, May 31 1996 Akzo Nobel NV Process for making solid compositions comprising quaternary ester ammonium compounds and fatty acids
6376456, Oct 27 1998 Unilever Home & Personal Care USA, Division of Conopco, Inc Wrinkle reduction laundry product compositions
6403548, Oct 27 1998 Henkel IP & Holding GmbH Wrinkle reduction laundry product compositions
6426328, Oct 27 1998 Henkel IP & Holding GmbH Wrinkle reduction laundry product compositions
6500793, Oct 27 1998 Henkel IP & Holding GmbH Wrinkle reduction laundry product compositions
6759379, Oct 27 1998 Henkel IP & Holding GmbH Wrinkle reduction laundry product compositions
6797688, Sep 19 1996 The Procter & Gamble Company Concentrated, preferably biodegradable, quaternary ammonium fabric softener compositions containing cationic polymers and process for preparation
6939844, Sep 19 1996 The Procter & Gamble Company Concentrated, preferably biodegradable, quaternary ammonium fabric softener compositions containing cationic polymers and process for preparation
7135451, Mar 25 2003 Procter & Gamble Company, The Fabric care compositions comprising cationic starch
7371718, Apr 22 2005 HENKEL AG & CO KGAA Liquid fabric softener
Patent Priority Assignee Title
3325404,
3497365,
3551168,
3632396,
3714074,
3730912,
3743534,
3756835,
3915882,
3920565,
3936537, Nov 01 1974 The Procter & Gamble Company Detergent-compatible fabric softening and antistatic compositions
3954632, Feb 16 1973 The Procter & Gamble Company Softening additive and detergent composition
3993573, Feb 16 1973 The Procter & Gamble Company Softening additive and detergent composition
4000340, Oct 29 1973 The Procter & Gamble Company Clothes dryer additive containing crisping agents
4113630, Mar 25 1977 The Procter & Gamble Company Article for conditioning fabrics
4126562, Jun 04 1976 The Procter & Gamble Company Textile treatment compositions
4126586, Feb 10 1976 Lever Brothers Company Process of spray drying nonionic surfactant-containing detergents also containing a cationic nitrogen compound
4127489, May 20 1976 The Procter & Gamble Company Process for making imidazolinium salts, fabric conditioning compositions and methods
4128484, Jul 14 1975 The Procter & Gamble Company Fabric softening compositions
4128485, Aug 16 1976 Colgate-Palmolive Company Fabric softening compounds
4141841, Jul 18 1977 The Procter & Gamble Company Antistatic, fabric-softening detergent additive
4149978, Jul 12 1977 The Procter & Gamble Company Textile treatment composition
4151097, Jul 26 1976 Lever Brothers Company Liquid systems
4308024, Nov 03 1978 Lever Brothers Company Fabric softening composition
4401578, Jan 11 1979 The Procter & Gamble Company Concentrated fabric softening composition
4426299, Jan 11 1979 The Procter & Gamble Company Concentrated fabric softening composition
EP1315,
GB1374419,
GB1418720,
GB1428061,
GB1453093,
GB1456913,
GB1482782,
GB1489527,
GB1500966,
GB1519605,
GB1576325,
ZA741725,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 03 1984Lever Brothers Company(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Sep 15 19954 years fee payment window open
Mar 15 19966 months grace period start (w surcharge)
Sep 15 1996patent expiry (for year 4)
Sep 15 19982 years to revive unintentionally abandoned end. (for year 4)
Sep 15 19998 years fee payment window open
Mar 15 20006 months grace period start (w surcharge)
Sep 15 2000patent expiry (for year 8)
Sep 15 20022 years to revive unintentionally abandoned end. (for year 8)
Sep 15 200312 years fee payment window open
Mar 15 20046 months grace period start (w surcharge)
Sep 15 2004patent expiry (for year 12)
Sep 15 20062 years to revive unintentionally abandoned end. (for year 12)