A stent for reinforcing a damaged wall in a body passage such as a vascular passage. The stent takes the form of a sheet or metal foil wound tightly around a spool in a multiple layer roll and held in a contracted state by a sheath sleeved around the roll. The spool is inserted into the body passage until the stent is adjacent to the area of the damaged wall. The spool and stent are then advanced while the sheath is held stationary. This pushes the stent out the end of the sheath and releases the stent such that the roll unwinds and expands against the damaged vessel wall.

Patent
   RE35988
Priority
Apr 12 1996
Filed
Apr 12 1996
Issued
Dec 08 1998
Expiry
Apr 12 2016
Assg.orig
Entity
Small
52
73
all paid
12. Apparatus for reinforcing a damaged wall of a body passage, comprising:
an elongated core;
an elongated stent in the form of a flexible sheet spirally wound around the core in a multiple layer roll having contracted and expanded conditions, said sheet being wound tightly on the core in the contracted condition and having a spring force which tends to radially expand toward the expanded condition thereof wherein the sheet assumes a size to contact the damaged wall, and
said roll presenting having a plurality of adjacent, arcuate layers of said sheet in a direction transverse top the longitudinal axis of the core;
a sheath fitting closely around said roll to hold the sheet in the contracted condition, said sheet being movable axially relative to the roll to permit the sheath to release from the roll and thereby allow expansion of the sheet against the damaged wall in the expanded condition,
said roll in the expanded condition thereof having at least two overlapping layers, which overlap and bear against one another over a substantial portion of the circumference of the inner layer, said expanded roll adapted for securely contracting said damaged wall by virtue of said radial expansion tendency of the roll.
18. A stent for placement in a body passage to support a stricture or reinforce a damaged wall in the passage, comprising:
an elongated flexible sheet arranged in a multiple layer roll having expanded and contracted conditions and having a spring force, so that when said sheet is in said contracted condition, said spring force urges said sheet to expand toward the expanded condition, said roll presenting in the expanded condition a diameter at least equal to the diameter of the body passage;
said roll presenting in its contracted condition a plurality of adjacent, arcuate layers;
said roll being retained in the contracted condition during an insertion into said passage to the location of said damaged wall by a retaining structure adapted to be inserted into said body passage;
wherein upon release of said roll from said retaining structure at the location of said damaged wall, said spring force urges expansion of said roll into the expanded condition such that said roll contacts said damaged wall, said roll further having in the expanded condition a plurality of overlapping layers which overlap and bear against one another over a substantial portion of the circumference of an inner layer, said expanded roll further having sufficient structural integrity to effect reinforcement or support of said damaged wall.
1. A stent assembly for placement in a body passage to reinforce a damaged wall in the passage, comprising:
an elongated core;
an elongated, flexible sheet arranged on said core in a multiple layer roll having expanded and contracted conditions and having a spring force so that said sheet is urged toward the expanded condition, said roll being tightly wound on the core in the contracted condition and presenting in the expanded condition a diameter at least equal to the diameter of the body passage.
said roll being spirally wound on said core and having a tendency to radially expand, said roll presenting a plurality of adjacent, arcuate layers of said sheet in a direction transverse to the longitudinal axis of said core;
releasable means for retaining said roll in the contracted condition on said core while the core is being inserted into the passage to the location of the damaged walls; and
means for effecting release of said releasable means to permit the roll to expand against the damaged wall in the expanded condition of the roll,
said roll in the expanded condition thereof having at least two overlapping layers which overlap and bear against one another over a substantial portion of the circumference of a an inner layer, said expanded roll adapted for securely contacting said damaged wall by virtue of said radial expansion tendency.
2. The stent assembly of claim 1, including a first flange on said core against which one end of said roll is engaged in the contracted condition.
3. The stent assembly of claim 2, including a second flange on said core, said roll being retained between the first flange and said second flange in the contracted condition.
4. The stent assembly of claim 3, wherein said releasable means comprises a pair of control cords having slip knot connections with the respective first and second flanges arranged in a manner to retain the roll in the contracted condition, said slip knot connections being releasable upon pulling of said control cords to thereby release said roll for expansion thereof to the expanded condition.
5. The stent assembly of claim 4, wherein said core comprises a tubular spool having an axial passage therethrough for receiving a guide wire along which the spool may be guided to the location of the damaged wall.
6. The stent assembly of claim 1, wherein said core comprises a tubular spool having an axial passage therethrough for receiving a guide wire along which the spool may be guided to the location of the damaged wall.
7. The stent assembly of claim 1, wherein said sheet is constructed or a metal foil.
8. The stent assembly of claim 1, wherein said sheet is constructed or a stainless steel foil.
9. The stent assembly of claim 1, wherein said releasable means comprises a sheath closely sleeved on said roll, said sheath being movable axially relative to said core to release from the roll.
10. The stent assembly of claim 1, including:
a second flexible sheet arranged on said core in a second multiple layer roll spaced from the first mentioned roll, said second roll having a contracted condition wherein the second roll is tightly wound on the core and an expanded condition wherein the second roll presents a diameter substantially equal to the diameter of the body passage, said second roll being urged toward the expanded condition;
releasable means for retaining said second roll in the contracted condition; and
means for effecting release of the releasable means for said second roll.
11. The stent assembly of claim 10, wherein the releasable means for the first and second rolls comprises a sheath closely sleeved on the first and second rolls said sheath being movable axially relative to said core to release from the first and second rolls in succession.
13. Apparatus as set forth in claim 12, including a flange on said core against which one end of said roll is engaged in the contracted condition.
14. Apparatus as set forth in claim 12, wherein said core comprises a spool having an axial passage therethrough for receiving a guide wire along which the spool may be guided to the location of the damaged wall.
15. Apparatus as set forth in claim 12, wherein said sheet is constructed of a thin metal foil.
16. Apparatus as set forth in claim 12, wherein said sheet is constructed of a thin stainless steel foil.
17. Apparatus as set forth in claim 12, including second stent in the form of a second flexible sheet wound around said core in a second multiple layer roll having contracted and expanded conditions, said second sheet being wound tightly on the core in the contracted condition and being biased toward the expanded condition wherein said second sheet assumes a size to contact the passage wall, said sheath fitting closely on the second roll to hold the second sheet in the contracted condition and being movable axially to release from the second roll and thereby allow the second roll to expand against the wall in the expanded condition.
19. The stent assembly of claim 18, wherein said sheet is constructed of a metal foil. 20. The stent assembly of claim 19, wherein said metal foil is stainless steel. 21. The stent assembly of claim 19, wherein prior to insertion into the body passage, said metal foil roll has been heat treated while in said expanded condition to reduce internal stresses within said roll. 22. The stent assembly of claim 18, wherein in said contracted condition, said roll has approximately, six or seven adjacent arcuate layers of said sheet.
23. The stent assembly of claim 18, wherein said retaining structure comprises a sheath which closely overlaps said roll in its contracted condition, said sheath being movable axially with respect to said roll to effect ejection of said roll from said sheath. 24. The stent assembly of claim 23, further comprising a flange slidably disposed within said overlapping sheath at a point proximal to said roll, said flange being adapted to provide a force on said roll to eject it from said sheath at a desired location within the
body. 25. A stent assembly for placement in a body vessel for treatment of a vessel abnormality, the stent assembly comprising:
a flexible sheet arranged in a multiple layer roll having expanded and contracted conditions and having a spring force, so that when said sheet is in said contracted condition, said spring force urges said sheet to expand toward the expanded condition, said roll presenting in the expanded condition a diameter at least equal to the full diameter of the vessel;
said roll presenting in the contracted condition a plurality of adjacent, arcuate layers;
wherein when said contracted roll is introduced within said vessel at or near said abnormality and is not constrained so as to be maintained in its contracted condition said spring force will urge said stent into said expanded condition, said expanded condition having multiple layers of said sheet that bear against one another over a substantial portion of the circumference of an inner layer, said multiple layers having a frictional force which resists stent contraction thereby enhancing the structural integrity of said stent such that said stent is able to firmly contact the vessel wall to effect treatment of said abnormality.

This invention relates in general to the field of medical implants and more particularly to a stent which is constructed in an improved manner for simple and effective placement in a body passage to reinforce a damaged area.

Tubular prostheses commonly known as stents have been used to reinforce and strengthen damaged blood vessels and other body passages. For example, the blood vessels can collapse, dilate, become partially occluded or otherwise damaged by disease or other causes. The presence of an aneurysm or stricture in the blood vessel often requires implantation of a stent to strengthen the vascular wall in the area of the damage. Other passages in the body can also sometimes benefit from stent implantation, including the esophagus, the trachea, the gastro intestinal tract, the bile duct, the ureter and the urethra.

The benefits or self-expanding stents have been recognized. A self-expanding stent is held in a contracted state until it has been positioned properly, typically with the aid of an instrument such as a catheter. After the stent has been placed properly in the damaged blood vessel, it is allowed to expand against the damaged vessel will in order to reinforce the damaged area. Examples or self-expanding stents are disclosed in Burton et al. U.S. Pat. Nos. 5,026,377 and 5,078,720, Hillstead U.S. Pat. No. 5,019,085, Wiktor U.S. Pat. No. 4,969,458 and Gianturco U.S. Pat. No. 5,041,126. The Wicktor and Gianturco stents are in the form of coiled or looped wires that are unable to contact the entirety of the weakened vessel wall. The same is true of the Hillstead stent which takes the form of a multiple loop wire structure. The stents disclosed in the two Burton patents are braided structures that are likewise incapable of contacting the entirety of the damaged vessel wall. All of the stents and particularly their placement means are complicated to construct, and the stents are difficult to place precisely in the damaged vessel.

The present invention is directed to an improved stent which is particularly characterized by a stronger construction, the ability to provide a solid and continuous wall that lines the entirety or the damaged part of passage wall in which it is implanted, and by ease and accuracy of placement. In accordance with the invention, a stent is provided in the form of a flexible metal sheet which is closely wound around a spool in a spiral roll. A sheath initially surrounds the roll in order to retain it in a contracted state. The spool, stent and sheath can be inserted together into the body with the spool following a guide wire until it is located adjacent to the damaged area. Then, the sheath is held stationary while the spool is pushed out the end of the sheath, with a flange on the spool making certain that the tightly coiled roll remains on the spool. Once the spool has cleared the sheath, the roll is released and allowed to expand against the damaged wall of the vessel. The sheath and spool can then be withdrawn, leaving the stent in place.

An alternative embodiment or the invention eliminates the sheath and instead holds the stent in its retracted state by means of a pair of control cords which are connected by slip knots to flanges on the spool located adjacent to the opposite ends of the stent. When the stent has been properly positioned, the cords can be pulled to release the slip knots and allow the stent to expand against the vessel wall. In both embodiments, multiple stents can be carried on the some spool if it is necessary to strengthen the vessel in more than one area.

Because the stent takes the form of a continuous sheet, the stent essentially contacts the entirety of the damaged vessel wall area, rather than simply reinforcing the damaged area as is the case with looped or coiled wires or braided netting type structures. In addition, the stent preferably has multiple layers that bear against one another when the stent is in its expanded condition. This further enhances the strength of the stent and provides multiple layers that are held against one another by friction resulting from the tendency for the stent to expand under the influence of internal spring force.

The method by which the stent is placed in the proper position and allowed to expand against the vessel wall is improved in a number of respects compared to what has been proposed in the past. The placement method is simple and accurate and does not involve complexities such as the need to inflate a balloon catheter or other mechanism.

In the accompanying drawings which form a part of the specification and are to be read in conjunction therewith and in which like reference numerals are used to indicate like parts in the various views:

FIG. 1 is a fragmentary perspective view of a stent and placement system for the stent, all constructed according to a preferred embodiment of the present invention, with the stent in its retracted condition and part of the sheath shown in section for purposes of illustration;

FIG. 2 is a fragmentary sectional view illustrating the stent being applied to a stricture in a blood vessel, with the broken lines depicting the spool and stent pushed out the end of the sheath;

FIG. 3 is a fragmentary sectional view similar to FIG. 2, but showing the stent expanded against the damaged vessel wall prior to withdrawal of the sheath and spool;

FIG. 4 is a fragmentary sectional view showing an alternative embodiment of the invention in which the spool is constructed to carry multiple stents and to apply them to multiple damaged areas are blood vessel;

FIG. 5 is a fragmentary sectional view or a stent arrangement constructed according to an alternative embodiment of the invention, with the stent in is retracted condition and positioned properly for application to a damaged structure in a blood vessel; and

FIG. 6 is a fragmentary sectional view similar to FIG. 5, but showing the stent released and expanded against the damaged vessel wall prior to withdrawal of the spool.

Referring now to the drawings in more detail and initially to FIG. 1 in particular, numeral 10 generally designates a stent which is constructed in accordance with a preferred embodiment of the present invention. The stent 10 takes the form of an initially flat metal sheet which is wound lightly around a core which is in the form of a tubular spool 12. The stent 10 is preferably constructed of a stainless steel foil which is commercially available under the trade designation PH15-7. Condition CH900. The thickness of the sheet 11 is preferably about 0.0005 inch. When the sheet 11 is coiled around the spool 12, it is in the shape of a spiral roll 13, and its outside diameter may be approximately 1.5 millimeter. The sheet 11 is long enough that there are approximately six or seven layers of the sheet which overlap one another when the roll 13 is in the contracted position in FIGS. 1 and 2. The roll presents a plurality of adjacent arcuate layers of the sheet in a direction transverse to the longitudinal axis of the core.

The sheet 11 produces an inherent spring force which tends to expand the sheet from the retracted condition of the roll 13. By way or example, it is contemplated that the sheet will initially be rolled to a diameter of approximately 5 millimeters and then heat treated in that condition in order to relax the internal stresses that arc induced by winding the sheet to a partially contracted condition. Following the heat treatment, the material can be rolled into the tighter roll 13 (approximately 1.5 millimeter in diameter), and the roll will have fewer internal stresses than if it were initially wound into the tight 1.5 millimeter cylinder. The internal spring force of the roll 13 will tend to cause it to unwind to an expanded condition in which its diameter is approximately 5 millimeters (the diameter at which the heat treatment takes place).

The sheet 11 is wound tightly on the spool 12 near one end of the spool, and one end of the roll 13 butts against a flange 14 which is formed on the spool 12 at a location spaced from the end of the spool. The flange 14 projects radially from the spool 12 and has a diameter approximately equal to the diameter of the stent 10 in its fully contracted condition. The flange 14 is spaced from the end of the spool a distance greater than the axial length of the stent 10. The spool 12 is provided with a central axial passage 16 which receives a guide wire 18. As will be explained more fully, the spool 12 can be moved along the guide wire 18 in order to properly position the stent 10.

The stent 10 is maintained in its fully contracted position by an elongated sheath 20 having a tubular shape. The sheath 20 has an inside diameter substantially equal to the outside diameter of the stent 10 in its fully retracted condition. The spool 12 and stent 10 are located within the sheath 20, with the outer surface of the stent 10 in contact with the inside surface of the sheath 20. The sheath 20 has a tubular form in order to receive the stent 10 and spool 12. The outside diameter of the sheath 20 is preferably somewhat smaller than the body passage in which the stent 10 is to be implanted. The spool 12 and sheath 20 are long enough that they can be advanced into a vessel to the area which is to be treated with the stent while the ends remain outside of the body.

In use, the sheath 20, with the stent 10 and spool 12 inside of it, is inserted into the body and advanced until its end is adjacent to an area of a body passage in which stent is to be implanted. For example, with reference to FIG. 2, the sheath 20 may be inserted through a blood vessel 22 until the leading end or the sheath is adjacent to the damaged area such as the structure 24. The advance of the sheath 20 is then stopped, and the tube 12 is advanced while the sheath 20 remains stationary. As the tube is thus pushed out through the end of the sheath 20, the spool carries the stent 10 with it because the flange 14 pushes the stent forwardly along with the spool. Once the flange 14 and the entirety of the stent 10 have cleared the end of the heath 20 in the position shown in broken lines in FIG. 2, there is no longer anything restraining the stent 10 against expansion. At this time, the stent is aligned with the structure 24.

Because the stent is no longer held against expansion, it expands naturally under the influence or its inherent spring force to the full diameter or the vessel 22. In the fully expanded condition of the stent shown in FIG. 3, its outside surface contacts the inside surface of the vessel wall and effects expansion of the structure 24.

It is noteworthy that the sheet construction of the stent 10 allows it to line the entirety of the damaged surface of the vessel 22 at the structure 24 and the adjacent areas of the vessel wall. In this manner, the stent is able to remove the occlusion in the vessel that is caused by the structure 24 and is also able to reinforce and strengthen the damaged vessel area at and near the structure 24. Normal circulation through the vessel is thus restored. Rather than holding the sheath 20 stationary and pushing the stent out through its end, the sheath can be advanced until the stent is aligned with the damaged area, and the sheath can then be retracted while the spool 12 and stent 10 are held stationary. When the sheath is withdrawn far enough to release the stent, the stent expands in the manner previously indicated.

In the fully expanded condition of the stent, there are preferably at least two overlapping layers which bear against one another over a substantial portion of their circumference of an inner layer and are held against one another by friction caused by the tendency of the stent to expand to its undeformed condition. These overlapping layers assure that the stent will be securely held in place and provide enhanced structural integrity by reason of the multiple layer structure that is implanted in the damaged area of the vessel. Once the stent has fully expanded, the sheath 20 and the tube 12 can be removed from the vessel, along with the guide wire 18. In its fully expanded condition, the diameter or the stent is at least as great as the inside diameter of the vessel so that when the stent expands into contact with the damaged vessel wall, it is held securely against the roll under the influence or its inherent spring force.

FIG. 4 depicts an arrangement which is for the most part identical to that shown in FIGS. 1-3. The principal difference is that the FIG. 4 construction has a spool 12 which is provided with a number of spaced apart stents 10 carried adjacent to different flanges 14. In use of the embodiment shown in FIG. 4, the stents 10 are applied in series to different weakened or damaged areas of the vessel 22, thereby strengthening the different damaged areas of the vessel to which the stents are applied. Virtually any desired number of stents can be carried on the spool 12.

FIGS. 5 and 6 depict an alternative embodiment of the invention In which the sheath 20 is not present. In place of the sheath, the function of holding the roll 13 in its contracted condition is performed by a pair of control cords 26. One of the control cords 26 is fitted through the flange 14 and is provided with a slip knot 28 which is formed adjacent to the flange and which bears against the outer layer or the stent 10 in a manner to prevent the stent from expanding. The other control cord 26 is extended through a second flange 30 which is spaced from flange 14 a distance slightly greater than the length of the stent 10. The ends or the cords 26 opposite the slip knots 28 remain outside the vessel.

In use of the embodiment shown in FIGS. 5 and 6, the spool 12 is extended into the vessel until the stent 10 is aligned with the structure 24. Then, the control cords 26 are pulled to release the slip knots 28, thereby releasing the stent 10 which then expands naturally under the influence of the internal spring force to which it is subjected. The stent expands to the fully expanded condition shown in FIG. 6 in which it expands the stricture 24 and eliminates the occlusion presented by the stricture. In addition, the stent 10 lines the vessel and strengthens and reinforces the damaged vessel wall in the area or the structure in the same manner indicated previously. Once the stent has been fully expanded, the spool 12 and guide wire 18 can be withdrawn from the vessel.

From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure.

It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.

Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

Winston, Thomas R., Neet, John M.

Patent Priority Assignee Title
10470902, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
10646359, Jun 20 2008 Razmodics LLC Stent fabrication via tubular casting processes
10893960, Jun 20 2008 Razmodics LLC Stent fabrication via tubular casting processes
6350277, Jan 15 1999 Boston Scientific Scimed, Inc Stents with temporary retaining bands
6733525, Mar 23 2001 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
6752825, Oct 02 2001 Boston Scientific Scimed, Inc Nested stent apparatus
6929659, Nov 07 1995 LIFEPORT SCIENCES LLC Method of preventing the dislodgment of a stent-graft
6945989, Sep 18 2000 Endotex Interventional Systems, Inc Apparatus for delivering endoluminal prostheses and methods of making and using them
7022132, Jan 15 1999 Boston Scientific Scimed, Inc Stents with temporary retaining bands
7041139, Dec 11 2001 Boston Scientific Scimed, Inc Ureteral stents and related methods
7276084, Mar 23 2001 Edwards Lifesciences Corporation Rolled minimally invasive heart valves
7374571, Mar 23 2001 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
7396366, May 11 2005 Boston Scientific Scimed, Inc. Ureteral stent with conforming retention structure
7699884, Mar 22 2006 Biosensors International Group, Ltd Method of stenting with minimal diameter guided delivery systems
7722677, May 11 2005 Boston Scientific Scimed, Inc. Ureteral stent with conforming retention structure
7771463, Mar 26 2003 Biosensors International Group, Ltd Twist-down implant delivery technologies
7785361, Dec 24 2003 Biosensors International Group, Ltd Implant delivery technologies
7854760, May 16 2005 Boston Scientific Scimed, Inc Medical devices including metallic films
7862602, Nov 02 2005 Biosensors International Group, Ltd Indirect-release electrolytic implant delivery systems
7901447, Dec 29 2004 Boston Scientific Scimed, Inc Medical devices including a metallic film and at least one filament
7947072, Mar 23 2001 Edwards Lifesciences Corporation Two-part expandable heart valve
8016869, Mar 26 2003 Biosensors International Group, Ltd Guidewire-less stent delivery methods
8043366, Sep 08 2005 Boston Scientific Scimed, Inc. Overlapping stent
8152841, May 16 2005 Boston Scientific Scimed, Inc. Medical devices including metallic films
8206438, Mar 23 2001 Edwards Lifesciences Corporation Prosthetic heart valve having flared outflow section
8252065, May 11 2005 Boston Scientific Scimed, Inc. Ureteral stent with conforming retention structure
8273116, Nov 02 2005 Biosensors International Group, Ltd. Indirect-release electrolytic implant delivery systems
8414635, Feb 01 1999 IDev Technologies, Inc. Plain woven stents
8419788, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
8579954, Nov 02 2005 Biosensors International Group, Ltd Untwisting restraint implant delivery system
8591568, Mar 02 2004 Boston Scientific Scimed, Inc Medical devices including metallic films and methods for making same
8632580, Dec 29 2004 Boston Scientific Scimed, Inc Flexible medical devices including metallic films
8739382, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
8864815, Dec 29 2004 Boston Scientific Scimed, Inc. Medical devices including metallic film and at least one filament
8876880, Feb 01 1999 Board of Regents, The University of Texas System Plain woven stents
8876881, Oct 22 2006 IDEV TECHNOLOGIES, INC Devices for stent advancement
8900285, Nov 02 2005 Biosensors International Group, Ltd Covering electrolytic restraint implant delivery systems
8966733, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
8974509, Nov 02 2005 Biosensors International Group, Ltd Pass-through restraint electrolytic implant delivery systems
8974516, Feb 01 1999 Board of Regents, The University of Texas System Plain woven stents
8992592, Dec 29 2004 Boston Scientific Scimed, Inc Medical devices including metallic films
8998973, Mar 02 2004 Boston Scientific Scimed, Inc Medical devices including metallic films
8999364, Jun 15 2004 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
9023095, May 27 2010 IDEV TECHNOLOGIES, INC Stent delivery system with pusher assembly
9149374, Oct 22 2006 IDEV TECHNOLOGIES, INC Methods for manufacturing secured strand end devices
9408729, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
9408730, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
9585776, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
9629736, Oct 22 2006 IDev Technologies, Inc. Secured strand end devices
9895242, Oct 22 2006 IDEV TECHNOLOGIES, INC Secured strand end devices
9908143, Jun 20 2008 Razmodics LLC Stent fabrication via tubular casting processes
9925074, Feb 01 1999 Plain woven stents
Patent Priority Assignee Title
3657744,
3826257,
3991767, Nov 02 1973 Cutter Laboratories, Inc. Tubular unit with vessel engaging cuff structure
4140126, Feb 18 1977 HARRISON MEDICAL TECHNOLOGIES, INC Method for performing aneurysm repair
4503569, Mar 03 1983 Cook Incorporated Transluminally placed expandable graft prosthesis
4550447, Aug 03 1983 SORIN BIOMEDICAL INC Vascular graft prosthesis
4562596, Apr 25 1984 WORLD MEDICAL MANUFACTURING CORPORATIO Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair
4577631, Nov 16 1984 Aneurysm repair apparatus and method
4617932, Apr 25 1984 Device and method for performing an intraluminal abdominal aortic aneurysm repair
4665918, Jan 06 1986 Endotex Interventional Systems, Inc Prosthesis system and method
4723549, Sep 18 1986 ANGIOGUARD, INC Method and apparatus for dilating blood vessels
4732152, Dec 05 1984 AMS MEDINVENT S A Device for implantation and a method of implantation in a vessel using such device
4733665, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4740207, Sep 10 1986 Intralumenal graft
4753652, May 04 1984 Children's Medical Center Corporation Biomaterial implants which resist calcification
4776337, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4787899, Dec 09 1983 LIFEPORT SCIENCES LLC Intraluminal graft device, system and method
4820298, Nov 20 1987 DEVICE DEVELOPMENTS, INC Internal vascular prosthesis
4875480, Sep 30 1986 AMS MEDINVENT S A Device for transluminal implantation
4877030, Feb 02 1988 Device for the widening of blood vessels
4969458, Jul 06 1987 Medtronic, Inc Intracoronary stent and method of simultaneous angioplasty and stent implant
4990131, Sep 01 1987 DARDIK, SHEILA Tubular prostheses for vascular reconstructive surgery and process for preparing same
5007926, Feb 24 1989 Endotex Interventional Systems, Inc Expandable transluminally implantable tubular prosthesis
5015253, Jun 15 1989 Cordis Corporation Non-woven endoprosthesis
5019085, Oct 25 1988 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
5026377, Jul 13 1989 AMS Research Corporation Stent placement instrument and method
5037377, Oct 07 1981 Medtronic, Inc. Means for improving biocompatibility of implants, particularly of vascular grafts
5041126, Mar 13 1987 Cook Incorporated Endovascular stent and delivery system
5059211, Jun 25 1987 Duke University Absorbable vascular stent
5078720, May 02 1990 AMS Research Corporation Stent placement instrument and method
5078726, Feb 01 1990 Graft stent and method of repairing blood vessels
5078736, May 04 1990 Tyco Healthcare Group LP Method and apparatus for maintaining patency in the body passages
5084064, Jun 15 1989 ABIOMED, INC Surgical cuff
5089006, Nov 29 1989 Biological duct liner and installation catheter
5100429, Apr 28 1989 Medtronic Ave, Inc Endovascular stent and delivery system
5104399, Dec 09 1983 LIFEPORT SCIENCES LLC Artificial graft and implantation method
5108416, Feb 13 1990 Medtronic Ave, Inc Stent introducer system
5108417, Sep 14 1990 SAWYER, PHILIP N Anti-turbulent, anti-thrombogenic intravascular stent
5122154, Aug 15 1990 MARITAL DEDUCTION TRUST Endovascular bypass graft
5123917, Apr 27 1990 LIFEPORT SCIENCES LLC Expandable intraluminal vascular graft
5147370, Jun 12 1991 Nitinol stent for hollow body conduits
5156620, Feb 04 1991 Intraluminal graft/stent and balloon catheter for insertion thereof
5167614, Oct 29 1991 Cabot Technology Corporation Prostatic stent
5171262, Jun 15 1989 Cordis Corporation Non-woven endoprosthesis
5192307, Dec 08 1987 W H WALL FAMILY HOLDINGS, LLLP Angioplasty stent
5195984, Oct 04 1988 CARDINAL HEALTH SWITZERLAND 515 GMBH Expandable intraluminal graft
5211654, Jun 09 1990 Catheter with expansible distal end
5211658, Nov 05 1991 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
5211683, Jul 03 1991 LifeShield Sciences LLC Method of implanting a graft prosthesis in the body of a patient
5219355, Oct 03 1990 Balloon device for implanting an aortic intraluminal prosthesis for repairing aneurysms
5234448, Feb 28 1992 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
5242399, Apr 25 1990 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
5254127, Feb 28 1992 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
5256141, Dec 22 1992 Biological material deployment method and apparatus
5256764, Dec 17 1987 UNITED STATES SURGICAL CORP Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
5261878, May 19 1992 The Regents of the University of California Double balloon pediatric ductus arteriosus stent catheter and method of using the same
5266073, Dec 08 1987 W H WALL FAMILY HOLDINGS, LLLP Angioplasty stent
5269802, Sep 10 1991 Prostatic stent
5274074, Dec 17 1987 UNITED STATES SURGICAL CORP Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
5290295, Jul 15 1992 Querals & Fine, Inc. Insertion tool for an intraluminal graft procedure
5306294, Aug 05 1992 Ultrasonic Sensing and Monitoring Systems, Inc. Stent construction of rolled configuration
5344426, Apr 25 1990 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
5354309, Oct 11 1991 Angiomed AG Apparatus for widening a stenosis in a body cavity
5372600, Oct 31 1991 EV3 PERIPHERAL, INC Stent delivery systems
5405379, Jul 26 1990 Self expanding vascular endoprosthesis for aneurysms
5411551, Aug 05 1992 ULTRASONIC SENSING AND MONITORING SYSTEMS, INC Stent assembly with sensor
5443500, Jan 26 1989 Advanced Cardiovascular Systems, Inc. Intravascular stent
5593434, Jan 31 1992 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
CH678393A5,
RE34327, Mar 23 1990 Intralumenal graft
WO9115254,
WO9117789,
WO9201425,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Jan 24 2002M281: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.
Jan 24 2002M284: Payment of Maintenance Fee, 8th Yr, Small Entity.
Oct 25 2005M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Dec 08 20014 years fee payment window open
Jun 08 20026 months grace period start (w surcharge)
Dec 08 2002patent expiry (for year 4)
Dec 08 20042 years to revive unintentionally abandoned end. (for year 4)
Dec 08 20058 years fee payment window open
Jun 08 20066 months grace period start (w surcharge)
Dec 08 2006patent expiry (for year 8)
Dec 08 20082 years to revive unintentionally abandoned end. (for year 8)
Dec 08 200912 years fee payment window open
Jun 08 20106 months grace period start (w surcharge)
Dec 08 2010patent expiry (for year 12)
Dec 08 20122 years to revive unintentionally abandoned end. (for year 12)