refrigerant leakage in heating, ventilating and air conditioning systems employing hydrofluorocarbon refrigerants is determined by adding a mixture of including predetermined amounts of a napthalamide optical brightner with an appropriate lubricant to the system. Inspection of the system under ultraviolet light provides an indication of any leakage occuring in the system of liquid and/or gas.

Patent
   RE35395
Priority
Aug 25 1995
Filed
Aug 25 1995
Issued
Dec 10 1996
Expiry
Aug 25 2015
Assg.orig
Entity
Small
23
11
all paid
1. A method of detecting leaks in heating, ventilating and air conditioning systems employing hydrofluorocarbon refrigerants and a refrigerant lubricant comprising the steps of:
preparing a mixture of including naphthalamide as a fluorescent optical brightener with a refrigerant lubricant;
adding a predetermined amount of the mixture to the lubricant reservoir of the heating, ventilating and air conditioning system employing a refrigerant liquid consisting of a hydrofluorocarbon refrigerant and a refrigerant lubricant;
operating the system for a predetermined period to allow the mixture to thoroughly mix with the refrigerant liquid throughout the system;
examining the system with an ultraviolet lamp directed at the system;
determining the presence of a leak by the presence of a colored fluorescence detectable under the ultraviolet light;
and said naphthalamide and refrigerant lubricant appearing at a leak sight remaining to provide an indication of said leak.
2. A method of detecting leaks in heating, ventilating and air conditioning systems as claimed in claim 1 wherein:
said adding step consists of the addition of at least 0.001 grams of said mixture to a system employing a mineral oil refrigerant lubricant for each 100 grams of said mineral oil refrigerant lubricant.
3. A method of detecting leaks in heating, ventilating and air conditioning systems as claimed in claim 1 wherein:
said adding step consists of the addition of at least 0.001 grams or said mixture to a system employing a polyalkylene glycol refrigerant lubricant for each 100 grams of said polyalkylene glycol refrigerant lubricant.
4. A method of detecting leaks in heating, ventilating and air conditioning systems as claimed in claim 1 wherein:
said adding step consists of the addition of at least 0.001 grams of said mixture to a system employing a polyol ester refrigerant lubricant for each 100 grams of said polyol ester refrigerant lubricant.
5. A method of detecting leaks in heating, ventilating and air conditioning systems as claimed in claim 2 wherein:
said mixture consists of 0.5 grams of naphthalamide fluorescent optical brightener with 1 fluid ounce of mineral oil.
6. A method of detecting leaks in heating, ventilating and air conditioning systems as claimed in claim 3 wherein:
said mixture consists of 0.5 grams of naphthalamide fluorescent optical brightener with 1 fluid ounce of polyalkylene glycol.
7. A method of detecting leads in heating, ventilating and air conditioning systems as claimed in claim 4 wherein:
said mixture consists of 0.5 grams of naphthalamide fluorescent optical brightener with 1 fluid ounce of polyol ester.
8. A method of detecting leaks in heating, ventilating and air conditioning systems as claimed in claim 1 wherein:
said mixture of naphthalamide optical brightener and refrigerant lubricant are allowed to remain in the system to provide an indication of possible future leaks.

1. Field of the Invention

The present invention relates to the effective leak detection in heating, ventilating and air conditioning systems and more particularly to such systems which utilize hydrofluorocarbon (HFC) refrigerants, by the addition of optical brighteners.

2. Background Art

Because of the damage that Freon® (CFC) refrigerants are doing to the ozone layer, it has become necessary for the development of alternative refrigerants which are environmentally friendly. DuPont, International Chemicals and others have developed HFC refrigerants, which are much safer in the environment and have an ozone depletion factor of 1, rather than an ozone depletion factor of 8, as is found for Freon refrigerants. The use of these new refrigerants has rendered prior leak detection systems employing materials such as those described in U.S. Pat. Nos. 4,758,366 and 5,149,453, both issued to Manher Parekh on Jul. 19, 1988 and Sep. 26, 1992, respectively, as ineffective. These patents teach yellow fluorescent dye dissolved with mineral oils which are hydrocarbons and therefore poorly soluble in the new polyalkylene glycol and polyol ester lubricants which are being used in the new HFC refrigerant containing systems. For this reason, the hydrocarbon soluble dyes described in the above referenced patents are not suitable for use in heating, ventilating and air conditioning systems employing the new HFC refrigerants.

The non-polar nature of the dyes disclosed by Parekh render them unsuitable for use in highly polar alcohol type refrigeration lubricants such as polyalkylene glycols. For this reason, the hydrocarbon soluble dyes described by Parekh are not suitable for use in the new HFC (Suva from DuPont) refrigerants.

The new HFC systems reach higher operating temperatures than the old CFC systems because of different thermodynamic properties. Typical operating temperatures of the new HFC refrigerant systems reach temperatures in excess of 420 degrees Fahrenheit while the old CFC systems reached temperatures of 300 degrees Fahrenheit. It is claimed by Parekh that the perylene fluorescent dyes are stable up to 400 degrees Fahrenheit. The temperature stability of the perylene dyes is actually much lower, about 250 degrees Fahrenheit.

This problem of poor temperature stability is clue to the highly delocalized electronic configuration of the perylene molecule. This delocalization of electrons is actually what gives the perylene molecule its fluroescence. When the perylene dye is exposed to 365 nanometer wavelength ultraviolet light, electrons are excited and jump to a higher energy level. This excitation happens only briefly and then the electrons fall back to their original energy level and emit photons of a specific wavelength which in this case is the wavelength for yellow light. When the perylene molecule is exposed to high temperatures, its electronic configuration is scattered and later permanently destroyed rendering it a non-fluorescent molecule and therefore ineffective at locating leaks. The perylene dyes described by Parekh were used to find leaks in oils and in systems which contain a hydrocarbon based fluid (which all refrigeration lubricants used in CFC containing systems are) to enable the user to find leaks. The perylene dyes claimed by Parekh have been used for over 60 years to find leaks in mineral based systems which are not exposed to high operating temperatures. Perylene dyes are therefore a poor choice for leak detection in systems which are exposed to elevated temperatures such as refrigeration systems which contain the new HFC refrigerant manufactured by DuPont called Suva. The perylene dyes described by Parekh work poorly in the elevated temperatures of the CFC containing systems and even worse in the new HFC containing systems where the operating temperatures are much higher, up to 420 degrees Fahrenheit. For these reasons, a new fluorescent dye composition is required for the HFC systems which use a new type of polar refrigeration lubricant and have very high operating temperatures.

For example, an automobile air conditioning system was charged with R-134a (DuPont). Approximately 0.1 grams of perylene fluorescent dye (FC-131 Morton Chemical) was added to 7.75 ounces of a polyalkylene glycol refrigerant lubricant and then scanned with an ultraviolet light. A bright yellow fluorescence was observed. The system was charged with the dye-lubricant mixture and then operated. A temperature gauge was attached to the evaporator core so that an accurate operating temperature could be measured. A valve was placed on a hose so that some refrigerant/oil could be released and then observed when an ultraviolet lamp was used. Table I shows the results obtained.

TABLE I
______________________________________
Operating Time
Operating Temp
Fluorescence of
(Minutes) (degrees F.) Dye/Refrig./Oil
______________________________________
2 110 Excellent
5 230 Good
7 250 Weak
10 290 None
12 310 None
15 380 None
______________________________________

It is the object of the present invention to provide an improved leak detection composition which incorporates an alcohol soluble optical brightener dye into a mineral oil, a polyalkylene glycol or polyol ester refrigeration lubricant. This combination of brightener and lubricant will then be incorporated into a refrigeration system with the object being to locate leaks developed within the system.

It has been found that the new leak detection additives described herein will have excellent oxidation stability up to 470 degrees Fahrenheit and may be left inside the system for the location of leaks on future occasions. The brightener disclosed is particularly intended for use in HFC refrigerants employing a 1,1,1,2-tetrafluoroethane (R-134a). The brightener will be circulated throughout the refrigeration system and the system will be inspected with an ultraviolet light (black light) having an emission wavelength of 365 nanometers.

The preferred composition disclosed herein utilizes an optical brightener similar to those used in the past to improve the whiteness of textiles. These optical brighteners are invisible in ordinary light and make a perfectly clear water white solution. When an ultraviolet lamp is directed at the lubricant/brightener mixture, a striking fluorescence is immediately noticeable. Another advantage of these optical brighteners is that they are able to fluoresce with the refrigerant gas itself and not just the lubricant. The yellow fluorescent dyes described in the aforementioned patents work only on the lubricant and not the refrigerant gas when incorporated into the new HFC systems.

The present invention is directed to the detection of leaks in refrigeration systems employing the new HFC environmentally safe refrigerants. The refrigeration system would employ a refrigeration liquid comprising a HFC refrigerant, a mineral oil, a polyalkylene glycol or polyol ester refrigerant lubricant having at least 0.001 grams of optical brightener dissolved per 100 grams of refrigeration liquid.

In one practical embodiment of the present invention a mixture of 0.5 grams of naphthalamide dye was individually mixed with 1 ounce of mineral oil, polyalkylene glycol, and polyol ester refrigeration lubricants. Approximately 1/4 ounce of each of these dye mixtures was added to three different automotive air conditioning systems.

The dye/mineral oil mixture was added to a CFC containing system. The CFC system was then charged with R-134a (DuPont) and 9.75 fluid ounces of mineral oil lubricant were added to the system. The system was then operated for 5 minutes to allow the dye mixture to mix with the mineral oil. The system was then scanned with an ultraviolet lamp to check for leads. A greenish-blue color was seen at a pinpoint leak in a black EPDM hose. This greenish-blue color indicated a leak in the CFC system.

The dye/polyalkylene glycol mixture and the dye/ester mixture were added to the lubricant reservoir of two separate automotive air conditioning systems and the process of finding leaks was followed according to the above. This time a greenyellow fluorescence was seen at the leak site after irradiation with UV light.

While but three embodiments of the present invention have been disclosed, it will be obvious to those skilled in the art that numerous modifications may be made without departing from the spirit of the present invention which shall be limited only by the scope of the claims appended hereto.

Henry, Richard G.

Patent Priority Assignee Title
10151663, Sep 15 2015 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants
5742066, Feb 08 1996 Bright Solutions, Inc. Light source for use in leak detection in heating, ventilating, and air conditioning systems that utilize environmentally-safe materials
5858930, May 30 1997 UNITED COLOR MANUFACTURING, INC Liquid Benz-iso-Quinoline derivatives
5918269, Feb 18 1998 Milliken & Company Naphthalimide colorants with improved compatibility in refrigeration and air conditioning lubricants
5935272, Feb 02 1999 Milliken & Company Compositions comprising aryloxypolyoxyalkylene naphthalimide derivative colorants
5998621, Feb 02 1999 Milliken & Company Aryloxy-poly(oxyalkylene) naphthalimide derivative colorants
6132636, Oct 23 1998 AlliedSignal Inc Leak-detecting refrigerant compositions containing oxazolyl-coumarin dyes
6183663, Oct 09 1998 Bright Solutions, INC Leak detection dye delivery system
6251302, Jan 15 1997 MicroBioMed Corporation Chemically substituted chromophores and fluorophores of high solubility and their use as fluid visualizing agents
6253810, Sep 18 1996 CPS PRODUCTS CANADA LTD Apparatus for detecting leaks in a pressurized air conditioning or refrigeration system
6293138, Dec 10 1999 Visteon Global Technologies, Inc Apparatus and method for introducing leak detection dye into an air conditioning system
6327897, Jan 24 1997 MAINSTREAM ENGINEERING CORPORATION Method of introducing an in situant into a vapor compression system, especially useful for leak detection, as well as an apparatus for leak detection and a composition useful for leak detection
6345516, Aug 07 2000 HANON SYSTEMS Adsorbent unit with refrigerant tracer dye compartment
6469300, Sep 05 2000 APOGEM CAPITAL LLC, SUCCESSOR AGENT Apparatus and method for injecting a concentrated fluorescent dye into a sealed air-conditioning system
6700735, Jul 27 2001 HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Disk drive lubricant reservoir systems and lubricants used therein
6807976, Nov 04 2002 Bright Solutions, INC Fluid addition apparatus
6851442, Nov 04 2002 Bright Solutions, INC Fluid addition apparatus
6958876, Jul 27 2001 International Business Machines Corporation Leak detection system of hard disk drives with lubricant reservoir
7073346, Mar 21 2002 Ritchie Engineering Company, Inc. Compressor head, internal discriminator, external discriminator, manifold design for refrigerant recovery apparatus and vacuum sensor
7077149, Oct 10 2003 Bright Solutions, INC Fluid injection system
7159412, Mar 21 2002 Ritchie Engineering Company, Inc. Compressor head, internal discriminator, external discriminator, manifold design for refrigeration recovery apparatus
7310965, Mar 21 2002 Ritchie Engineering Company, Inc. Compressor head, internal discriminator, external discriminator, manifold design for refrigeration recovery apparatus
7428822, Mar 21 2002 Ritchie Engineering Company, Inc. Vacuum sensor
Patent Priority Assignee Title
1915965,
2096099,
3234045,
3361547,
3572085,
3770640,
4758366, Feb 25 1985 Spectronics Corporation Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors
4938063, Sep 13 1988 Spectronics Corporation Apparatus and method for infusing a material into a closed loop system
5149453, Feb 25 1985 Spectronics Corporation Method for detecting leakage in a refrigeration system
5167867, Sep 26 1989 ExxonMobil Upstream Research Company Test-fluid composition and method for detecting leaks in pipelines and associated facilities
5279967, Jan 24 1992 Nalco Chemical Company Fluorescent labeling of hydrocarbons for source identification
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 25 1995Bright Solutions, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 17 1998M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Apr 24 2002M284: Payment of Maintenance Fee, 8th Yr, Small Entity.
Apr 25 2006M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Dec 10 19994 years fee payment window open
Jun 10 20006 months grace period start (w surcharge)
Dec 10 2000patent expiry (for year 4)
Dec 10 20022 years to revive unintentionally abandoned end. (for year 4)
Dec 10 20038 years fee payment window open
Jun 10 20046 months grace period start (w surcharge)
Dec 10 2004patent expiry (for year 8)
Dec 10 20062 years to revive unintentionally abandoned end. (for year 8)
Dec 10 200712 years fee payment window open
Jun 10 20086 months grace period start (w surcharge)
Dec 10 2008patent expiry (for year 12)
Dec 10 20102 years to revive unintentionally abandoned end. (for year 12)