Methods and compositions for detecting the presence of tumors are provided, where a physiological sample is assayed for the expression product of a c-onc gene as diagnostic for the presence of the tumor. The method finds use in both pre-and postoperative situations with a host suspected of having transformed malignant cells.

Patent
   RE35491
Priority
Nov 04 1982
Filed
Oct 12 1989
Issued
Apr 08 1997
Expiry
Apr 08 2014
Assg.orig
Entity
Large
33
6
all paid
8. A method for evaluating the probability of leukemia in a human host, said method comprising:
combining antibodies specific diagnostic for the presence of for the oncogene myb and blood cells from a human host suspected of having leukemia; and
determining the level of binding of said antibodies to said host blood cells as diagnostic of a leukemic host.
1. A method for evaluating the probability of cellular malignancy in a human host, said method comprising:
bringing into close associate (1) a probe specific for a cellular product, said cellular product being mRNA or its expression product, where said mRNA is complementary to a dna sequence of a retrovirus capable of transforming a normal cell to malignancy and said probe is a nucleic acid sequence capable of duplexing with said mRNA or antibody capable of binding to said expression product, and (2) a source from said human host suspected of containing cellular product; and
determining the level of binding of said probe to said cellular product, wherein an elevated level is indicative of the presence of cellular malignancy.
2. A method according to claim 1, wherein said source is cells from said human host.
3. A method according to claim 1, wherein said source is a physiological fluid from said human host.
4. A method according to claim 1, wherein said dna sequence is selected from the group consisting of the oncogenes src, fps, yes, fos, myc, erb, myb, rel, mos, bas, abl, ras, fes, fms, and sis.
5. A method according to any of claims 1, 2, 3, or 4, wherein said probe is an antibody.
6. A method according to claim 5, wherein said antibody is labeled with a label capable of providing a detectible signal.
7. A method according to claims 1, 2, 3, or 4, wherein said probe is a polynucleotide of at least 14 bases complementary to said mRNA.
9. A method according to claim 8, wherein said antibodies are produced in response to an oligopeptide mimicking a portion of the conformation of the myb protein.
10. A method for substantially eliminating human malignant cells from a combination of human malignant and normal cells, which comprises:
combining under cytotoxic conditions said combination of cells with an antibody specific for an expression product of a dna sequence present in a retrovirus genome or substantially complementary to said dna sequence, which sequence is expressed in said malignant cells as a surface protein; and
isolating normal cells, substantially free of malignant cells.
11. A method according to claim 10, wherein said separation occurs in the presence of complement as said cytotoxic condition.
12. A method according to claim 10, wherein said antibodies are labeled with a radionuclide as said cytotoxic condition.
13. A method according to claims 10, 11, or 12, wherein said dna sequence is the myb gene.
14. A method for treating a human host suspected of having malignant cells, which comprises:
administering to said human host under cytotoxic conditions antibodies to the expression product of a gene, which gene is part of a retrovirus genome capable of inducing malignancy in a normal cell or which gene is substantially complementary to said gene of said retrovirus genome.
15. A method according to claim 14, wherein said cytotoxic condition is the presence of complement.
16. antibodies specific for the expression product of the human oncogenes c-myc, c-fos, c-rasHa, c-rasKi, c-fes, c-myb, and c-src.
17. antibodies according to claim 16, labeled with a label capable of providing a detectible signal.
18. antibodies according to claim 16, labeled with a
cytotoxic agent.19. An antigenic oligopeptide selected from the class consisting of:
(a) met-ala-phe-ala-his-asn-pro-pro-ala-gly-pro-leu-pro-gly-ala
(b) pro-phe-his-lys-asp-gln-thr-phe-thr-glu-tyr-arg-lsy-met-his-gly-gly-ala-va
(c) pro-phe-his-lys-asp-gln-thr-phe-thr-glu-tyr-arg-lys-met
(d) asp-asn-thr-arg-thr-ser-gly-asp-asn-ala-pro-val-ser-cys-leu-gly-glu
(e) arg-leu-ileu-gly-asp-asn-glu-tyr-thr-ala-arg-gln-gly-ala-lys-phe-pro
(f) trp-arg-arg-asp-pro-glu-glu-arg-pro-thr
(g) arg-leu-lys-lys-ileu-ser-lys-glu-glu-lys-thr-pro-gly-cys-val-lys-ileu-lys- lys
(h) asp-leu-pro-ser-arg-thr-val-asp-thr-lys-gln-ala-gln-glu-leu-ala-arg
(i) met-thr-glu-tyr-lys-leu-val-val-val-gly-ala-ser-gly-val-gly-lys-ser-ala
(j) glu-asp-ileu-his-gln-try-arg-glu-gln-ileu-lys-arg-val-lys-asp-ser-asp-asp
(k) val-arg-glu-ileu-arg-gln-his-lys-leu-arg-lys-leu-asn-pro-pro-asp-glu-ser-g ly-pro
(l) met-thr-gly-tyr-lys-leu-val-val-val-gly-ala-gly-gly-val-gly-lys-ser-ala
(m) val-asp-glu-tyr-asp-pro-thr-ileu-glu-asp-ser-tyr-arg-lys-gln-val
(n) arg-his-ser-thr-ser-ser-ser-glu-gln-glu-arg-glu-gly-gly-arg
(o) asn-gln-gln-thr-arg-glu-phe-val-glu-lys-gly-gly-arg
(p) pro-glu-val-gln-lys-pro-leu-his-glu-gln
(q) ala-ser-pro-tyr-pro-asn-leu-ser-asn-gln-gln-thr-arg
(r) arg-leu-ileu-ala-glu-lys-glu-gln-leu-arg-arg-arg-arg-glu-gln
(s) asn-asn-glu-lys-ala-pro-lys-val-val. 20. antibodies raised to an antigenic polypeptide selected from the class consisting of:
(a) met-ala-phe-ala-his-asn-pro-pro-ala-gly-pro-leu-pro-gly-ala;
(b) pro-phe-his-lys-asp-gln-thr-phe-thr-glu-tyr-arg-lys-met-his-gly-gly-ala-va l;
(c) pro-phe-his-lys-asp-gln-thr-phe-thr-glu-tyr-arg-lys-met;
(d) asp-asn-thr-arg-thr-ser-gly-asp-asn-ala-pro-val-ser-cys-leu-gly-glu;
(e) arg-leu-ileu-glu-asp-asn-glu-tyr-thr-ala-arg-gln-gly-ala-lys-phe-pro;
(f) trp-arg-arg-asp-pro-glu-glu-arg-pro-thr;
(g) arg-leu-lys-lys-ileu-ser-lys-glu-glu-lys-thr-pro-gly-cys-val-lys-ileu-lys- lys;
(h) asp-leu-pro-ser-arg-thr-val-asp-thr-lys-gln-ala-gln-glu-leu-ala-arg;
(i) met-thr-glu-try-lys-leu-val-val-val-gly-ala-ser-gly-val-gly-lys-ser-ala;
(j) glu-asp-ileu-his-gln-tyr-arg-glu-gln-ileu-lys-arg-val-lys-asp-ser-asp-asp;
(k) val-arg-glu-ileu-arg-gln-his-lys-leu-arg-lys-leu-asn-pro-pro-asp-glu-ser-g ly-pro;
(l) met-thr-glu-tyr-lys-leu-val-val-gly-ala-gly-gly-val-gly-lys-ser-ala;
(m) val-asp-glu-tyr-asp-pro-thr-ileu-glu-asp-ser-tyr-arg-lys-gln-val;
(n) arg-his-ser-thr-ser-ser-ser-glu-gln-glu-arg-glu-gly-gly-arg;
(o) asn-gln-gln-thr-arg-glu-phe-val-glu-lys-gly-gly-arg;
(p) pro-glu-val-gln-lys-pro-leu-his-glu-gln;
(q) ala-ser-pro-tyr-pro-asn-leu-ser-asn-gln-gln-thr-arg;
(r) arg-leu-ileu-ala-glu-lys-glu-gln-leu-arg-arg-arg-arg-glu-gln; and
(s) asn-asn-glu-lys-ala-pro-lys-val-val. 21. antibodies according to claim
20, labeled with a label capable of providing a detectible signal. 22. antibodies according to claim 20, labeled with a cytotoxic agent.
23. A method for evaluating the probability of cellular malignancy in a human host, said method comprising:
bringing into close association (1) a probe diagnostic for the presence of a cellular product, said cellular product being mRNA or its expression product, where said mRNA is capable of hybridizing to a dna sequence of a retrovirus capable of transforming a normal cell to malignancy and said probe is a nucleic acid sequence capable of duplexing with said mRNA or antibody capable of binding to said expression product, and (2) a source from said human host suspected of containing cellular product; and
determining the level of said binding of said probe to said cellular product, wherein an elevated level is indicative of the presence of
cellular malignancy. 24. An antibody diagnostic for the presence of the expression product of a human oncogene selected from the group consisting of c-myc, c-fos, c-rasK, c-fes, and c-myb. 25. An antibody according to claim 24, wherein said human oncogene is c-myc. 26. An antibody according to claim 24, wherein said human oncogene is c-fos. 27. An antibody according to claim 24, wherein said human oncogene is c-rasK. 28. An antibody according to claim 24, wherein said human oncogene is c-fes. 29. An antibody according to claim 24, wherein said human oncogene is c-myb. 30. An antibody according to claim 24, labeled with a label capable of providing a detectable signal. 31. An antibody according to claim 24, labeled with a cytotoxic agent.

This application is a continuation-in-part application of copending application Ser. No. 439,252, filed Nov. 4, 1982, demonstrate the ability of such nucleic acids to transform vertebrates to malignancy. One may then use these nucleic acids to deduce peptide composition and screen malignant cells for transcripts or peptides, by hybridization in the former case and with appropriate receptors in the latter case, employing any of a wide variety of diagnostic assays. Antibodies can be produced to the peptides, which antibodies may be labeled and may then be used for diagnosing the presence of a peptide diagnostic of malignancy. The oncogernic proteins are found to be available for binding to antibodies as surface membrane proteins. The antibodies may serve as diagnostic reagents for determining the presence of malignancy and determining the location of malignant cells. The antibodies may also serve in treating tumors in vivo by using radionuclides, toxins, in combination with the host complement system or opsonins, or other antibody dependent lytic system or the like. The antibodies find use in pre- and postoperative systems, in the later determining whether complete removal has occurred, whether metastases exist. The antibodies can be used postoperatively to destroy any remnants of the tumor which may not have been excised.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Cline, Martin J., Slamon, Dennis J.

Patent Priority Assignee Title
10241114, Sep 18 2002 Genomic Health, Inc. Gene expression profiling in biopsied tumor tissues
10619215, Jun 24 2003 GENOMIC HEALTH, INC Prediction of likelihood of cancer recurrence
11220715, Jan 15 2003 Genomic Health, Inc. Gene expression markers for breast cancer prognosis
6054561, Feb 08 1984 Chiron Corporation Antigen-binding sites of antibody molecules specific for cancer antigens
6403766, Oct 15 1999 Cornell Research Foundation, Inc Human actin regulatory proteins and methods for detection, diagnosis and treatment of different stages of carcinogenesis
7034144, May 13 1997 DAKO DENMARK A S Molecular detection of chromosome aberrations
7105294, May 04 1999 Agilent Technologies, Inc Method and probes for the detection of chromosome aberrations
7368245, May 04 1999 DAKO DENMARK A S Method and probes for the detection of chromosome aberrations
7402397, May 21 2002 Monogram Biosciences, Inc Detecting and profiling molecular complexes
7402399, Oct 14 2003 Monogram Biosciences, Inc Receptor tyrosine kinase signaling pathway analysis for diagnosis and therapy
7526387, Jul 10 2003 GENOMIC HEALTH, INC Expression profile algorithm and test for cancer prognosis
7569345, Jan 15 2003 GENOMIC HEALTH INC , Gene expression markers for breast cancer prognosis
7622251, Nov 05 2004 Microsoft Corporation Molecular indicators of breast cancer prognosis and prediction of treatment response
7642057, May 04 1998 DAKO DENMARK A/S Method and probes for the detection of chromosome aberrations
7648828, Apr 01 2003 Monogram Biosciences, Inc Methods for detecting receptor complexes comprising PI3K
7723033, Jun 24 2003 GENOMIC HEALTH, INC Prediction of likelihood of cancer recurrence
7767391, Feb 20 2003 Genomic Health Use of intronic RNA to measure gene expression
7838224, Sep 18 2002 Genomic Health, Inc. Gene expression profiling in biopsied tumor tissues
7858304, Sep 18 2002 Genomic Health, Inc. Gene expression profiling in biopsied tumor tissues
7871769, Apr 09 2004 GENOMIC HEALTH, INC Gene expression markers for predicting response to chemotherapy
7930104, Nov 05 2004 GENOMIC HEALTH, INC Predicting response to chemotherapy using gene expression markers
7939261, Jul 10 2003 GENOMIC HEALTH, INC Expression profile algorithm and test for cancer prognosis
8008003, Nov 15 2002 GENOMIC HEALTH, INC Gene expression profiling of EGFR positive cancer
8034565, Jan 15 2003 GENOMIC HEALTH, INC Gene expression markers for breast cancer prognosis
8071286, Sep 18 2002 Genomic Health, Inc. Gene expression profiling in biopsied tumor tissues
8148076, Nov 15 2002 Genomic Health, Inc. Gene expression profiling of EGFR positive cancer
8206919, Jan 15 2003 Genomic Health, Inc. Gene expression markers for breast cancer prognosis
8329398, Dec 23 2003 Genomic Health, Inc. Universal amplification of fragmented RNA
8741605, Jan 15 2003 Genomic Health, Inc. Gene expression markers for breast cancer prognosis
8868352, Nov 05 2004 GENOMIC HEALTH, INC Predicting response to chemotherapy using gene expression markers
9605318, Apr 09 2004 GENOMIC HEALTH, INC Gene expression markers for predicting response to chemotherapy
9944990, Jan 15 2003 Genomic Health, Inc. Gene expression markers for breast cancer prognosis
RE44437, Apr 01 2003 Monogram Biosciences, Inc. Methods for detecting receptor complexes comprising PI3K
Patent Priority Assignee Title
4331647, Mar 03 1980 GOLDENBERG, MILTON D , LEXINGTON Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers
4348376, Mar 03 1980 GOLDENBERG, MILTON DAVID Tumor localization and therapy with labeled anti-CEA antibody
4358535, Dec 08 1980 Board of Regents of the University of Washington Specific DNA probes in diagnostic microbiology
4361544, Mar 03 1980 GOLDENBERG, MILTON D , LEXINGTON Tumor localization and therapy with labeled antibodies specific to intracellular tumor-associated markers
4535058, Oct 01 1982 Massachusetts Institute of Technology Characterization of oncogenes and assays based thereon
GB2034323,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 12 1989The Regents of the University of California(assignment on the face of the patent)
Date Maintenance Fee Events
Apr 12 1999ASPN: Payor Number Assigned.
Apr 12 1999M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Apr 08 20004 years fee payment window open
Oct 08 20006 months grace period start (w surcharge)
Apr 08 2001patent expiry (for year 4)
Apr 08 20032 years to revive unintentionally abandoned end. (for year 4)
Apr 08 20048 years fee payment window open
Oct 08 20046 months grace period start (w surcharge)
Apr 08 2005patent expiry (for year 8)
Apr 08 20072 years to revive unintentionally abandoned end. (for year 8)
Apr 08 200812 years fee payment window open
Oct 08 20086 months grace period start (w surcharge)
Apr 08 2009patent expiry (for year 12)
Apr 08 20112 years to revive unintentionally abandoned end. (for year 12)