An electric device which removes supragingival and subgingival plaque and undesirable debris from the interproximal surfaces between teeth is described. This device utilizes a combination of sonic energy and dental floss which is secured between two tines, the tines being part of a flexible fork which is removable from a powered handle which contains batteries and an electric motor. The electric motor, which is coupled to an eccentrically mounted disc on an output shaft, revolves at sonic frequencies which in turn generates sonic energy that is transmitted to the flexible fork which holds the floss. The sonic energy is synchronized and in tune with the natural resonance frequencies of the fork thereby stimulating the resonance action of oscillating vertical and/or elliptical movement of the fork which in turn imparts cleaning energy to and enhances the cleaning properties of the floss.
|
|
The present invention relates to personal hygiene, particularly dental hygiene including flossing and cleaning teeth.
Presently, a majority of dental disease occurs on interproximal surface areas of teeth (i.e. the surface areas between teeth). A program of good dental hygiene which includes keeping the interproximal surface areas clean helps prevent dental disease from occurring in these areas.
Flossing is a well known and commonly used method of good dental hygiene by which interproximal surfaces of teeth are cleaned. Proper flossing cleans the interproximal surfaces both above and below the gum line thereby reducing the likelihood of dental disease on these surfaces. Although flossing is a valuable part of good dental hygiene, it is a tedious and time consuming task and, therefore, is seldom done properly. Cleaning the interproximal areas of teeth has been a problem since the existence of teeth.
There are various methods of cleaning teeth. Each method his limitations with regard to cleaning the interproximal surfaces of teeth. Toothbrushes are used to clean teeth. However, toothbrushes cannot adequately clean interproximal surface areas because of the lack of access to these areas. Toothpicks are also used to clean teeth and also suffer from an inability to reach all interproximal surfaces adequately. Hydraulic dental irrigation systems may be used to clean these areas. However, it is well accepted that hydraulic irrigation alone is inadequate to remove the sticky plaque film which build up on teeth surfaces including interproximal surfaces.
The best method of cleaning the interproximal surfaces of teeth is to have a dental cleaning done by a health professional. However, dental flossing is generally regarded as the next best and the most convenient way a lay person can properly clean between his or her own teeth.
If done properly, dental flossing is a highly effective method of improving dental hygiene and health of both teeth and periodontium (gum tissues and underlying jaw bone) which is between natural teeth and/or dental restorations in the mouth. Flossing action actually mechanically cleans bacteria laden plaque from tooth surfaces, particularly from interproximal tooth surfaces. Essentially, the floss wipes or scrubs off plaque and other undesirable debris from tooth surfaces. Although flossing is commonly known to be as important and as necessary as tooth brushing, it is widely neglected. Some of the most common complaints about flossing (and, therefore, reasons for neglect) include that it is difficult to perform and is time consuming.
A variety of devices have been introduced which attempt to make flossing easier. Most of these devices simply act as holders for the floss to reduce the manual dexterity required to floss. While such floss-holder devices may simplify some aspects of flossing, they generally have a fixed or limited range of motion and, therefore, have limited cleaning action and effectiveness. In addition, floss-holder devices are used manually, the cleaning energy conveyed to plaque covered tooth surfaces must be supplied by the user.
Electrically powered devices for flossing and cleaning teeth have also been introduced. Most of these devices directly connect floss or floss-holding assemblies to a power source such as an electric motor. Because of the direct connection between the motor and the flossing element, whether it is by drive shafts, gears, pulleys, cams, or etc., these devices impart gross movement of the floss between the teeth which is forceful, jerky, and/or "sawing" or "hatchet-like" in nature. These types of movement can be both inefficient and potentially harmful.
Generally, these electrically powered devices comprise flossing assemblies attached to well known electric toothbrush handles. Thus, many electric flossers utilize the up and down or back and forth movement of an electric toothbrush assembly. Many devices have been described which reciprocate a strand of floss back and forth between teeth thereby resulting in a sawing motion. See, e.g., Brien, U.S. Pat. No. 3,847,167; Lecouturier, U.S. Pat. No. 4,245,658; Salyer, U.S. Pat. No. 4,265,257; Hinding, U.S. Pat. No. 4,326,549; Meibauer, U.S. Pat No. 4,338,957; Boggs, U.S. Pat. No. 5,016,660; and Gross, et al., U.S. Pat No. 5,033,150. Some devices have been described which move a strand of floss in an up and down or hatchet-like motion between teeth. See, e.g., Garrett, U.S. Pat. No. 4,014,354; Moore, U.S. Pat. No. 4,235,253; Grollimund, U.S. Pat. No. 4,458,702; and McSpadden, U.S. Pat. No. 4,605,025. Additional devices have been described which combine both a back and forth motion and an up and down motion. See, e.g., Florindez et al., U.S. Pat. No. 4,307,740; Urso, U.S. Pat. No. 4,586,521; and Ritter, U.S. Pat. No. 5,069,233. Still other devices have been described which incorporate an approximate teeter-totter or see-saw action whereby floss reciprocates over an imaginary fulcrum which lies along the long axis of the device. See, e.g., Waters, U.S. Pat. No. 3,411,524; and Odneal et al., U.S. Pat. No. 5,085,236.
One problem with some of these devices is that they utilize a mere back and forth or horizontal manipulation of dental floss between teeth. It is well accepted in the dental community that mere back and forth manipulation of dental floss between teeth is ineffective in cleaning teeth surfaces. Therefore, devices which merely provide a back and forth sawing motion are ineffective for flossing purposes.
Another problem with these devices is that they use direct mechanical links to transfer energy from an electric motor to a flossing assembly. Due to the direct mechanical links, the flossing assemblies are not "forgiving" (i.e. they meet resistance with force). If when using one of these devices the flossing element comes in contact with soft mouth tissues, the tissues may very well be cut or abraded. In addition, if floss is moved between teeth in a rapid and/or strong back and forth motion, it can injure and damage mouth tissues. Furthermore, it is also well recognized that sharp or rapid up and down hatchet motions are more effective for flossing purposes, but are also potentially damaging to periodontal tissues.
Some devices include features to specifically address the potential injury problem. See, e.g., Meibauer, U.S. Pat. No. 4,338,957; and Grollimund, U.S. Pat. No. 4,458,702. However, the problems persist due to the direct mechanical links between the motor and the flossing assembly.
Energy, such as vibrational energy in sonic frequency ranges (e.g. 2,000 to 20,000 Hz. cpm and preferably between 8,000 and 17,000 Hz. cpm
A variety or range of speeds or frequencies of operation are needed because the natural resonance frequency and, consequently, the resonance action, of the floss-holding fork 12 will change according to how much of a "load" is placed on the floss 32 held by the fork 12. There are a variety of sonic frequencies employed in the present invention 10 which are intended to allow the resonance action of the fork 12 to occur under conditions of varying loads (i.e. different amounts of friction and resistance imposed upon the floss 32 during use of the device 10). As the load varies, so will the inherent natural resonance frequency of the fork 12. Thus, having a variety of frequencies is necessary.
The present invention relies upon sonic energy, natural resonance frequencies and the resultant resonance action. This combination utilizes a minimal number of moving parts thereby reducing friction and using cleaning energy more efficiently.
FIGS. 3A and 3B illustrate a second embodiment of a floss holding fork 12. Although different, the overall design of the second embodiment fork 12 enables operation of the device 10 by the same working principles of coupling sonic energy with the natural resonance frequencies of the fork 12 as described above. Also shown in FIGS. 3A and 3B is a locking cap 34 which secures the floss 32 to the fork 12. Arrows A in FIG. 3B illustrate the motion of the floss-holding fork 12.
FIGS. 4A and 4B illustrate an embodiment of the present invention 10 which includes a toothbrush attachment 36. The same working principle of coupling sonic energy with the natural resonance frequencies of the toothbrush attachment 36 as described above apply to this embodiment. Arrows B in FIG. 4B illustrate the motion of the toothbrush attachment 36.
FIGS. 5A and 5B illustrate another embodiment of the present invention 10 which includes a pick attachment 38. The utilization of sonic energy and resonance action to drive the pick attachment 38 as described above also applies to this embodiment. Arrows C in FIG. 5B illustrate the motion of the pick attachment 38.
While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention, and all such modifications and equivalents are intended to be covered.
Patent | Priority | Assignee | Title |
10449023, | Jul 08 2015 | WATER PIK, INC | Oral cleansing device with energy conservation |
10561480, | May 09 2016 | WATER PIK, INC | Load sensing for oral devices |
10610008, | Dec 15 2016 | WATER PIK, INC | Brushing device with illumination features |
10828137, | Mar 15 2013 | Water Pik, Inc. | Brush tip with motion transfer and securing engagement structures |
10918469, | Mar 15 2013 | Water Pik, Inc. | Toothbrush with fluid directing drive assembly |
11013315, | Dec 15 2016 | Water Pik, Inc. | Light diffuser for oral cleansing devices |
11284980, | Jul 08 2015 | Water Pik, Inc. | Oral cleansing device with rotatable fluid connector |
11351018, | Mar 15 2013 | Water Pik, Inc. | Oral cleansing device with removable base |
11399925, | Mar 15 2013 | Water Pik, Inc. | Wirelessly controlled oral irrigator |
11744690, | Mar 15 2013 | Water Pik, Inc. | Toothbrush tip |
6047711, | Feb 19 1999 | Method and apparatus for converting a power-driven toothbrush into a power-driven flossing device | |
6716028, | Aug 04 2000 | HU-FRIEDY MFG CO , LLC | Ultrasonic swivel insert |
6760945, | Jan 12 2001 | HoMedics, Inc. | Acoustic toothbrush |
6811399, | Jul 27 2001 | HU-FRIEDY MFG CO , LLC | Torque lock for ultrasonic swivelable inserts and method |
6895624, | Mar 07 2002 | Ultradent Products, INC | Powered tongue cleaning device |
6920659, | Jan 12 2001 | WATER PIK, INC | Toothbrush |
6955539, | Jul 12 2001 | WATER PIK, INC | Characterization of motion of dual motor oral hygiene device |
7011520, | Aug 04 2000 | HU-FRIEDY MFG CO , LLC | Two part ultrasonic swivel insert, with one part rotatable relative to the other |
7055531, | Jul 07 2004 | Rehco, LLC | Electronic oral cleaning device |
7114506, | Jul 02 2003 | Vibratory cleaning devices and methods | |
7156108, | Apr 07 2003 | Multifunction dental cleaning device | |
7198487, | Dec 31 2002 | WATER PIK, INC | Whitening tip for dental flossing device |
7266855, | Jun 04 2002 | Electric toothbrush | |
7270129, | Feb 20 2004 | Rehco, LLC | Dental flosser |
7296318, | Nov 04 2003 | University of Washington | Toothbrush employing an acoustic waveguide |
7311108, | Oct 09 2003 | WILLIAM GETGEY COMPANY, INC , THE | Motorized flosser and method of use |
7326334, | Oct 01 2003 | INSTAPURE BRANDS, INC | End-of-faucet filter |
8291537, | Jan 10 2008 | Access Business Group International LLC | Oral hygiene device and method of assembly |
8328552, | Apr 13 2005 | TULSA DENTAL PRODUCTS LLC | Apparatus for cleaning a root canal system |
8601629, | Jan 10 2008 | Access Business Group International LLC | Oral hygiene device and method of assembly |
8943634, | May 02 2011 | WATER PIK, INC | Mechanically-driven, sonic toothbrush system |
9144477, | May 02 2011 | WATER PIK, INC | Mechanically-driven, sonic toothbrush system |
9468511, | Mar 15 2013 | WATER PIK, INC | Electronic toothbrush with vibration dampening |
9492255, | Jan 10 2008 | Access Business Group International LLC | Oral hygiene device and method of assembly |
9877815, | Sep 21 2011 | Electric flossing device | |
9987109, | Mar 15 2013 | WATER PIK, INC | Mechanically-driven, sonic toothbrush and water flosser |
D532555, | Jan 27 2006 | William Getgey Company, Inc. | Head and neck of motorized flosser |
D533622, | Oct 01 2003 | INSTAPURE BRANDS, INC | End-of-faucet filter |
D812816, | Jan 27 2017 | Disposable dental floss and toothpick dental accessory | |
D844997, | Dec 15 2016 | WATER PIK, INC | Toothbrush handle |
D845636, | Dec 15 2016 | WATER PIK, INC | Toothbrush handle |
D878765, | Mar 17 2014 | Water Pik, Inc. | Brush head for oral cleansing device |
D881584, | Dec 15 2016 | Water Pik, Inc. | Toothbrush handle |
D906688, | Dec 15 2016 | Water Pik, Inc. | Toothbrush handle |
D959840, | Mar 17 2014 | Water Pik, Inc. | Brush head for oral cleansing device |
RE36699, | Dec 30 1992 | AMDEN CORPORATION | Sonic dental device |
Patent | Priority | Assignee | Title |
1880617, | |||
3421524, | |||
3466689, | |||
3563233, | |||
3847167, | |||
3967617, | Nov 25 1974 | Alston, Inc. | Mechanical gum massager |
4014354, | Oct 03 1975 | Dental flossing tool | |
4235253, | May 07 1979 | Electric dental flosser | |
4245658, | Apr 09 1979 | Automatic flossing apparatus | |
4265257, | Jul 17 1979 | Power driven dental floss cleaner | |
4307740, | Oct 06 1980 | Tooth cleaner | |
4326549, | Aug 18 1980 | Dental hygiene appliance | |
4333197, | Jun 02 1980 | LOGICAL TECHNICAL SERVICES CORP | Ultrasonic toothbrush |
4338957, | Nov 05 1980 | Dental prophylaxis device and process | |
4458702, | Jun 07 1982 | Dental flosser | |
4586521, | Dec 07 1983 | Multi-motion dental flosser | |
4605025, | May 14 1984 | UNION BANK; Tycom Dental Corporation | Powered dental flossing device |
5002487, | Feb 07 1989 | Periodontic tool with triangular vibration path | |
5016660, | Mar 23 1990 | Automatic flossing tool | |
5033150, | Jan 29 1990 | Product Development (S.G.Z.) Ltd. | Motor-driven toothbrush |
5062797, | Sep 05 1990 | DENTALEZ, INC | Alloy bearing for dental scaler |
5069233, | Oct 30 1990 | Method and apparatus for removing debris from between and around teeth | |
5085236, | Jan 03 1991 | Dental floss machine | |
5151030, | Jul 12 1991 | Dental filler applicator | |
5170809, | Dec 25 1990 | PANASONIC ELECTRIC WORKS CO , LTD | Powered dental floss |
DE3340758, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 11 2003 | MURAYAMA, RONALD K | AMDEN CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014797 | /0140 |
Date | Maintenance Fee Events |
Mar 02 1998 | M283: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Feb 21 2002 | M284: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Sep 06 2006 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 13 2001 | 4 years fee payment window open |
Jul 13 2001 | 6 months grace period start (w surcharge) |
Jan 13 2002 | patent expiry (for year 4) |
Jan 13 2004 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 13 2005 | 8 years fee payment window open |
Jul 13 2005 | 6 months grace period start (w surcharge) |
Jan 13 2006 | patent expiry (for year 8) |
Jan 13 2008 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 13 2009 | 12 years fee payment window open |
Jul 13 2009 | 6 months grace period start (w surcharge) |
Jan 13 2010 | patent expiry (for year 12) |
Jan 13 2012 | 2 years to revive unintentionally abandoned end. (for year 12) |