A method for heat injection into a subterranean formation is provided. The method utilizes flameless combustion. The absence of a flame eliminates the flame as a radiant heat source and results in a more even temperature distribution throughout the length of the burner. flameless combustion is accomplished by preheating the fuel and the combustion air to a temperature above the autoignition temperature of the mixture. Preheating hydrocarbon fuel requires the inclusion of a carbon formation suppressant such as carbon dioxide or steam to prevent carbon formation.

Patent
   RE35696
Priority
Sep 28 1995
Filed
Sep 28 1995
Issued
Dec 23 1997
Expiry
Sep 28 2015
Assg.orig
Entity
Large
200
109
all paid
9. A method of supplying heat using a flameless combustor, the method comprising:
combining a hydrocarbon fuel gas with a carbon formation suppressant;
passing the fuel gas and carbon formation suppressant mixture through a fuel gas conduit to a mixing point within the flameless combustor;
passing a combustion air stream though an air conduit to the mixing point;
preheating either the fuel gas and carbon formation suppressant mixture, the combustion air stream or both such that the temperature of a mixture of the streams exceeds an autoignition temperature of the mixture of the streams; and
combining the preheated combustion air and fuel gas and carbon formation suppressant at the mixing point resulting in autoignition forming combustion products,
wherein the amount of the carbon formation suppressant combined with the fuel gas exceeds that which prevents carbon formation at the temperature of the preheated fuel gas and carbon suppressant mixture.
1. A method of heating a subterranean formation comprising at least one borehole providing communication from the surface to the subterranean formation to be heated, the method comprising:
combining a hydrocarbon fuel gas with a carbon formation suppressant;
passing the fuel gas and carbon formation suppressant mixture through a fuel gas conduit to a mixing point within the borehole juxtapose to the formation to be heated;
passing a combustion air stream though an air conduit to the mixing point;
preheating either the fuel gas and carbon formation suppressant mixture, the combustion air stream or both such that the temperature of a mixture of the streams exceeds an autoignition temperature of the mixture of the streams;
combining the preheated combustion air and fuel gas and carbon formation suppressant at the mixing point resulting in autoignition forming combustion products;
passing the combustion products through the borehole from the mixing point to the surface,
wherein the amount of the carbon formation suppressant combined with the fuel gas exceeds that which prevents carbon formation at the temperature of the preheated fuel gas and carbon suppressant mixture.
2. The method of claim 1 wherein the fuel gas and carbon formation suppressant mixture and the combustion air are both preheated by heat exchange with the combustion products flowing from the mixing point to the surface.
3. The method of claim 2 wherein additional preheated fuel gas and carbon formation suppressant is mixed with the combustion products in the borehole between the mixing point and the surface at points that are juxtapose to the formation to be heated.
4. The method of claim 2 wherein the fuel gas consists essentially of methane.
5. The method of claim 4 wherein the fuel gas and carbon formation suppressant mixture and the combustion air are both heated to a temperature above about 1000° F.
6. The method of claim 5 wherein the carbon formation suppressant comprises water and the mole ratio of water to carbon in the stream is greater than about 1.
7. The method of claim 5 wherein the carbon formation suppressant comprises carbon dioxide and the mole ratio of carbon dioxide to fuel gas carbon is greater than about 1.
8. The method of claim 5 wherein the carbon formation suppressant comprises a mixture of carbon dioxide and water.

This invention is related to copending U.S. patent application Ser. Nos. 897,641 and 896,864.

This invention relates to a method for injection of heat into a subterranean formation.

U.S. Pat. Nos. 4,640,352 and 4,886,118 disclose conductive heating of subterranean formations of low permeability that contain oil to recover oil therefrom. Low permeability formations include diatomites and oil shales. Formations of low permeability are not amenable to secondary oil recovery methods such as steam, carbon dioxide, or fire flooding. Flooding materials tend to penetrate formations that have low permeabilities preferentially through fractures. The injected materials bypass most of the formation hydrocarbons. In contrast, conductive heating does not require fluid transport into the formation. Oil within the formation is therefore not bypassed as in a flooding process. When the temperature of a formation is increased by conductive heating, vertical temperature profiles will tend to be relatively uniform because formations generally have relatively uniform thermal conductivities and specific heats. Transportation of hydrocarbons in a thermal conduction process is by pressure drive, vaporization, and thermal expansion of oil and water trapped within the pores of the formation rock. Hydrocarbons migrate through small fractures created by the expansion and vaporization of the oil and water.

When the formation contains high molecular weight oil or hydrocarbon solids, thermal conduction could also result in pyrolysis of the hydrocarbons in-situ. The products of the pyrolysis will be of lower molecular weights and will therefore be more valuable than the original oil. Pyrolysis of solids also creates additional voids within the formation rocks. These voids provide additional hydrocarbon mobility.

Considerable effort has been expended to develop electrical resistance heaters suitable for injecting heat into formations having low permeability. U.S. Pat. Nos. 5,065,818 and 5,060,287 are exemplary, of such effort. Electrical heating of formations is relatively expensive compared to directly burning a hydrocarbon fuel. It would be preferable to provide a heat injection method in which directly burns a hydrocarbon fuel.

Gas fueled well heaters that are useful for heating formations to temperatures sufficient for ignition of in-situ fire floods are disclosed in U.S. Pat. Nos. 3,095,031; 3,880,235; 4,079,784; and 4,137,968. Provisions for the return of combustion gases to the 4,137,968. Provisions for the return of combustion gases to the surface are not required because the combustion gases are injected into the formation. The fuel gas and combustion air also remain relatively cool as they go down a borehole toward the burner because combustion gases rising in the borehole do not heat the burner. Additionally, a long service life is not required due to the short time period during which the burner is needed. These burners are therefore not suitable for use as heat injectors and do not overcome the shortcomings of the prior art heat injector burners.

Gas fueled heaters which are intended to be useful for heat injection are disclosed in U.S. Pat. No. 2,902,270 and Swedish Patent No. 123,137. These burners utilize flames to combust fuel gas. The existence of flames cause hot spots within the burner and in the formation surrounding the burner due to radiant heat transfer from the luminous portion of the flame. A typical gas flame provides about a 1650°C radiant heat source. Materials of construction for the burners must be sufficient to withstand the temperatures of these hot spots. The heaters are therefore more expensive than a comparable heater without flames. The heater of Swedish Patent 123,137 would appear to result in a flameless combustion such as the present invention if the combustion air and the fuel gas were heated to a temperature above the autoignition temperature of the mixture. But due to the shallow depths of the heat injection wells disclosed in that patent, the components do not appear to be heated to this extent by the combustion gases. Further, radiant heat transfer from the flames appears to be critical in obtaining the temperature profile indicated in FIG. 2 of the Swedish patent because little heat is transferred from the well bore to the formation above the borehole containing flames. Due to the existence of flames, the service life and the operating temperatures of these burners are unacceptably limited.

The Swedish patent also addresses the problem of creation of carbon from hydrocarbon gases at elevated temperatures. The carbon is removed by exchanging services between the air and the fuel lines. Any carbon deposited in a line while the line is in fuel service is removed when the line is in combustion air service. This requires that the fuel gas lines be as large as the combustion air lines. Because about ten moles of combustion air ar required for each mole of methane burned, and because combustion air is generally optimally supplied at a lower pressure, a fuel gas line will have to be considerably larger to also accommodate combustion air flow service. The burner would therefore be considerably more expensive than one in which services of these two conduits are not interchangeable.

The Swedish patent also discloses that "before the gas is brought into the gas tube . . . it can through suitable preparation in a was known in the gas technique be given such a composition that it does not deposit coke." It is not clear what this statement means, but it likely is suggesting that hydrocarbons heavier than methane or ethane be removed by cryogenic distillation to reduce the tendency of the gas to form coke.

U.S. Pat. Nos. 3,113,623 and 3,181,613 disclose gas fired heat injection burners for heating subterranean formations. These burners utilize porous materials to hold a flame and thereby spreading the flame out over an extended length. Radiant heat transfer from a flame to the casing is avoided by providing the porous medium to hold the flame. But for combustion to take place in the porous medium, the fuel gas and the combustion air must be premixed. If the premixed fuel gas and combustion air were at a temperature above the autoignition temperature of the mixture, they would react upon being mixed instead of within the porous medium. The formations utilized as examples of these inventions are only up to fifty feet thick and below only about fifteen feet of overburden. The fuel gas and the combustion air are therefore relatively cool when they reach the burner. The burner would not function at it was intended if the formation being heated were significantly deeper.

It is therefore an object of the present invention to provide a method to inject heat into a subterranean formation using a fuel gas combustor which does not require a flame in the borehole during the heating process. It is a further object to provide such a method which does not require complicated equipment within the borehole. It is another object of the present invention to provide a method which has a high level of thermal efficiency.

These and other objects are accomplished by a method of heating a subterranean formation comprising at least one borehole providing communication from the surface to the subterranean formation to be heated, the method comprising:

combining a hydrocarbon fuel gas with a carbon formation suppressant;

passing the fuel gas and carbon formation suppressant mixture through a fuel gas conduit to a mixing point within the borehole juxtapose to the formation to be heated;

passing a combustion air stream though an air conduit to the mixing point;

preheating either the fuel gas and carbon formation suppressant mixture, the combustion air stream or both such that the temperature of a mixture of the streams exceeds an autoignition temperature of the mixture of the streams;

combining the preheated combustion air and fuel gas and carbon formation suppressant at the mixing point resulting in autoignition forming combustion products; and

passing the combustion products through the borehole from the mixing point to the surface, wherein the amount of the carbon formation suppressant combined with the fuel gas exceeds that which prevents carbon formation at the temperature of the preheated fuel gas and carbon suppressant mixture.

Transportation of the fuel and the combustion air separately to the portion of the wellbore to be heated permits the gases to be heated to a temperature greater than the autoignition temperature of the mixture. Combining the gases at a temperature greater than the autoignition temperature, along with rapid mixing of the fuel with the combustion air, provides a flameless combustion. Elimination of the flame eliminates the flame as a source of radiant energy and greatly simplifies the construction of the heater, and results in a more even distribution of heat from the burner.

Additional fuel gas is preferably mixed with the combustion products at points within the borehole after the initial point of mixing. This permits the formation to be heated over a greater distance, and permits additional heat to be injected without increasing the temperature which the borehole equipment must be designed to withstand. Staged burning also reduces the amount of nitrous oxide produced by providing some reburning of nitrous oxides back to nitrogen.

A carbon formation suppressant is required because the fuel gas can be heated to a temperature which favors formation of carbon from hydrocarbons. Acceptable carbon formation suppressants include carbon dioxide, water and hydrogen. Carbon dioxide and water are preferred due to lower cost.

The flameless combustion of the present invention also results in minimal production of nitrous oxides.

Other measures to remove or prevent the formation of nitrous oxides are therefore not required.

FIGS. 1 through 5 show burners suitable for use in the present invention.

FIG. 6 is a plot of temperature profiles along a burner at various temperatures.

Injectors utilizing flameless combustion of fuel gas at temperature levels of about 900° to about 1100°C may be fabricated from high temperature alloys such as, for example, WASPALLOY, INCONEL 601, INCONEL 617, INCOLOY 800HT, HASTELLOY 235, UNIMET 500 and INCOLOY DS. At higher temperatures ceramic materials are preferred. Ceramic materials with acceptable strength at temperatures of 900° to about 1400° C. are generally high alumina content ceramics. Other ceramics that may be useful include chrome oxide, zirconia oxide, and magnesium oxide based ceramics. National Refractories and Minerals, Inc., Livermore, Calif., A. P. Green Industries, Inc., Mexico, Missouri, and Alcoa, Alcoa Center, Penn., provide such materials.

Generally, flameless combustion is accomplished by preheating combustion air and fuel gas so that when the two streams are combined the temperature of the mixture exceeds the autoignition temperature of the mixture, but to a temperature less than that which would result in the oxidation upon mixing being limited by the rate of mixing. Preheating of the streams to a temperature between about 850°C and about 1400°C and then mixing the fuel gas into the combustion air in relatively small increments will result in flameless combustion. The increments in which the fuel gas is mixed with the combustion gas stream preferably result in about a 20° to 100°C temperature rise in the combustion gas stream due to the combustion of the fuel.

Referring to FIG. 1, a heat injection well and burner capable of carrying out the present invention are shown. A formation to be heated, 1, is below an overburden, 2. A wellbore, 3, extends through the overburden and to the bottom of the formation to be heated. A vertical well is shown, but the wellbore could be deviated or horizontal. Horizontal heat injector wells may be provided in formations that fracture horizontally to recover hydrocarbons by a parallel drive process. Shallow low oil shale formations are examples of such formations. In the embodiment shown in FIG. 1, the wellbore is cased with a casing, 4. The lower portion of the wellbore may be cemented with a cement, 7, having characteristics suitable for withstanding elevated temperatures and transferring heat. A cement which is a good thermal insulator, 8, is preferred for the upper portion of the wellbore to prevent heat loss from the system. A combustion air conduit, 10, extends from the wellhead, 11 to the lower portion of the wellbore. A fuel gas conduit, 12, also extends from the wellhead the bottom of the wellbore.

High temperature cements suitable for cementing casing and conduits within the high temperature portions of the wellbore are available. Examples are disclosed in U.S. Pat. Nos. 3,507,332 and 3,180,748. Alumina contents above about 50 percent by weight based on cements slurry solids are preferred.

Thermal conductivity of these cements can be increased by including graphite in the cement slurry. Between about 10 and about 50 percent by weight of graphite will result in a significant improvement in thermal conductivity. Cement slurries that contain graphite are also of a significantly lower density than high alumina slurries and generally are less expensive than high alumina slurries. The lower density slurry enables conventional cementing of wellbores whereas heavier slurries often required staged cementing. Staged cementing requires considerable rig time. Graphite containing cements are not particularly strong, and are therefore not preferred when high strength is required. When a substantial casing is utilized, high strength cement is not required and high graphite cement is preferred.

Choice of a diameter of the casing, 4, in the embodiment of FIG. 1 is a trade off between the expense of the casing, and the rate at which heat may be transferred into the formation. The casing, due to the metallurgy required, is generally the most expensive component of the injection well. The heat that can be transferred into the formation increases significantly with increasing casing diameter. A casing of between about 4 and about 8 inches in internal diameter will typically provide an optimum trade-off between initial cost and heat transfer. The casing, 4, could optionally be provided with means to provide communication between the outside of the casing and the inside of the casing after the well is brought up to operation temperatures. Such means would relieve pressure from the outside of the casing. These pressures are generated by formation gases that permeate the cement. Relieving these pressures could permit the use of casings having thinner walls. Means to provide communication may be, for example, partially milled portions which fail at operation temperatures and pressures, or plugs of aluminum or polymers that melt or burn at service temperature and pressure. The plugs or milled portions would serve to keep cement out of the casing while the casing is being cemented into place.

The fuel gas conduit contains a plurality of orifices, 13, along the length of the conduit within the formation to be heated. The orifices provide communication between the fuel gas conduit and the combustion air conduit. A plurality of orifices provide for distribution of heat release within the formation to be heated. The orifices are sized to accomplish a nearly even temperature distribution within the casing. A nearly even temperature profile within the casing results in more uniform heat distribution within the formation to be heated. A nearly uniform heat distribution within the formation will result in more efficient utilization of heat in a conductive heating hydrocarbon recovery process. A more even temperature profile will also result in the lower maximum temperatures for the same heat release. Because the materials of construction of the burner and well system dictate the maximum temperatures, even temperature profiles will increase the heat release possible for the same materials of construction. The number of orifices is limited only by size of orifices which are to be used. If more orifices are used, they must generally be of a smaller size. Smaller orifices will plug more easily than larger orifices. The number of orifices is a trade-off between evenness of the temperature profile and the possibility of plugging.

Alternatively, air could be staged into fuel gas by providing orifices in the combustion air conduit instead of the fuel conduit.

Fuel gas and combustion air transported to bottom of the wellbore combine and react within the wellbore volume surrounding the conduits, 14, forming combustion products. The combustion products travel up the wellbore and out an exhaust nozzle, 15, at the wellhead. From the exhaust nozzle, the combustion products may be routed to atmosphere through an exhaust stack (not shown). Alternatively, the combustion gases may be treated to remove pollutants. Energy recovery from the combustion products by an expander turbine or heat exchanger may also be desirable.

As the combustion products rise in the wellbore above the formation being heated, they exchange heat with the combustion air and the fuel gas traveling down the flow conduits. This heat exchange not only conserves energy, but permits the desirable flameless combustion of the present invention. The fuel gas and the combustion air are preheated as they travel down the respective flow conduits sufficiently that the mixture of the two streams at the ultimate mixing point is at a temperature above the autoignition temperature of the mixture. Flameless combustion results, avoiding a flame as a radiant heat source. Heat is therefore transferred from the wellbore in an essentially uniform fashion.

The preheating of the fuel gases to obtain flameless combustion would result in significant generation of carbon within the fuel gas conduit unless a carbon formation suppressant is included in the fuel gas stream. Nozzles for injection of fuel gas and oxidant suppressant are shown in FIG. 1 as 16 and 17 respectively. The carbon formation suppressant may be carbon dioxide, steam, hydrogen or mixtures thereof. Carbon dioxide and steam are preferred due to the generally higher cost of hydrogen.

Carbon is formed from methane at elevated temperatures according to the following reaction:

CH4 →C+2H2

This reaction is a reversible reaction, and hydrogen functions as carbon formation suppressant by the reverse reaction.

Carbon dioxide suppresses carbon formation by the following reaction:

CO2 +C→2CO

Steam suppresses carbon formation by the following reactions:

H2 O+C→CO+H2

2H2 O+C→CO2 +2H2

The carbon dioxide and the carbon monoxide remain in equilibrium at elevated temperatures according to the shift gas reaction:

CO+H2 O⇄CO2 +H2

When the fuel gas is essentially methane, a molar ratio of about 1:1 of steam to methane will be sufficient to suppress carbon formation to temperatures of about 2500° F. and a molar ratio of about 1.15:1 of carbon dioxide to methane is sufficient to suppress carbon formation. The molar rations of steam to methane is preferably within the range of about 1:1 to about 2:1 when steam is utilized as the carbon formation suppressant. The molar ratio of carbon dioxide to methane is preferably within the range of about 1:1 to about 3:1 when carbon dioxide is utilized as the carbon formation suppressant. The fuel gas preferably consists essentially of methane due to methane being more thermally stable than other light hydrocarbons. The suppressant is additionally beneficial because it lowers combustion rates and reduces peak temperatures.

Referring now to FIG. 2, an alternative apparatus capable of carrying out the present invention is shown with elements numbered as in FIG. 1. In the embodiment of FIG. 2, the combustion products rise to the surface thought a separate conduit, 19, rather than through the wellbore surrounding the air conduit, 10. The combustion product return conduit and the combustion air conduit are separate conduits connected a the bottom of the wellbore by a cross-over, 18. Fuel gas is provided through a fuel gas conduit, 12, within the combustion product return conduit, 19, and the combustion air conduit, 10. Alternatively, the fuel gas conduit could be within one of the two other conduits. The combustion product return conduit and the combustion air conduit are cemented directly into the formation to be heated, 2, by a high temperature cement, 7. If the combustion air and combustion gases conduits are sufficiently strong that they do not required significant support from the cement, a cement containing a high level of graphite can be utilized. This configuration should be considerably less expensive to provide due to the absence of a large diameter casing within the high temperature portion of the wellbore. The two smaller conduits, when separated laterally within the wellbore, can transfer heat into the formation more effectively than a single conduit having the same surface area.

The flow conduits may be made from steel, high temperature alloys such as INCOLOY, INCONEL or HASTALLOY or ceramics, depending upon the operating temperatures and service life desired. Ceramics are preferred as a material of construction for casings and flow conduits of the present invention when injection of heat at temperature levels above about 1100°C are desired.

Referring to FIG. 3, with elements numbered as in FIG. 1, a preferred embodiment utilizing metal alloy flow conduits is shown. The formation to be heated, 1, below an overburden, 2, is shown penetrated by a wellbore, 3, of about twelve inches in diameter. In this embodiment, the wellbore is cased with a sacrificial carbon steel casing, 4, of about eight inches in diameter. The casing is cemented into place using a high temperature cement, 7, which forms an outer perimeter of the flow channel through which combustion gases travel up the wellbore. The cement is preferably one such as PERMACON, a high alumina cement available from National Refractories and Minerals, Inc. of Livemore, Calif. A combustion air conduit, 10, in this embodiment is made from an alloy such as INCOLOY and is centralized within the casing. The combustion air conduit could be, for example, a three to four inch diameter tube. A fuel gas conduit, 12, is centralized within the combustion air conduit. The fuel gas conduit can be made from an alloy such as INCOLOY and could be about three quarters of an inch in diameter. Combustion occurs in the annulus between the fuel gas conduit, and the combustion air conduit, 12. At the lower end of the formation to be heated, within the wellbore, the combustion air conduit is in communication with the annulus between the combustion air conduit, 10, and the casing. This annulus provides a flow path for combustion products to travel back up the wellbore to the surface.

The embodiment of FIG. 3 provides for conventional centralization of the flow conduits, and conventional replacement of the fuel gas line and combustion air line if such replacement becomes necessary.

Referring now to FIG. 4, with elements numbered as in FIG. 1, a preferred embodiment of a burner is shown utilizing stacked annular shaped ceramic bricks to form a combustion gas conduit. A wellbore, 3, is shown extending into a formation to be heated, 1, under an overburden, 2. A casing of a sacrificial material, 4, is utilized to initially hold the ceramic bricks, 20, in place. The ceramic bricks can be about three inches in wall thickness and each about five to ten feet in height. The bricks may be made of a high alumina ceramic material, and may be sealed together with a high alumina mortar. A combustion air conduit, 10, provides a flow path for combustion air to the lower portion of the formation to be heated. The combustion air conduit is open and in communication with the annulus between the combustion air conduit and the ceramic bricks near the bottom of the formation to be heated. A fuel gas conduit, 12, directs fuel gas into the volume defined by the casing in increments through orifices, 13, to provide for oxidation of the fuel gas in relatively small increments. The fuel gas conduit and the combustion air conduit may be ceramic if operating temperatures are to be above about 1100°C If operating temperatures are to be about 1100°C or less, the flow conduits can be fabricated from an alloy such as INCOLOY. The ceramic bricks are typically cemented into place within the wellbore with a high temperature cement and preferably a graphite containing high alumina cement.

Referring now to FIG. 5, another embodiment of a preferred heat injector is shown with elements numbered as in FIG. 1. This embodiment is preferred when the heat injector is to be injecting heat at temperatures of about 1100°C to about 1365°C In this embodiment, the combustion air conduit, 10, the combustion gas conduit, 19, and the fuel gas conduit are all initially sacrificial materials cemented into place. The cement is a high temperature cement. A high graphite content cement is not preferred in this embodiment due to the lower strength of the high graphite cements. A channel, 22, near the bottom of the formation to be heated provides communication between the combustion air conduit and the combustion gas conduit. Communication between the fuel gas conduit, 12, and the combustion gas conduit and the combustion air conduit is provided through conduits such as alloy tubes, 23, that may contain orifices (not shown) to restrict flow of fuel gas into the larger flow conduits. Combustion of the fuel gas occurs both in the downflow combustion air conduit, 10, an in the up flow combustion gases conduit, 19. Within the formation to be heated, 1, the combustion gas and the combustion air conduit are spaced as far apart as practical in order to maximize the amount of heat which can be transferred to the formation at any maximum operating temperature.

The embodiment of FIG. 5 could include a ceramic fuel gas conduit or a sacrificial conduit which is eliminated prior to or during initial operation, leaving the cement defining a conduit. The sacrificial conduit may be eliminated by, for example, oxidation, melting, or milling. A plurality of fuel gas conduits could optionally be provided. A plurality of fuel gas conduits could provide redundancy, and could reduce the total length of tubes, 23, which are required. In the embodiment of FIG. 5, the wellbore, 3, could be of about a sixteen inch diameter within the formation to be heated, and contain about a three to four inch internal diameter combustion air conduit, a combustion gas conduit of about three to about four inch diameter, and one or preferably two fuel gas conduits of about three quarters inch diameter. Orifices in the alloy tubes, 23, are sized to achieve a fuel gas flow that would result in a nearly uniform temperature profile within the wellbore.

When ceramic materials are utilized for construction of the heat injectors, the larger conduits (combustion air and combustion product conduits) may initially be sacrificial materials such as polymeric, fiberglass, or carbon steel. The sacrificial conduits can be cemented into place using high alumina cements. The high alumina cement forms the conduit which remains in place after the sacrificial materials are removed.

High alumina ceramic tubes are available that have tensile strength sufficient to permit suspension of the conduits from a rig at the surface. These ceramic conduits can be lowered into the wellbore as sections are added at the surface. The sections can be joined by mortar and held together by sacrificial clamps until the mortar has cured. The ceramic tubes could also be held in place by sacrificial pipes until they are cemented into place.

Cold start-up of a well heater of the present invention may utilize combustion with a flame. Initial ignition may be accomplished by injecting pyrophoric material, an electrical igniter, a spark igniter, or temporally lowering an igniter into the wellbore. The burner is preferably rapidly brought to a temperature at which a flameless combustion is sustained to minimize the time period at which a flame exists within the wellbore. The rate of heating up the burner will typically be limited by the thermal gradients the burner can tolerate.

Flameless combustion generally occurs when a reaction between an oxidant stream and a fuel is not limited by mixing and the mixed stream is at a temperature higher than the autoignition temperature of the mixed stream. This is accomplished by avoiding high temperatures at the point of mixing and by mixing relatively small increments of fuel into the oxidant containing stream. The existence of flame is evidenced by an illuminate interface between unburned fuel and the combustion products. To avoid the creation of a flame, the fuel and the oxidant are preferably heated to a temperature of between about 1500° F. and about 2500° F. prior to mixing. The fuel is preferably mixed with the oxidant stream in relatively small increments to enable more rapid mixing. For example, enough fuel may be added in an increment to enable combustion to raise the temperature of the stream by about 50° to about 100° F.

FIG. 6 is a plot of calculated temperatures as a function of distance from a mixing point in a cylindrical combustion chamber. The cylindrical combustion chamber is of an eight inch internal diameter, and a flow of 220 standard cubic feet per minute (standard at 60° F. and one atmosphere pressure) of combustion gases containing three percent by volume of oxygen is mixed with enough methane that combustion of the methane would increase the temperature of the stream by 10° F. Both the methane and the combustion gases are initially at the same temperature. Mixing of the methane and the combustion gases is assumed to be rapid. Heat is removed from the combustion chamber at a rate of about 375 watts per foot of length. Temperature profiles shown as lines a through h represent temperature profiles for gases starting at temperatures of 1400° F. through 2100° F. in one hundred degree fahrenheit respectively.

FIG. 6 demonstrates that under these conditions, the reaction between methane and oxygen occurs at a useful rate. Flameless at a temperature less than about 1500° F. would require a longer residence time than that provided by an eight inch diameter chamber at a low pressure in order to provide heat to a formation at a rate greater than about 375 watts per foot. Reaction of the fuel and oxygen is very quick at 2100° F.

Flameless combustion was demonstrated by injection of natural gas into a stream of exhaust gasses in an amount sufficient for combustion to raise the temperature of the gas stream by about 50° F. The exhaust gas stream contained about 3.6 molar percent oxygen and was at a temperature of about 1550° F. The combined stream was analyzed for carbon monoxide and hydrocarbons at a point downstream of the mixing. The residence time was about 0.3 seconds. About 40 ppm carbon monoxide was detected in the sample but no hydrocarbons were detected. The combustion was flameless.

Mikus, Thomas

Patent Priority Assignee Title
5899269, Dec 27 1995 Shell Oil Company Flameless combustor
6019172, Dec 27 1995 Shell Oil Company Flameless combustor
6190623, Jun 18 1999 HYRADIX, INC Apparatus for providing a pure hydrogen stream for use with fuel cells
6269882, Dec 27 1995 Shell Oil Company Method for ignition of flameless combustor
6581684, Apr 24 2000 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
6588504, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
6591906, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
6591907, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
6607033, Apr 24 2000 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
6684948, Jan 15 2002 IEP TECHNOLOGY, INC Apparatus and method for heating subterranean formations using fuel cells
6688387, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
6698515, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
6702016, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
6708758, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
6712135, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
6712136, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
6712137, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
6715546, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
6715547, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
6715548, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
6715549, Apr 04 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
6719047, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
6722429, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
6722430, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
6722431, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of hydrocarbons within a relatively permeable formation
6725920, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
6725921, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
6725928, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
6729395, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
6729396, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
6729397, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
6729401, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
6732794, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
6732795, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
6732796, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
6736215, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
6739393, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation and tuning production
6739394, Apr 24 2000 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
6742587, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
6742588, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
6742589, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
6742593, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
6745831, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
6745832, Apr 24 2000 SALAMANDER SOLUTIONS INC Situ thermal processing of a hydrocarbon containing formation to control product composition
6745837, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
6749021, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
6752210, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
6758268, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
6761216, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
6763886, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
6769483, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
6769485, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
6789625, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
6805195, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
6820688, Apr 24 2000 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
6866097, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
6871707, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
6877554, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
6877555, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
6880633, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
6880635, Apr 24 2000 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
6889769, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
6896053, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
6902003, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
6902004, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
6910536, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
6913078, Apr 24 2000 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
6915850, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
6918442, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
6918443, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
6923257, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
6923258, Apr 24 2000 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
6929067, Apr 24 2001 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
6932155, Oct 24 2001 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
6948562, Apr 24 2001 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
6948563, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
6951247, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
6953087, Apr 24 2000 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
6959761, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
6964300, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
6966372, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
6966374, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
6969123, Oct 24 2001 Shell Oil Company Upgrading and mining of coal
6973967, Apr 24 2000 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
6978837, Nov 13 2003 Production of natural gas from hydrates
6981548, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation
6991031, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
6991032, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
6991033, Apr 24 2001 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
6991036, Apr 24 2001 Shell Oil Company Thermal processing of a relatively permeable formation
6991045, Oct 24 2001 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
6994160, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
6994161, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with a selected moisture content
6994168, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
6994169, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
6997255, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
6997518, Apr 24 2001 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
7004247, Apr 24 2001 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
7004251, Apr 24 2001 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
7011154, Oct 24 2001 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
7013972, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
7017661, Apr 24 2000 Shell Oil Company Production of synthesis gas from a coal formation
7032660, Apr 24 2001 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
7036583, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
7040398, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
7040399, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
7040400, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
7051807, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
7051808, Oct 24 2001 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
7051811, Apr 24 2001 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
7055600, Apr 24 2001 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
7063145, Oct 24 2001 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
7066254, Oct 24 2001 Shell Oil Company In situ thermal processing of a tar sands formation
7066257, Oct 24 2001 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
7073578, Oct 24 2002 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
7077198, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
7077199, Oct 24 2001 Shell Oil Company In situ thermal processing of an oil reservoir formation
7086465, Oct 24 2001 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
7086468, Apr 24 2000 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
7090013, Oct 24 2002 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
7096941, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
7096942, Apr 24 2001 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
7096953, Apr 24 2000 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
7100994, Oct 24 2002 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
7104319, Oct 24 2001 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
7114566, Oct 24 2001 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
7121341, Oct 24 2002 Shell Oil Company Conductor-in-conduit temperature limited heaters
7121342, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7128153, Oct 24 2001 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
7156176, Oct 24 2001 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
7165615, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
7182132, Jan 15 2002 IEP TECHNOLOGY, INC Linearly scalable geothermic fuel cells
7219734, Oct 24 2002 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
7225866, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
7293606, Mar 09 2005 391854 ALBERTA LTD Heat exchanging apparatus
7360588, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7503761, Jun 10 2005 Fina Technology Inc. Method for reducing the formation of nitrogen oxides in steam generation
7640980, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
7735935, Apr 24 2001 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
7841407, Apr 18 2008 Shell Oil Company Method for treating a hydrocarbon containing formation
7866386, Oct 19 2007 Shell Oil Company In situ oxidation of subsurface formations
7866388, Oct 19 2007 Shell Oil Company High temperature methods for forming oxidizer fuel
7942203, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
8011451, Oct 19 2007 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
8113272, Oct 19 2007 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
8146661, Oct 19 2007 Shell Oil Company Cryogenic treatment of gas
8146669, Oct 19 2007 Shell Oil Company Multi-step heater deployment in a subsurface formation
8151907, Apr 18 2008 SHELL USA, INC Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
8162059, Oct 19 2007 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Induction heaters used to heat subsurface formations
8162405, Apr 18 2008 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
8172335, Apr 18 2008 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
8177305, Apr 18 2008 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
8196658, Oct 19 2007 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
8220539, Oct 13 2008 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
8224163, Oct 24 2002 Shell Oil Company Variable frequency temperature limited heaters
8224164, Oct 24 2002 DEUTSCHE BANK AG NEW YORK BRANCH Insulated conductor temperature limited heaters
8225866, Apr 24 2000 SALAMANDER SOLUTIONS INC In situ recovery from a hydrocarbon containing formation
8230927, Apr 22 2005 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
8233782, Apr 22 2005 Shell Oil Company Grouped exposed metal heaters
8238730, Oct 24 2002 Shell Oil Company High voltage temperature limited heaters
8240774, Oct 19 2007 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
8256512, Oct 13 2008 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
8261832, Oct 13 2008 Shell Oil Company Heating subsurface formations with fluids
8267170, Oct 13 2008 Shell Oil Company Offset barrier wells in subsurface formations
8267185, Oct 13 2008 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
8272455, Oct 19 2007 Shell Oil Company Methods for forming wellbores in heated formations
8276661, Oct 19 2007 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
8281861, Oct 13 2008 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
8327932, Apr 10 2009 Shell Oil Company Recovering energy from a subsurface formation
8353347, Oct 13 2008 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
8434555, Apr 10 2009 Shell Oil Company Irregular pattern treatment of a subsurface formation
8448707, Apr 10 2009 Shell Oil Company Non-conducting heater casings
8485252, Apr 24 2000 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8536497, Oct 19 2007 Shell Oil Company Methods for forming long subsurface heaters
8562078, Apr 18 2008 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
8579031, Apr 24 2003 Shell Oil Company Thermal processes for subsurface formations
8627887, Oct 24 2001 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8631866, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
8636323, Apr 18 2008 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
8701768, Apr 09 2010 Shell Oil Company Methods for treating hydrocarbon formations
8701769, Apr 09 2010 Shell Oil Company Methods for treating hydrocarbon formations based on geology
8739874, Apr 09 2010 Shell Oil Company Methods for heating with slots in hydrocarbon formations
8752904, Apr 18 2008 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
8789586, Apr 24 2000 Shell Oil Company In situ recovery from a hydrocarbon containing formation
8820406, Apr 09 2010 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
8833453, Apr 09 2010 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
8851170, Apr 10 2009 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
8881806, Oct 13 2008 SALAMANDER INTERNATIONAL HOLDINGS LLC; SALAMANDER INTERNATIONAL LLC; SALAMANDER IP HOLDINGS LLC; DMCX7318 LTD Systems and methods for treating a subsurface formation with electrical conductors
9016370, Apr 08 2011 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
9022109, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
9022118, Oct 13 2008 Shell Oil Company Double insulated heaters for treating subsurface formations
9033042, Apr 09 2010 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
9051829, Oct 13 2008 Shell Oil Company Perforated electrical conductors for treating subsurface formations
9127523, Apr 09 2010 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
9127538, Apr 09 2010 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
9129728, Oct 13 2008 Shell Oil Company Systems and methods of forming subsurface wellbores
9309755, Oct 07 2011 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
9399905, Apr 09 2010 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
9528322, Apr 18 2008 SHELL USA, INC Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
9731893, Apr 17 2014 VIRO RENTALS, INC Catalytic heating assembly for an oil storage tank
Patent Priority Assignee Title
1972259,
2472445,
2484063,
2634961,
2731195,
2804149,
2902270,
2914309,
2923535,
2954826,
3095031,
3105545,
3106244,
3113623,
3114417,
3131763,
3137347,
3139928,
3142336,
3163745,
3164207,
3181613,
3191679,
3205946,
3207220,
3208521,
3250327,
3284281,
3338306,
3342267,
3379252,
3389975,
3455391,
3468376,
3501201,
3507332,
3547192,
3547193,
3572838,
3595642,
3613785,
3616857,
3620300,
3757860,
3807227,
3848671,
3864969,
3874450,
3880235,
3892128,
3916993,
3920072,
3946809, Dec 19 1974 Exxon Production Research Company Oil recovery by combination steam stimulation and electrical heating
3948319, Oct 16 1974 Atlantic Richfield Company Method and apparatus for producing fluid by varying current flow through subterranean source formation
3954140, Aug 13 1975 Recovery of hydrocarbons by in situ thermal extraction
3958636, Jan 23 1975 Atlantic Richfield Company Production of bitumen from a tar sand formation
3972372, Mar 10 1975 Exraction of hydrocarbons in situ from underground hydrocarbon deposits
3981187, Mar 25 1974 Atlantic Richfield Company Method for measuring the thermal conductivity of well casing and the like
3988036, Mar 10 1975 Electric induction heating of underground ore deposits
3989107, Mar 10 1975 Induction heating of underground hydrocarbon deposits
3994341, Oct 30 1975 Chevron Research Company Recovering viscous petroleum from thick tar sand
4008761, Feb 03 1976 Method for induction heating of underground hydrocarbon deposits using a quasi-toroidal conductor envelope
4008762, Feb 26 1976 Extraction of hydrocarbons in situ from underground hydrocarbon deposits
4010799, Sep 15 1975 Petro-Canada Exploration Inc.; Imperial Oil Limited; Canada-Cities Service, Ltd. Method for reducing power loss associated with electrical heating of a subterranean formation
4013538, Dec 22 1971 General Electric Company Deep submersible power electrode assembly for ground conduction of electricity
4037655, Feb 24 1972 Electroflood Company Method for secondary recovery of oil
4067390, Jul 06 1976 Technology Application Services Corporation Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
4079784, Mar 22 1976 TAMROCK WORLD CORPORATION N V , C O PIERSON, HELDRING & PIERSON Method for in situ combustion for enhanced thermal recovery of hydrocarbons from a well and ignition system therefor
4084637, Dec 16 1976 Petro Canada Exploration Inc.; Canada-Cities Services, Ltd.; Imperial Oil Limited Method of producing viscous materials from subterranean formations
4084638, Oct 16 1975 Probe, Incorporated Method of production stimulation and enhanced recovery of oil
4084639, Dec 16 1976 Petro Canada Exploration Inc.; Canada-Cities Services, Ltd.; Imperial Oil Limited Electrode well for electrically heating a subterranean formation
4116273, Jul 29 1976 Induction heating of coal in situ
4135579, May 03 1976 Raytheon Company In situ processing of organic ore bodies
4137968, Mar 22 1976 Texaco Inc. Ignition system for an automatic burner for in situ combustion for enhanced thermal recovery of hydrocarbons from a well
4140179, Jan 03 1977 Raytheon Company In situ radio frequency selective heating process
4140180, Aug 29 1977 IIT Research Institute Method for in situ heat processing of hydrocarbonaceous formations
4144935, Aug 29 1977 IIT Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
4159743, Dec 20 1974 World Energy Systems Process and system for recovering hydrocarbons from underground formations
4193448, Sep 11 1978 CALHOUN GRAHAM JEAMBEY Apparatus for recovery of petroleum from petroleum impregnated media
4193451, Jun 17 1976 The Badger Company, Inc. Method for production of organic products from kerogen
4196329, May 03 1976 Raytheon Company Situ processing of organic ore bodies
4199025, Feb 24 1972 Electroflood Company Method and apparatus for tertiary recovery of oil
4228853, Jun 21 1978 Petroleum production method
4243098, Nov 14 1979 Downhole steam apparatus
4289204, May 03 1979 STEWART, CHERRI GAE Solar heat treating of well fluids
4301865, Jan 03 1977 Raytheon Company In situ radio frequency selective heating process and system
4320801, May 03 1976 Raytheon Company In situ processing of organic ore bodies
4359091, Aug 24 1981 Recovery of underground hydrocarbons
4359627, May 23 1980 DAIDO SANGYO CO LTD Preheater mounted within a well
4375302, Mar 03 1980 Process for the in situ recovery of both petroleum and inorganic mineral content of an oil shale deposit
4384613, Oct 24 1980 Terra Tek, Inc. Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
4390062, Jan 07 1981 The United States of America as represented by the United States Downhole steam generator using low pressure fuel and air supply
4401162, Oct 13 1981 Synfuel (an Indiana limited partnership) In situ oil shale process
4412585, May 03 1982 Cities Service Company Electrothermal process for recovering hydrocarbons
4415034, May 03 1982 Cities Service Company Electrode well completion
4444258, Nov 10 1981 In situ recovery of oil from oil shale
4460352, Jan 22 1982 Westfalia Separator AG Centrifuge drum for clarifying and/or separating liquids
4572299, Oct 30 1984 SHELL OIL COMPANY A DE CORP Heater cable installation
4585066, Nov 30 1984 Shell Oil Company Well treating process for installing a cable bundle containing strands of changing diameter
4589488, Mar 30 1982 Phillips Petroleum Company Method for recovery of mineral resources
4616705, Oct 05 1984 Shell Oil Company Mini-well temperature profiling process
4626665, Jun 24 1985 Shell Oil Company Metal oversheathed electrical resistance heater
4704514, Jan 11 1985 SHELL OIL COMPANY, A CORP OF DE Heating rate variant elongated electrical resistance heater
5060287, Dec 04 1990 Shell Oil Company Heater utilizing copper-nickel alloy core
5065818, Jan 07 1991 Shell Oil Company Subterranean heaters
SE123137,
SE123138,
SE125712,
SE126674,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 28 1995Shell Oil Company(assignment on the face of the patent)
Date Maintenance Fee Events
Mar 27 2001M184: Payment of Maintenance Fee, 8th Year, Large Entity.
May 16 2005M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
May 16 2005M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.
May 24 2005ASPN: Payor Number Assigned.


Date Maintenance Schedule
Dec 23 20004 years fee payment window open
Jun 23 20016 months grace period start (w surcharge)
Dec 23 2001patent expiry (for year 4)
Dec 23 20032 years to revive unintentionally abandoned end. (for year 4)
Dec 23 20048 years fee payment window open
Jun 23 20056 months grace period start (w surcharge)
Dec 23 2005patent expiry (for year 8)
Dec 23 20072 years to revive unintentionally abandoned end. (for year 8)
Dec 23 200812 years fee payment window open
Jun 23 20096 months grace period start (w surcharge)
Dec 23 2009patent expiry (for year 12)
Dec 23 20112 years to revive unintentionally abandoned end. (for year 12)