A vibration damper assembly operatively connecting a driving pulley with an automotive engine output shaft which drives a serpentine belt system with an automatic belt tensioner. The vibration damper assembly serves to dampen torsional, bending, and transitional vibrations transmitted from the output shaft through the poly-V belt and engine frame to the belt tensioner. The vibration damper assembly comprises includes a mounting element, fixed to the output shaft, in torsional transmitting relation therewith, bearing member operatively disposed between the driving pulley and the mounting element to restrict relative movement therebetween to torsional relative movement, and a resilient member operatively connected between the driving pulley and the mounting element in resilient torsional transmitting relation therebetween.

Patent
   RE35932
Priority
Jul 29 1996
Filed
Jul 29 1996
Issued
Oct 20 1998
Expiry
Jul 29 2016
Assg.orig
Entity
Large
7
12
all paid

This invention relates generally to serpentine belt systems for automotive vehicles and more particularly to vibration damping improvements for extending the useful life of the belt tensioner of the system.

In recent years, it has been found desirable to replace the conventional multiple individual belt system with a system embodying a single belt arranged in serpentine fashion to drive all of the multiple rotary instruments heretofore driven by separate belts. Most of the single serpentine belt systems thus far utilized have included a separate belt tensioning device both as an essential to the proper functioning of the system and as a means to simplify the mounting and tensioning of the belt in operative relation therewith.

A common type of belt tensioner embodies a fixed structure and a pivoted structure in the form of an arm carrying a belt engaging pulley pivoted to the fixed structure by a pivot assembly. A coil spring is mounted between the fixed structure and the pivoted structure and has its ends connected between the fixed and pivoted structures so as to bias the latter into tensioning engagement with the poly-V belt to maintain the poly-V belt in driven engagement with the driving pulleys and in driving engagement with the driven pulleys. It can be appreciated that long-term oscillations of the belt tensioner arm about its pivotal axis can have a deleterious effect on the interaction of components within the tensioner and the ability of the tensioner mechanism to maintain constant tension within the poly-V belt.

While belt tensioners are well-known devices and have been utilized in many belt systems, the requirements placed upon belt tensioners utilized in serpentine single belt automotive systems are particularly stringent. These requirements stem from a combination of factors including the relatively greater belt length utilized and hence the relatively greater belt take-up capacity required. In addition, significant wear of the belt tensioner is caused by extensive oscillations of the tensioner about its pivotal axis as a result of vibrations, resultant from varying rotational speed of the engine, imparted to the tensioner through the engine crankshaft, poly-V belt and engine frame. Such vibrations include "torsional" vibrations caused by twisting of the crankshaft in conjunction with the firing pressures of the pistons every combustion cycle, and "bending" vibrations of the crankshaft caused by momentary deflections of the crankshaft in response to such firing pressures. These vibrations reach particularly high levels when the natural frequencies of the crankshaft/poly-V belt/pulley system match the high amplitude of the engine firing forces over the normal operating speed of the engine. In addition, instantaneous tightening and loosening of the poly-V belt resulting from the changing rotational speeds of the crankshaft causes harmful "transitional" vibrations to be imparted to the belt tensioner. Therefore, there exists a need for a serpentine belt system having a torsional/bending/transitional vibration damper (hereinafter termed torsional vibration damper for simplicity) which will effectively address the aforementioned problems and enable the belt tensioner to function properly over an extended period of time.

It is an object of the present invention to fulfill the need expressed above. In accordance with the principles of the present invention, this objective is achieved by providing the combination including an internal combustion engine having an engine frame and an output shaft rotatable by operation of the internal combustion engine, the output shaft being subject to torsional and bending vibrations resulting from the operation of the internal combustion engine. In the combination, a plurality of driven shafts are mounted for rotational movement about parallel axes fixed with respect to the engine frame, and a plurality of driven pulleys are operatively connected with the driven shafts. A driving pulley is operatively connected with the output shaft. An endless flexible poly-V belt is trained about the driven and driving pulleys, the poly-V belt being subject to transitional vibrations from changing rotational speeds of the crankshaft. The combination further comprises a belt tensioner carried by the engine frame in tensioning engagement with the poly-V belt for maintaining the poly-V belt in driven engagement with the driving pulley and in driving engagement with the driven pulleys. Finally, a vibration damper assembly is provided to operatively connect the driving pulley with the output shaft for damping the torsional vibrations, the bending vibrations, and the transitional vibrations transmitted from the output shaft through the poly-V belt and the engine frame to the belt tensioner. The vibration damper comprises a mounting element, fixed to the output shaft, in torsional transmitting relation therewith, and stresses but also reduces bending stresses within the crankshaft during operation of the combustion engine.

Referring now to FIG. 3 an automotive internal combustion engine, generally indicated at 110, which includes an engine frame 112 and crankshaft 14. Fixed to the crankshaft 14 is pulley 16 forming a part of a serpentine belt system, generally indicated at 118. The belt system 118 includes an endless poly-V belt 46. The poly-V belt 46 is of the thin flexible type. The poly-V belt 46 is trained about the pulley 16 and a plurality of further pulleys 122, 124, 126, 128, and 130 each of which is fixed to respective shafts 132, 134, 136, 138 and 140. The shafts are connected to operate various engine accessories. For example, shaft 132 drives a water pump, shaft 134 a power steering pump, shaft 136 an alternator, shaft 138 an air injection pump, and shaft 140 a compressor of an air conditioning system for the automobile utilizing the engine 110.

It will be understood that the internal combustion engine 110 may be of any known construction. In accordance with conventional practice, the operation of the engine is such as to impart vibratory forces to the engine frame 112. All of the accessories are mounted on the engine frame 112 so that the shafts are rotated about parallel axes which are fixed with respect to the engine frame 112 and parallel with the output shaft 16 thereof.

The poly-V belt 46 is tensioned by a belt tensioner, generally indicated at 142. The belt tensioner 142 is also mounted on the engine frame 112. It will be understood that the engine frame 112 is mounted on the chassis of the automotive vehicle through appropriate shock absorbing mounts which serve to isolate the vibratory forces which are established by the operation of the internal combustion engine from the vehicle frame but not from the engine frame. The torsional vibratory forces which are established by the operation of the internal combustion engine 110 and torsional rotation of crankshaft 14 to which the pulley 16 is subjected are transmitted to the belt tensioner 42 through poly-V belt 120. In addition, momentary deflections of the crankshaft 14 may be imparted to the belt tensioner 142 through vibrations of the engine frame 112 itself.

Referring more particularly to FIG. 4 of the drawings, the belt tensioner 142 of the present invention includes a fixed structure 236 which is adapted to be secured, via bolt 256, to a bracket plate 238 or the like in a stationary position with respect to the engine block. The belt tensioner also includes a pivoted structure 240 which is mounted with respect to the fixed structure 236 for a pivotal movement about a fixed pivotal axis, indicated by phantom line 250. The pivoted structure 240 carries a belt engaging tensioner pulley 242 for rotational movement about rotational axis indicated at phantom line 252, parallel with the pivotal axis. A coil spring 244 is mounted between the fixed structure 236 and pivoted structure 240 for resiliently biasing the latter to move in a direction towards poly-V belt 46 so as to maintain tensioner pulley 242 in tensioning engagement with poly-V belt 46. Belt tensioner 142 maintains poly-V belt 46 in driven engagement with driving pulley 16 and in driving engagement with driven pulleys 122, 124, 126, 128, and 130.

As noted previously, pivoted structure 240 is subject to oscillatory movement about its pivotal axis 250 as a result of torsional, bending, and transitional vibrations transmitted from output shaft 14 through poly-V belt 46 and the engine frame 112. The vibration damper of the present invention significantly helps reduce such oscillatory movement and prolong the life of belt tensioner 142.

FIG. 5 is a vertical sectional view of another embodiment of the torsional vibration damper of the present invention. The function of this embodiment is quite similar to that of the embodiment depicted in FIG. 1, and will now be described in greater detail. The torsional vibration damper, generally indicated at 310, includes a stamped hub 312 which operates to mount the torsional vibration damper to engine crankshaft 314. As can be appreciated, generally indicated at 315 is a conventional key/keyway assembly for predetermining the fixed angular position of the torsional vibration damper on the shaft. The axial extremity of crankshaft 314 comprises an annular flat face 316, and a central protruding portion 318 which protrudes from the center of annular flat face 316. Protruding portion 318 has a peripheral radial wall 320, which together with flat face 316 forms a seat for stamped hub 312. Protruding portion 318 has an inner threaded bore 322 which is adapted to receive threads 324 of bolt 326.

Bolt 326 passes through a cup member 328 and a retaining washer 330. Retaining washer 330 bears against the inner surface 332 of cup member 328, while the outer surface 334 of cup member 328 comes into contact with stamped hub 312 at a portion thereof generally indicated at 336. Bolt 326 is tightly screwed to crankshaft 314 so as to compress retaining washer 330, cup member 328, and stamped hub 312 therebetween.

A resilient member 340 is secured between two concentrically disposed outer and inner rings 342 and 344 similar to the configuration as described in FIG. 1. Rings 344 and 342 are secured respectively to an outer peripheral surface 345 of cup member 328 and an inner surface 347 of a pulley 346, which is adapted to engage endless flexible poly-V belt 348. Pulley 346 includes radially extending annular disk portion 350, extending radially inwards from the portion at which pulley 346 engages poly-V belt 348 and towards a bearing engaging portion 352. Bearing element 354 is disposed between bearing engaging portion 352 and an inner portion 353 of stamped hub 312 which engages radial wall 320 of crankshaft 314. In this embodiment, stamped hub 312 has a portion thereof constituting a protruding portion 356, which is held in spatially separated relation from side portions 358 as similarly disclosed in the description of FIG. 2 with respect to side portions 54 and protruding portion 48.

An upper portion 360 of stamped hub 312 has an elastic member 362 bonded thereto. Elastic member 362 substantially corresponds to elastic member 60 in the first embodiment Mass element 364 substantially corresponds to mass element 54 in the first embodiment, and is resiliently attached to stamped hub 312 through elastic member 362.

As crankshaft 314 rotates, stamped hub 312, cup member 328, retaining washer 330, and bolt 326, which are all tightly secured thereto, rotate in unison therewith. As cup member 328 receives torsional rotation from crankshaft 314 as a result of the operation of an internal combustion engine, resilient member 340 resiliently transmits torsional rotation to pulley 346. Bearing element 354 restricts relative movement between pulley 346 and cup member 328 to torsional relative movement. It can be appreciated, however, that the relative movement between cup member 328 and pulley 346 is rather slight and occurs mostly when there is large transitions in the operating speed of output crankshaft 314. During such transitions, resilient member 340 effectuates the same type of lag accomplished by resilient 34 in the first embodiment. Resilient member 340, operating in conjunction with bearing element 354 also serves to absorb torsional vibrations of shaft 314 transmitted through stamped hub 312. And, in instances of failure of resilient member 340, protruding portion 356 of stamped hub 312 is permitted to engage side portions 358 so that stamped hub 312 becomes in torsional translating relation with pulley 346.

Finally, it can be appreciated that while the vibration damping assemblies in FIGS. 1 and 5 are shown attached to output shaft 14, they can just as easily be attached to any one or more of the driven shafts shown in FIG. 3. Each accessory driven by the respective driven shaft has its specific natural frequency and dynamic characteristic influenced by the rotational inertia, pulley system geometry, etc. Providing a torsional vibration damper on all driven shafts may further reduce vibratory transmission to belt tensioner 142 and engine frame 112.

While the invention has been disclosed and described in some detail in the drawings and foregoing description, they are to be considered as illustrative and not restrictive in character, as other modifications may readily suggest themselves to persons skilled in the art and within the broad scope of the invention. The invention includes all modifications encompassed within the spirit and scope of the following claims.

Clark, Michael, Cerny, Zdenek

Patent Priority Assignee Title
10030757, Jul 01 2014 DAYCO IP Holdings, LLC Torsional vibration damper with an interlocked isolator
10151379, Oct 14 2014 DAYCO IP Holdings, LLC Torsional vibration dampers
11287024, Aug 30 2016 SCHAEFFLER TECHNOLOGIES AG & CO KG Pulley decoupler with double pulley hub
11796046, Jan 08 2021 American Axle & Manufacturing, Inc. Isolated drive assembly with an isolator assembly and a torque limiter for limiting the transmission of torque through an elastomeric element of the isolator assembly
7850557, May 20 2005 JTEKT Corporation Torque fluctuation damper pulley
8262520, Jun 26 2007 Mitsuboshi Belting Ltd Pulley assembly for a power transmission belt
9581233, Jun 09 2014 DAYCO IP Holdings, LLC Torsional vibration damper with an interlocked isolator
Patent Priority Assignee Title
4262553, Mar 05 1976 SCHWITZER U S INC Torsional vibration damper
4764152, Sep 27 1983 Carl Freudenberg KG Rubber coupling
4781659, Oct 21 1986 FREUDENBERG, CARL Torsional vibration damper with a V-belt pulley connected thereto
4794816, Oct 15 1985 Tokai Rubber Industries, Ltd.; Toyota Jidosha Kabushiki Kaisha Dual-type damper device
4815332, Oct 15 1985 Tokai Rubber Industries, Ltd.; Toyota Jidosha Kabushiki Kaisha Dual-type damper device
4881426, Oct 15 1985 Tokai Rubber Industries, Ltd.; Toyota Jidosha Kabushiki Kaisha Dual-type damper device
5030172, Sep 06 1989 Dayco Products, LLC Belt tensioner and method of making the same
5057059, Dec 13 1989 Dayco Products, LLC Belt tensioner and method of making the same
5129864, Feb 27 1991 Dayco Products, LLC Tensioner for a power transmission belt and method of making the same
5148719, Mar 30 1988 Dr. Ing. h.c.F. Porsche AG Torsional-vibration damper
5231893, Dec 10 1991 Metaldyne, LLC Dual mode damper
5405296, Dec 28 1993 Tesma International Inc. Torsional vibration damper
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 16 1993CERNY, ZDENEKTESMA INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0090630051 pdf
Nov 18 1993CLARK, MICHAELTESMA INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0090630051 pdf
Jul 29 1996Tesma International, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 19 2002M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 15 2006M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 20 20014 years fee payment window open
Apr 20 20026 months grace period start (w surcharge)
Oct 20 2002patent expiry (for year 4)
Oct 20 20042 years to revive unintentionally abandoned end. (for year 4)
Oct 20 20058 years fee payment window open
Apr 20 20066 months grace period start (w surcharge)
Oct 20 2006patent expiry (for year 8)
Oct 20 20082 years to revive unintentionally abandoned end. (for year 8)
Oct 20 200912 years fee payment window open
Apr 20 20106 months grace period start (w surcharge)
Oct 20 2010patent expiry (for year 12)
Oct 20 20122 years to revive unintentionally abandoned end. (for year 12)