A fuel cell arrangement including an arrangement for improving start up by heating the fuel cell through supplying selectively heated exhaust gases from the reformer to the air port of the fuel cell.
|
1. A fuel cell system for generating electrical power from a reaction of a reformed fuel with air in said fuel cell comprising a source of fuel, a reformer for reforming fuel from said source through the application of heated air thereto, and valve means for selectively supplying the heated air exhausted from said reformer to an air port of said fuel cell for rapid start up or unheated air to the air port of said fuel cell for normal operation thereof.
2. A fuel cell system as set forth in
3. A fuel cell system as set forth in
4. A fuel cell system as set forth in
5. A fuel cell system as set forth in
6. A fuel cell system as set forth in claim 1 wherein the valve means comprises valve means for selectively communicating the exhaust pipe of the reformer with the air port of the fuel cell or with the atmosphere and for selectively communicating atmospheric air with the air port of the fuel cell when the exhaust pipe is not communicating with the air port of the fuel cell.
7. A fuel cell system as set forth in
8. A fuel cell system as set forth in
9. A fuel cell system as set forth in
|
This invention relates to a fuel cell system and more particularly to an improved arrangement for operating a fuel cell to insure that it is brought to its operating temperature as rapidly as possible and to insure that the fuel cell does not become overheated.
It is well known that electrical energy can be supplied from a fuel cell that reacts an enriched or reformed fuel with air to produce electrical energy. Such systems include a cell that has fuel and air poles with an electrolyte matrix impregnated with an electrolyte such as phosphoric acid interposed therebetween. The devices operate with a hydrogen rich reformed gaseous fuel that produces electrical power and water through an electrical chemical reaction which is exothermic in nature. Because of the exothermic nature of the reaction, the fuel cell is generally operated at a temperature in the range of 200°C and has its temperature maintained by means of a cooling jacket. However, when starting up the fuel cell, it is important to insure that the operating temperature is reached as soon as possible so as to permit full power utilization and insure against the loss of energy.
Devices have been proposed for insuring more rapid start up through the use of heaters for the air supply system that supplies the air to the air pole of the fuel cell. However, such devices complicate the system and also require electrical energy for their operation, thus somewhat defeating their purpose. It has also been proposed to raise the fuel cell system temperature by temporarily supplying heated gas exhaust from the reformer to the cooling jacket. However, the circulation of the heated exhaust air from the reformer to the cooling jacket considerably complicates the piping and plumbing system and also can give rise to the possibility of overheating.
It is, therefore, a principal object of this invention to provide an improved, simplified and highly effective fuel cell.
It is a further object of this invention to provide a fuel cell arrangement wherein the fuel cell can be brought up to its operating temperature as soon as possible without the use of extraneous heating devices.
It is a further object of this invention to provide an improved system for heating a fuel cell to its operating temperature through-the use of the exhaust gases from the reformer as a heating device for this cell without necessitating a separate heating jacket or the use of these gases in the cooling jacket of the cell.
This invention is adapted to be embodied in a fuel cell system for generating electrical power from a reaction of a reformed fuel with air in the cell. The system comprises a source of fuel and a reformer for reforming the fuel from the source through the application of heated air therethrough. Valve means selectively apply the heated air from the reformer to the air port of the fuel cell for warm up or unheated air thereto for normal operation.
FIG. 1 is a partially schematic view of a fuel cell system constructed in accordance with an embodiment of the invention.
FIG. 2 is a partially schematic view showing the air control valve for the system in the non preheating mode.
FIG. 3 is a schematic view, in part similar to FIG. 2, showing the air valve in the preheating mode.
FIG. 4 is a partial schematic view showing another embodiment of the invention.
FIG. 5 is a partial schematic view, in part similar to FIGS. 1 and 4, and shows a still further embodiment.
Referring first in detail to FIG. 1, a fuel cell is identified generally by the reference numeral 11 and is comprised of an electrolytic matrix core 12 with fuel ports 13, air ports 14 and cooling ports 15 disposed in laminated form therein so as to cause an electrochemical reaction, as aforenoted. A reformer, indicated generally by the reference numeral 16 and comprised of a vaporizer 17, heater 18 and catalytic core 19, which are provided for supplying fuel to the fuel cell fuel port through a conduit 21. The conduit 21 delivers the fuel from the reformer 16 to a reservoir 22 wherefrom it is delivered to the fuel port 13 through a supply conduit 23.
The fuel to be reformed is supplied to the reformer 16 from a fuel tank 24. The fuel contained in the fuel tank 24 is a reaction fuel such as a methanol/water mixture that is reformed in the reformer 16 into a hydrogen rich reformed gas. A pump 25 supplies the fuel from the tank 24 to the reformer 16.
The heater 18 of the reformer is also supplied with fuel from a fuel tank 26 and this fuel may be of any known nature such as methanol and is delivered by a pump 27 to the burner unit 18. Forced air is supplied to the reformer 16 for combustion and heating purposes from the atmosphere through a blower 28. The heated air extends through a jacket of the reformer 16 and is discharged through an exhaust pipe 29.
In accordance with the invention, a control valve means, indicated generally by the reference numeral is provided for selectively supplying atmospheric air from an atmospheric air inlet 32 to the air port 14 and cooling jacket 15. In this condition, the exhaust gases from the reformer exhaust pipe 29 are delivered to the atmosphere through an atmospheric heating gas outlet 33. Alternatively, the exhaust gas control valve means 31 is movable to a position so as to supply heated exhaust gases from the reformer exhaust pipe 29 to the air ports 14 and cooling jacket 15. It should be noted that these exhaust gases are still rich in oxygen since the reformer 16 operates with considerable excess air.
In the embodiment of FIGS. 1 through 3, the control valve means 31 is a four port, two way valve which in normal operating mode (FIG. 2) is disposed so that the exhaust gases from the reformer exhaust pipe 29 are delivered to the atmosphere through the discharge 33 and atmospheric air is supplied from the inlet port 32 to a conduit 34 in which a blower 35 is positioned for delivery to the air port 14 and cooling jacket port 15. However, when starting up for quick warm up, the valve means 31 is positioned in the position shown in
FIG. 3 so that the exhaust pipe 29 communicates with the conduit 34 for supplying the heated air to the air port 14 and cooling jacket port 15. In this condition, atmospheric air from the port 32 merely communicates back with the atmosphere through the exhaust port 33. This system continues to operate in this mode until the fuel cell 11 is at to the proper temperature at which case the valve 31 is switched back to the position shown in FIG. 2.
It should be noted that the fuel exhausted from the fuel port 13 and fuel cell 11 is returned back to the burner 18 through a return passage 36 so that no fuel will be wasted.
In the embodiment of FIG. 1, the blower 35 was positioned between the valve 31 and the fuel cell 11. However, the blower 35 may be positioned at any of a variety of locations such as in communication with the exhaust port 37 of the fuel cell as shown in phantom in FIG. 1.
In the embodiments thus far described, the control valve means 31 comprise a four port, two way valve. However, other types of valve arrangements can be employed. FIG. 4 shows an arrangement wherein the control valve means is comprised of a three port, two way valve 51 which selectively communicates the exhaust pipe 29 with either the conduit 34 or the atmospheric discharge 33. In addition, there is provided a two port, two way valve 52 that selectively communicates with the conduit 34 downstream of the valve 51. The valve 52 when closed will preclude any flow from the conduit 34 to the atmospheric inlet 32. However, when the valve 52 is opened and the valve 51 is closed, then atmospheric air will be supplied to the air port of the fuel cell 11 as aforedescribed. Also, as aforedescribed, the blower 35 may either be positioned in the conduit 34 or in the exhaust conduit 37 as shown in the phantom line views in this figure.
FIG. 5 shows another arrangement of control valve means which, in this embodiment, include three two way, two port valves 101, 102 and 103. The valve 101 controls the communication between the exhaust pipe 29 and an atmospheric exhaust gas discharge 33. When closed, the valve 101 will direct the exhaust gases to the second control valve 102. Normally the control valve 102 will be closed when the control valve 101 is opened and vice versa. To this end, the control valve 101 and 102 may be operated by a common operator. The control valve 103, on the other hand, selectively communicates an air inlet port 32 with the conduit 34 so that when the control valve 102 is closed and the control valve 103 is opened, the system will operate normally. However, when the control valve 101 is closed and the control valve 102 is opened, the control valve 103 will be closed for heated start up. In addition to the valve arrangements disclosed, other valve arrangements can obviously be employed in conjunction with the invention operating on the aforedescribed principles.
It should be readily apparent from the foregoing description that a number of embodiments of fuel cell systems are disclosed, each of which will provide rapid warm up with a minimum of external and unnecessary plumbing or pipes. As noted, a variety of modifications may be made without departing from the spirit and scope of the invention, which is defined by the appended claims.
Mizuno, Yutaka, Matsubara, Hisayoshi, Hanahima, Toshiharu
Patent | Priority | Assignee | Title |
10476093, | Apr 15 2016 | Chung-Hsin Electric & Machinery Mfg. Corp.; CHUNG-HSIN ELECTRIC & MACHINERY MFG CORP | Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same |
11316180, | May 21 2020 | H2 PowerTech, LLC | Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations |
11712655, | Nov 30 2020 | H2 PowerTech, LLC | Membrane-based hydrogen purifiers |
11831051, | May 21 2020 | H2 PowerTech, LLC | Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations |
6221117, | Oct 30 1996 | DCNS SA | Hydrogen producing fuel processing system |
6242120, | Oct 06 1999 | DCNS SA | System and method for optimizing fuel cell purge cycles |
6375906, | Aug 12 1999 | DCNS SA | Steam reforming method and apparatus incorporating a hydrocarbon feedstock |
6376113, | Nov 12 1998 | DCNS SA | Integrated fuel cell system |
6383670, | Oct 06 1999 | DCNS SA | System and method for controlling the operation of a fuel processing system |
6451464, | Jan 03 2000 | DCNS SA | System and method for early detection of contaminants in a fuel processing system |
6455183, | Dec 19 2000 | Audi AG | Vacuum oxidant PEM fuel cell |
6465118, | Jan 03 2000 | DCNS SA | System and method for recovering thermal energy from a fuel processing system |
6494937, | Sep 27 2001 | DCNS SA | Hydrogen purification devices, components and fuel processing systems containing the same |
6495277, | Jul 27 1999 | DCNS SA | Fuel cell system controller |
6497971, | Mar 08 1999 | Audi AG | Method and apparatus for improved delivery of input reactants to a fuel cell assembly |
6537352, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
6569227, | Sep 27 2001 | DCNS SA | Hydrogen purification devices, components and fuel processing systems containing the same |
6632270, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
6641625, | May 03 1999 | MASSACHUSETTS DEVELOPMENT FINANCE AGENCY | Integrated hydrocarbon reforming system and controls |
6719831, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
6719832, | Sep 27 2001 | DCNS SA | Hydrogen purification devices, components and fuel processing systems containing the same |
6723156, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
6783741, | Apr 13 1994 | DCNS SA | Fuel processing system |
6811908, | Oct 06 1999 | DCNS SA | System and method for controlling the operation of a fuel processing system |
6818335, | Jan 03 2000 | DCNS SA | System and method for early detection of contaminants in a fuel processing system |
6824593, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
6869707, | Nov 12 1998 | DCNS SA | Integrated fuel cell system |
6878474, | Jan 03 2000 | DCNS SA | System and method for recovering thermal energy from a fuel processing system |
6887605, | Oct 06 1999 | DCNS SA | System and method for optimizing fuel cell purge cycles |
6953497, | Sep 27 2001 | DCNS SA | Hydrogen purification devices, components and fuel processing systems containing the same |
6979507, | Jul 26 2000 | DCNS SA | Fuel cell system controller |
6986797, | May 03 1999 | HYDROGEN FUELING CORP | Auxiliary reactor for a hydrocarbon reforming system |
6994927, | Nov 12 1998 | DCNS SA | Integrated fuel cell system |
7005113, | Aug 12 1999 | DCNS SA | Steam reforming method and apparatus incorporating a hydrocarbon feedstock |
7008708, | Jan 03 2000 | DCNS SA | System and method for early detection of contaminants in a fuel processing system |
7052530, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
7066973, | Aug 26 1996 | MASSACHUSETTS DEVELOPMENT FINANCE AGENCY | Integrated reformer and shift reactor |
7122260, | Sep 08 2003 | Wistron Corporation | Method and system for improving efficiency of fuel cell in portable devices |
7135048, | Aug 12 1999 | DCNS SA | Volatile feedstock delivery system and fuel processing system incorporating the same |
7195663, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
7208241, | Oct 06 1999 | DCNS SA | System and method for controlling the operation of a fuel processing system |
7368195, | Jan 03 2000 | IdaTech, LLC | System and method for early detection of contaminants in a fuel processing system |
7410531, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
7470293, | Oct 29 2004 | IdaTech, LLC | Feedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same |
7485381, | Jan 03 2000 | DCNS SA | System and method for recovering thermal energy from a fuel processing system |
7507384, | Jun 13 2002 | HYDROGEN FUELING CORP | Preferential oxidation reactor temperature regulation |
7601302, | Sep 16 2005 | DCNS SA | Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same |
7629067, | May 22 2006 | DCNS SA | Hydrogen-producing fuel processing systems and fuel cell systems with a liquid leak detection system |
7632322, | Jun 07 2005 | DCNS SA | Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same |
7655332, | Oct 06 1999 | DCNS SA | System and method for optimizing fuel cell purge cycles |
7682718, | Jun 26 2001 | DCNS SA | Fuel processor feedstock delivery system |
7736596, | Sep 16 2005 | DCNS SA | Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same |
7771882, | Oct 06 1999 | DCNS SA | System and method for controlling the operation of a fuel processing system |
7789941, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
7819955, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
7828864, | Apr 14 2002 | DCNS SA | Steam reforming fuel processor, burner assembly, and methods of operating the same |
7842428, | May 28 2004 | DCNS SA | Consumption-based fuel cell monitoring and control |
7846569, | Jul 27 1999 | DCNS SA | Methods for operating a fuel cell system under reduced load conditions |
7887958, | May 15 2006 | DCNS SA | Hydrogen-producing fuel cell systems with load-responsive feedstock delivery systems |
7939051, | May 23 2006 | DCNS SA | Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same |
7939211, | Oct 06 1999 | DCNS SA | System and method for controlling the operation of a fuel processing system |
7972420, | May 22 2006 | DCNS SA | Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same |
7981172, | Apr 14 2002 | DCNS SA | Steam reforming fuel processor, burner assembly, and methods of operating the same |
7985510, | May 28 2004 | DCNS SA | Utilization-based fuel cell monitoring and control |
8021446, | Sep 16 2005 | DCNS SA | Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same |
8038748, | Jun 07 2005 | DCNS SA | Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same |
8057575, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
8133626, | Jul 27 1999 | DCNS SA | Fuel cell system controller |
8157900, | May 22 2006 | DCNS SA | Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same |
8257466, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
8262752, | Dec 17 2007 | DCNS SA | Systems and methods for reliable feedstock delivery at variable delivery rates |
8277997, | Jul 29 2004 | DCNS SA | Shared variable-based fuel cell system control |
8438907, | May 22 2006 | DCNS SA | Hydrogen-producing fuel processing systems with a liquid leak detection system |
8563188, | Jul 27 1999 | DCNS SA | Fuel cell system controller |
8608814, | Dec 17 2007 | DCNS SA | Systems and methods for reliable feedstock delivery at variable delivery rates |
8636828, | Oct 30 1996 | DCNS SA | Hydrogen purification membranes, components and fuel processing systems containing the same |
8696772, | Apr 14 2002 | DCNS SA | Steam reforming fuel processor, burner assembly, and methods of operating the same |
8728676, | Oct 06 1999 | DCNS SA | System and method for optimizing fuel cell purge cycles |
9515334, | May 28 2004 | DCNS SA | Utilization-based fuel cell monitoring and control |
Patent | Priority | Assignee | Title |
4310604, | Jul 14 1980 | Energy Research Corporation | Fuel cell system and temperature control therefore |
4362789, | Sep 21 1981 | FUELCELL CORPORATION OF AMERICA | Fuel cell cooling and recirculation system |
4678723, | Nov 03 1986 | International Fuel Cells Corporation | High pressure low heat rate phosphoric acid fuel cell stack |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 15 1994 | Yamaha Hatsudoki Kabushiki Kaisha | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 18 1998 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 03 1999 | ASPN: Payor Number Assigned. |
Aug 29 2002 | M185: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 25 1998 | 4 years fee payment window open |
Jan 25 1999 | 6 months grace period start (w surcharge) |
Jul 25 1999 | patent expiry (for year 4) |
Jul 25 2001 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 25 2002 | 8 years fee payment window open |
Jan 25 2003 | 6 months grace period start (w surcharge) |
Jul 25 2003 | patent expiry (for year 8) |
Jul 25 2005 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 25 2006 | 12 years fee payment window open |
Jan 25 2007 | 6 months grace period start (w surcharge) |
Jul 25 2007 | patent expiry (for year 12) |
Jul 25 2009 | 2 years to revive unintentionally abandoned end. (for year 12) |