The circuit comprises a tank capacitance and a charge circuit supplied with the same voltage as the bridge and comprising an inductance and a control transistor. There is also provided a control circuit, which comprises an oscillator controlling the periodic switching of control transistor and a comparator which controls the momentary clamping of control transistor in the condition wherein the charge circuit is interrupted when the difference between the voltage across capacitance and the power supply voltage exceeds a present maximum value and the unclamping of the same transistor when such difference falls below a preset minimum value. A further comparator similarly clamps control transistor if there is an excess current in the transistor itself.

Patent
   RE35041
Priority
Jul 22 1988
Filed
Dec 14 1992
Issued
Sep 26 1995
Expiry
Dec 14 2012
Assg.orig
Entity
Large
3
5
all paid
1. A charge pump circuit for driving a power mos transistor bridge where the bridge is supplied with a bridge power supply voltage, said charge pump circuit comprising:
a tank capacitance for storing a charge corresponding to the driving voltage for the power mos transistor bridge;
an inductance responsive to said bridge power supply voltage for delivering a charge current to said capacitance;
a control transistor coupled to said inductance and tank capacitance so that, in a first condition of the control transistor, the inductance delivers the charge current to the capacitance and, in a second condition thereof, the delivery of the charge current is interrupted;
an oscillator coupled to said control transistor having a preset frequency for periodically switching the control transistor between its first and second conditions; and
means including a comparator responsive to the driving voltage of the tank capacitance and the bridge power supply voltage for (a) inhibiting the periodic switching of the control transistor by the oscillator in response to the difference between the driving voltage and the bridge power supply voltage exceeding a preset maximum value and (b) restarting the said periodic switching operation in response to said difference falling below a preset minimum value.
2. charge pump circuit according to claim 1 including a further comparator responsive to the magnitude of the charge current delivered by the inductance and a preset threshold for controlling the periodic switching of the control transistor by the oscillator to thus prevent excessive build up of said charging current in the inductance in response to the charging current exceeding said preset threshold.
3. charge pump circuit according to claim 1, characterized in that said control transistor is of the bipolar type.
4. charge pump circuit according to claim 1, characterized in that said control transistor is shunt connected between said inductance and earth with respect to said capacitance.
5. charge pump circuit according to claim 1, characterized in that said comparator is of the hysteresis type.
6. A charge pump circuit, comprising:
a capacitance for storing a charge corresponding to a driving voltage;
an inductance coupled to the capacitance for delivering a charge current to the capacitance;
a control transistor coupled to the inductance and the capacitance and being responsive to a control signal having a first state causing charge current to be delivered from the inductance to the capacitance and a second state causing charge current to be stored in the inductance and not delivered to the capacitance;
an oscillator coupled to the control transistor generating a frequency for periodically supplying the first and second states of the control signal; and
a switching circuit for inhibiting the periodic supplying of the first and second states of the control signal when a difference between the driving voltage and a supply voltage exceeds a maximum value and for restarting the periodic supply of the first and second states of the control signal when the difference is less than a minimum value. 7. The charge pump circuit of claim 6, wherein the switching circuit comprises a first comparator, coupled to and responsive to the driving voltage and the supply voltage, determining a difference between the driving voltage and
the supply voltage. 8. The charge pump circuit of claim 7, further comprising a second comparator, coupled to and responsive to a magnitude of the charge current and a preset threshold, controlling the periodic supplying of the first and second states of the control signal to prevent a build up of charging current in the inductance when the charging current exceeds the preset threshold. 9. The charge pump circuit of claim 6, wherein the control transistor is a bipolar transistor. 10. The charge pump circuit of claim 6, wherein the control transistor is shunt coupled between a ground and the inductance and the capacitance. 11. The charge pump circuit of claim 6, wherein the first comparator is a hysteresis type comparator. 12. The charge pump circuit of claim 7, wherein the capacitor is a tank capacitor. 13. The charge pump of claim 7, wherein the supply voltage is provided by a bridge power supply. 14. The charge pump circuit of claim 13, wherein the charge pump circuit supplies the driving voltage to a power mos
transistor bridge. 15. A charge pump circuit, comprising:
a capacitance means for storing a charge corresponding to a driving voltage;
an inductance means coupled to the capacitance means for delivering a charge current to the capacitance means;
a control transistor means, coupled to the capacitance means and the inductance means, and having means for responding to a control signal having a first state causing charge current to be delivered from the inductance means to the capacitance means and a second state causing charge current to be stored in the inductance means and not delivered to the capacitance means;
an oscillator means, coupled to the control transistor means, for generating a frequency for periodically supplying the first and second states of the control signal; and
a switching circuit means for inhibiting the periodic supplying of the first and second states of the control signal when a difference between the driving voltage and a supply voltage exceeds a maximum value and for restarting the periodic supplying of the first and second states of the control signal when the difference is less than a minimum value.
16. The charge pump circuit of claim 15, wherein the switching circuit means comprises a first comparator means, coupled to and responsive to the driving voltage and the supply voltage, for determining a difference between the driving voltage and the supply voltage. 17. The charge pump circuit of claim 16, further comprising a second comparator means, coupled to and responsive to a magnitude of the charge current and a preset threshold, for controlling the periodic supplying of the first and second states of the control signal to prevent a build up of charging current in the inductance means when the charging current exceeds the preset threshold. 18. The charge pump circuit of claim 17, wherein the first comparator means is a hysteresis type comparator means. 19. The charge pump circuit of claim 18, wherein the control transistor means is shunt coupled between a ground and the inductance means and the capacitance means. 20. The charge pump circuit of claim 19, wherein the capacitance means is a tank capacitor.

The present invention relates to an inductance and capacitance charge pump circuit for driving power MOS transistor bridges.

As is well known a bridge circuit consists of two half-bridges with two transistors in series called higher or high side and lower or low side respectively according to whether they are on the side of the power supply or on that of earth. The driving stages associated with the two transistors are called in a similar manner.

When the transistors used are of the power MOS type, in particular N-channel DMOS, their drive must be able to produce a gate source voltage of 10V, so as to ensure least resistance when the transistors operate in the triode zone. This means that a voltage of 10V must be applied to the lower transistor gate, while a voltage which must be 10V higher than the bridge power supply voltage must be applied to that of the higher transistor.

If the power supply voltage to the bridge is relatively high (from 10 to 12V), it is obviously easy to obtain the 10V voltage necessary for the lower MOS transistor drive. For the higher transistor drive, however, it is necessary to use a charge pump circuit to raise the voltage up to the required value.

With low power supply voltages (say, 5V) the lower transistor drive also fails. Two charge pump circuits are then required, one with a lower pump capacitance for the lower transistor and another with a higher pump capacitance for the higher transistor.

A charge pump circuit usually comprises one or more pump capacitors according to the required output voltage (for example, in the above case, one for driving the lower transistor, two for driving the higher transistor), a tank capacitor frequently constituted by the equivalent input capacitance of the driven transistor and a fixed frequency oscillator which scans the charge transfer to or from the pump capacitors to the tank capacitor.

The abundant use of capacitors makes current charge pump circuits inapplicable in a completely monolithic form unless components are used which are external to the integrated circuit.

In addition, again due to such capacitors, a certain slowness in reaching the maximum output voltage required must be attributed to them. As an order of magnitude, with an oscillator having a frequency of 500 KHz, between 20 and 100 microseconds are required to reach 10V, corresponding to 10-50 oscillator clock strokes.

This places a further serious limitation on the use for a bridge circuit which, say, is used in a PWM current control ring in an inductive load with typical operating frequencies of 10-50 KHz, because frequencies of this type (corresponding to a period from 100 to 20 microseconds respectively) require much shorter ignition and blanking times.

The reduction of switching times requires the use of Bootstrap capacitative techniques, which frequently burden the driving circuits, do not completely solve the problems of low voltage drives and lastly cannot be accomplished in a monolithic form.

It should lastly be noted that, as already pointed out, in the case of a low voltage power supply, not one but two charge pump circuits are required and this of course cannot but complicate the above problems.

In view of this state of the art, the object of the present invention has been to accomplish a charge pump circuit, which was to be relatively fast, easily accomplished in a monolithic form and above all used as the only circuit both for the lower and for the higher transistor, with low as well as high power supply voltage.

According to the invention such object has been attained with a charge pump circuit, which comprises in a known manner a tank capacitance for storing a charge corresponding to the desired driving voltage and a charge circuit of said capacitance supplied by the bridge power supply voltage and is characterized in that said charge circuit includes an inductance and a control transistor operated to switch periodically from a condition wherein a charge current is delivered from said inductance to said capacitance and a condition wherein said delivery and charge accumulation in said inductance are interrupted, there being provided for said control transistor a control circuit comprising an oscillator having a preset frequency and a comparator suitable for reading the difference between the voltage across said capacitance and the power supply voltage and to control the clamping of the control transistor in said delivery condition when said difference is higher than a preset maximum value and the unclamping of the control transistor and the restart of its periodic switching operations when said difference falls below a preset minimum value.

The circuit according to the invention thus reduces the use of capacitors to tank capacitance only. Charge times are thus substantially shortened, entirely to the advantage of the speed of ignition and blanking of the bridge and of its use in the most diverse applications. In addition a single circuit is able to operate both MOS transistors, either with a low or with a high power supply voltage, placing at their disposal as required the voltage required for their drive.

An embodiment of the present invention is illustrated for greater clarity, but with no limiting intent, in the enclosed drawings, wherein:

FIG. 1 shows a power MOS transistor half-bridge with driving stages supplied by means of a charge pump circuit according to the present invention;

FIG. 2 shows the circuitry details of the charge pump circuit of FIG. 1;

FIGS. 3 and 4 Q' of the bistable multivibrator FF, is in its turn connected to the gate of transistor M3, which has the drain connected to the base of transistor T and the source connected to earth.

The entire circuit described may be integrated in a single monolithic structure, except for inductance L and capacitance C. Naturally an integration technique is necessary to provide for the coexistence of the bipolar and MOS transistors.

From the described structure there derives the following operating mode of the charge pump circuit of FIG. 2, assuming it to be used for driving a power MOS transistor half-bridge as illustrated in FIG. 1.

As already said, the oscillator OSC delivers a fixed frequency clock signal SC, which is subsequently transformed into a corresponding inverted clock signal SC' by inverter INV. The waveform of the signal SC' is illustrated in curve (a) of FIGS. 3 and 4, where the X-axis represents time t.

When SC'="0", the output Q of the bistable multivibrator FF is at logic level "1" (curve d) of FIGS. (3 and 4) and the bipolar transistor T is in conduction. Consequently, inductance L and transistor T are passed through by a current I which increases according to the law I=Vs/1×t.

In the case of low power supply voltage Vs=5V, the slope of the growth curve of I is that illustrated in curve (e) of FIG. 3 and is insufficient to allow Vr to reach the threshold value Vth of the comparator CP2 before the inverted clock signal SC' switches to logic level "1" and consequently causes the output Q of the bistable multivibrator FF to switch to "0". The output V2 of comparator CP2 thus remains at logic level "0" (curve b) of FIG. (3).

The blanking of transistor T determines the transfer of the energy stored in inductance L to capacitance C with consequent growth of the output voltage Vp.

It is of course necessary for the blanking time of transistor T to be sufficiently long to allow the transfer from L to C of the entire stored charge. Since in the case considered the output voltage of the charge pump circuit CPC must be according to the equation Vp=Vs+15 V with Vs=5V, the discharge slope of the current from L to C during the charge transfer is three times greater, so that a transistor T blanking time is required which is greater than or equal to 1/3 of that of conduction. This occurs provided that, as illustrated in FIG. 3, the duty cycle of the SC' signal is less than or equal to 50%.

When SC' then goes back to value "0", transistor T reignites and inductance L charges again, while capacitance C partially discharges on the driving stages DS1 and DS2 (curve f) of FIG. (3).

The cycle described then repeats itself until the output voltage Vp does not reach the upper tripping threshold of comparator CP1, that is Vs+Vthh. Once this threshold is exceeded, the output V1 of the comparator CP1 goes to "1" (curve c) of FIG. (3), thus causing the switching of bistable multivibrator FF to a reset state which makes the system insensitive to the clock signal SC and keeps transistor T blanked out.

Capacitance C then discharges progressively until the lower tripping threshold, Vs+Vthl, of the hysteresis comparator CP1 is reached. The discharge time obviously depends on the characteristics of the driving stages DS1 and DS2.

Once the aforesaid lower tripping threshold has been reached, the output voltage V1 of the comparator CP1 returns to "0", the bistable multivibrator FF is released and the clock signal SC returns to controlling an alternation of ignitions and blankings of transistor T and a consequent repetition of periodic energy transfers from inductance L to capacitance C.

The result is that at the output of the charge pump circuit CPC there is made available a voltage Vp variable between Vs+Vthh and Vs+Vthl, in the case considered between Vs+15V and Vs+14V. Such voltage is more than sufficient for driving the lower MOS transistor M1, for which recourse is made to the voltage regulator RT, and it is also sufficient for driving the higher MOS transistor M2.

If the power supply voltage Vs is higher, say Vs=12V, the behaviour of the charge pump circuit CPC does not change conceptually, but the growth of the current I during the ignition stages of transistor T has a greater slope (curve e) of FIG. (4). The system would thus tend to reach levels of current and energy in inductance L such as not to allow their complete transfer to capacitor C during the subsequent blanking stages of transistor T. There would thus occur an accumulation of current in inductance L and an increase in the current passing through transistor T, such as to cause an undesirable increase in the dissipated power and a reduced efficiency of the charge pump circuit.

To avoid this drawback the comparator CP2 is provided, which limits the current in inductance L to the value corresponding to its tripping threshold Vth. As soon as I reaches this value, the output voltage V2 of comparator CP2 rises to logic level "1" causing a momentary reset of bistable multivibrator FF and the equally momentary blanking of transistor T. Impulses Q are thus shorter and correspondingly shorter are the conduction times of transistor T. Naturally the limiting value of the current must be set so as to ensure the transfer of energy from L to C within the blanking time of transistor T.

In this case again the charge pump circuit CPC makes available at its output a voltage Vp between Vs+Vthh and Vs+Vthl, in the example considered between Vs+15V and Vs+14V.

It thus appears evident that a single charge pump circuit according to the invention, which can be integrated completely except for inductance L and capacitance C, ensures the required driving voltage both for the lower MOS and for the higher MOS, both with a high and with a low supply voltage Vs. The reduced capacitance used, on the other hand, reduces tripping times, allowing the use of the charge pump circuit and of the half-bridge with which it is associated also for applications which require short ignition and blanking times of the power transistors. To this end it is particularly important that the accomplishment of transistor T be in the form of a bipolar transistor, which must have a lower tripping threshold than that of an MOS transistor so as to be able to switch at a supply voltage lower than that of conduction of the MOS transistor.

Rossi, Domenico, Diazzi, Claudio

Patent Priority Assignee Title
5903173, May 12 1997 Caterpillar Inc. Low side driver circuit with diagnostic output
6566847, Jul 29 2002 Taiwan Semiconductor Manufacturing Company Low power charge pump regulating circuit
7151328, Mar 24 2003 Vitesco Technologies GMBH Auxiliary power source and method for operating the auxiliary power source, as well as circuit arrangement for switching a load
Patent Priority Assignee Title
4097773, Nov 03 1975 Switched mode power supply
4312029, Jun 22 1979 AG COMMUNICATION SYSTEMS CORPORATION, 2500 W UTOPIA RD , PHOENIX, AZ 85027, A DE CORP DC-to-DC Converter with reduced power loss during turn off
4348598, Jan 25 1980 Power-pulse switching circuit
4751403, Jun 15 1984 Hitachi, Ltd. Transistor driving circuit and circuit controlling method
4837457, Dec 19 1986 U S PHILIPS CORPORATION, A CORP OF DE High voltage power transistor circuits
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 14 1992SGS-Thomson Microelectronics, S.r.l.(assignment on the face of the patent)
Mar 08 1993ROSSI, DOMENICOSGS-THOMSON MICROELECTRONICS S R L ASSIGNMENT OF ASSIGNORS INTEREST 0064640304 pdf
Mar 08 1993DIAZZI, CLAUDIOSGS-THOMSON MICROELECTRONICS S R L ASSIGNMENT OF ASSIGNORS INTEREST 0064640304 pdf
Date Maintenance Fee Events
Jun 15 1998M184: Payment of Maintenance Fee, 8th Year, Large Entity.
May 30 2002M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 26 19984 years fee payment window open
Mar 26 19996 months grace period start (w surcharge)
Sep 26 1999patent expiry (for year 4)
Sep 26 20012 years to revive unintentionally abandoned end. (for year 4)
Sep 26 20028 years fee payment window open
Mar 26 20036 months grace period start (w surcharge)
Sep 26 2003patent expiry (for year 8)
Sep 26 20052 years to revive unintentionally abandoned end. (for year 8)
Sep 26 200612 years fee payment window open
Mar 26 20076 months grace period start (w surcharge)
Sep 26 2007patent expiry (for year 12)
Sep 26 20092 years to revive unintentionally abandoned end. (for year 12)