A pulse oximeter sensor that is designed to surround an appendage of the patient, such as a finger, toe or foot is disclosed. The sensor has a reusable member which preferably includes a photodetector. A disposable, flexible member preferably contains the photoemitter and can be wrapped around the patient's appendage to secure it to the appendage and the reusable member. When secured, the photoemitter and photodetector end up on opposite sides of the appendage. The disposable member connects to the reusable member to establish electrical contact. The reusable member is connected to a cable which can be plugged into a sensor monitoring system.

Patent
   RE36000
Priority
Oct 19 1990
Filed
May 10 1995
Issued
Dec 22 1998
Expiry
Dec 22 2015
Assg.orig
Entity
Large
217
45
all paid
16. A sensor for attaching to an appendage of a patient for electrooptical measurement of blood characteristics, comprising:
a reusable member including a photodetector;
conducting means, connected to said reusable member, for electrically connecting said photodetector to an external sensor monitoring system;
a disposable, flexible member including at least one photoemitter for emitting light to be detected by said photodetector;
means for removably coupling said flexible member to said reusable member to provide a connection between said photoemitter and said conducting means; and
an adhesive coating on said disposable, flexible member for securing said disposable, flexible member to said appendage and said reusable member so that said photodetector is on an opposite side of said appendage from said photoemitter.
1. A sensor for attaching to a patient for electrooptical measurement of blood characteristics, comprising:
a reusable member including a first electronic means for emitting or detecting electromagnetic radiation;
conducting means, connected to said reusable member, for electrically connecting said first electronic means to an external sensor monitoring system;
a disposable, flexible member including a second electronic means for detecting electromagnetic radiation emitted by said first electronic means or emitting electromagnetic radiation to be detected by said first electronic means;
means for removably coupling said flexible member to said reusable member to provide a connection between said second electronic means and said conducting means; and
means for securing said disposable, flexible member and reusable member to said patient.
12. A sensor for attaching to an appendage of a patient for electrooptical measurement of blood characteristics, comprising:
a reusable member including a first electronic device for emitting or detecting light;
conducting means for electrically connecting said first electronic device to an external sensor monitoring system;
a disposable, flexible member including a second electronic device for detecting light emitted by said first electronic device or emitting light to be detected by said first electronic device;
a tail extending from said disposable, flexible member having at least one exposed first electrical conductor, at least one exposed second electrical conductor extending from said reusable member, and a bridge connected to said reusable member and extending across said second electrical conductor to allow said tail to be inserted between said bridge and said second conductor;
means for securing said disposable, flexible member to said appendage and said reusable member so that said first electronic device is on an opposite side of said appendage from said second electronic device.
17. A sensor for attaching to an appendage of a patient for electrooptical measurement of blood characteristics, comprising:
a reusable member including at least one photodetector, said reusable member including a rigid housing and a deformable means, attached to said housing, for securely gripping and complying to said patient's appendage;
conducting means, connected to said reusable member, for electrically connecting said photodetector to an external sensor monitoring system;
a disposable, flexible member including a red light photoemitter and an infrared photoemitter for emitting light to be detected by said photodetector;
a tail extending from said disposable, flexible member having at least one exposed first electrical conductor;
at least one exposed second electrical conductor extending from said rigid housing;
a bridge connected to said rigid housing and extending across said second electrical conductor to allow said tail to be inserted between said bridge and said second conductor;
resilient means, coupled to said tail, for applying force between said second conductor and said bridge to hold said tail in place; and
an adhesive coating on said disposable, flexible member for securing said disposable, flexible member to said appendage and said reusable member so that said photoemitters are on an opposite side of said appendage from said photodetector.
2. The sensor of claim 1 wherein said means for securing comprises an adhesive on said disposable, flexible member.
3. The sensor of claim 1 wherein said second electronic means is at least one photoemitter.
4. The sensor of claim 1 wherein said means for removably coupling comprises a tail extending from said disposable, flexible member having at least one exposed first electrical conductor, at least one exposed second electrical conductor extending from said reusable member, and a bridge means connected to said reusable member and extending across said second electrical conductor for allowing said tail to be inserted between said bridge means and said second conductor.
5. The sensor of claim 4 wherein said tail includes resilient means for applying force between said second conductor and said bridge means to hold said tail in place.
6. The sensor of claim 1 wherein said reusable member comprises a rigid housing and a deformable means, attached to said housing, for securely gripping and complying to an appendage of said patient.
7. The sensor of claim 1 wherein said second electronic means comprises a red light photoemitter and an infrared photoemitter.
8. The sensor of claim 7 wherein said first electronic means comprises a photodetector.
9. The sensor of claim 1 wherein said means for securing attaches said sensor to an appendage of said patient so that said first electronic means is on an opposite side of said appendage from said second electronic means.
10. The senor of claim 1 further comprising a black coating on said flexible member around said second electronic means.
11. The sensor of claim 1 further comprising:
an electrostatic screen adjacent said first electronic means; and
a thin film covering said first electronic means and at least a portion of said electrostatic screen, said film being transparent over said first electronic means and opaque over said portion of said electrostatic screen.
13. The sensor of claim 12 wherein said means for securing comprises an adhesive on said disposable, flexible member.
14. The sensor of claim 12 wherein said second electronic device is a photoemitter.
15. The sensor of claim 12 wherein said tail includes resilient means for applying force between said second conductor and said bridge to hold said tail in place.
18. A sensor for attaching to a patient for electrooptical measurement of blood characteristics, comprising:
a disposable, flexible member having a plurality of conductors disposed on a substrate and including at least one electronic means for emitting or detecting electromagnetic radiation, said at least one electronic means being connected to at least one of said conductors disposed on said substrate;
conducting cable means for electrically connecting said electronic means to an external sensor monitoring system;
means for releasably connecting said flexible member conductors to said conducting cable means to provide a connection between said electronic means and said conducting cable means; and
means for securing said flexible member to said patient.19. The sensor of claim 18, wherein said means for securing comprises an adhesive connected to said substrate.20. The sensor of claim 18, wherein said at least one electronic means is a photoemitter.21. The sensor of claim 18, wherein said at least one electronic means is a photodetector.22. The sensor of claim 18, wherein an end of said conducting cable means opposite said releasably connecting means is adapted to be connected to an oximeter monitor.23. The sensor of claim 18, wherein said blood characteristics include arterial oxygen saturation.24. The sensor of claim 18, wherein said substrate is elongated and flexible.25. The sensor of claim 18, wherein said plurality of conductors, include a plurality of contacts on a surface of said substrate which can be connected to said releasably connecting means for electrically connecting said conducting cable means to said at least one electronic means.26. The sensor of claim 18, wherein said plurality of conductors comprise a plurality of conductive traces disposed on said substrate.27. The sensor of claim 26, wherein said traces comprise printed traces.

This is a continuation-in-part of patent application Ser. No. 07/600,541, filed Oct. 19, 1990, now abandoned.

This invention relates to sensors for use with noninvasive pulse monitors such as plethysmographs or pulse oximeters.

A plethysmograph is a pulse monitor The plethysmograph sensor shines light into the patient's tissue, and the light transmitted through the tissue is received by a photodetector. The photodetector generates electrical signals corresponding to the transmitted light levels and transmits the signals to a monitor for processing. Arterial blood will absorb some of the light, with more light being absorbed when there is more blood. Thus, changes in the amount of transmitted light are related to pulses of arterial blood in the illuminated tissue.

A pulse oximeter is a device for noninvasively determining the oxygen saturation of arterial blood. The pulse oximeter sensor shines light at two different wavelengths (one in the red range, the other in the infrared range) through a portion of the patient's blood-perfused tissue. The red and infrared light transmitted through the tissue is detected by a photodetector. The amount of light absorbed varies with the amount of oxygen in the blood, and varies differently for red and infrared light. The pulse oximeter monitor computes blood oxygen saturation based on the changes in the two detected light levels between two points in time.

There are several types of sensors for plethysmographs and pulse oximeters. One is a surface sensor in which the light emitter and the photodetector are mounted on the same sensor face. The sensor is attached to the patient with both the light emitter and the detector on the same side of the patient's appendage (e.g., on the patient's forehead). This type of sensor detects light reflected back from the tissue, rather than light transmitted through an appendage. The signal detected will thus be weaker in most cases. The sensor is typically attached with a strap, headband or tape over the sensor, or an adhesive pad between the sensor and the skin.

Another type of sensor is a clamp design, such as that described in U.S. Pat. No. 4,685,464. The durable sensor described in that patent has deformable pads creating conforming tissue contacting surfaces to which the emitters and photodetector are secured. The deformable pads are disposed in a hinged rigid housing that clips on the patient like a clothes pin. This relies on a clamping force to secure the sensor to the patient. The force of the sensor against the patient's tissue could reduce the flow of blood to that region. This exsanguination of the tissue beneath the sensor adversely affects pulse detection and analysis by suppressing the pulse in that portion of the tissue. As a result, the sensor site must typically be checked or moved every four hours to insure adequate perfusion. Because of its relatively large mass, however, the clamp design is more susceptible to signal-distorting motion artifact, i.e., differential motion between the sensor and the patient.

A third sensor design is described in U.S. Pat. No. 4,830,014. The conformable sensor described in that patent has emitters and a photodetector mounted in the same side of a flexible web. The web wraps around a portion of the patient's tissue (such as a finger) so that the light from the emitters must travel through the tissue before reaching the detector. The web attaches to the skin with an adhesive surface on the emitter and detector side of the web. Because of its relatively low mass and the adhesive, this sensor adheres closely to the patient's skin and minimizes the effects of motion artifact. In addition, its flexibility and use of adhesive to secure it minimizes the exsanguination caused by rigid sensors. Thus the sensor site typically only needs to be checked every eight hours. Conformable sensors, however, are typically restricted to one application due in part to a decrease in adhesive effectiveness with each application and in part to difficulties in cleaning and sterilization for reuse. Replacement of the sensor after only one use can make pulse oximetry expensive.

The present invention provides a pulse oximeter sensor that is designed to surround an appendage of the patient, such as a finger, toe or foot. The sensor has a reusable member which preferably includes a photodetector. A disposable, flexible member preferably contains the photoemitter and can be wrapped around the patient's appendage to secure it to the appendage and the reusable member. When secured, the photoemitter and photodetector end up on opposite sides of the appendage. The disposable member connects to the reusable member to establish electrical contact. The reusable member is connected to a cable which can be plugged into a sensor monitoring system.

In the preferred embodiment, the flexible member is a flexible adhesive web with arms extending laterally from a central portion. The reusable member is preferably a rigid housing with a deformable pad for contacting the appendage.

To attach the sensor to the patient, the flexible web is adhesively attached to one side of the patient's appendage, and the rigid housing is placed on the other side directly opposite the flexible web. The arms extend around the appendage to adhesively hold the conformable pad of the rigid housing against the appendage. By reducing the mass of the sensor and by adhesively attaching the emitters to the skin, this configuration minimizes motion artifact by reducing the relative movement between the sensor and the patient's skin experienced by previous clamp-type sensors. In addition, the flexible web and conformable surface of the rigid housing minimize exsanguination of the tissue beneath the sensor. Since the sensor relies on adhesion to secure it to the patient, the sensor site should not need to be checked as often as for a clamping-type sensor.

After use, the flexible web may be separated from the rigid housing, the rigid housing cleaned, and a new flexible web attached to the rigid housing. The fresh adhesive on the new flexible web provides a more reliable bond between the sensor and the patient than the adhesive on the previously-used web. In addition, since the flexible web covers four out of the five surfaces of the patient's appendage (including, when worn on the finger, the cuticle and subungual region), one time use of the flexible portion of the sensor minimizes cross-contamination between patients when the sensor is reused. Furthermore, because a portion of the sensor may be cleaned and reused, this new sensor design reduces the cost of using flexible sensors.

The electrical connection between the flexible web and the rigid housing is preferably made with a tab extending from the flexible web having conductive traces printed on it which connect to the photoemitter. The conductive traces are inserted into a channel in the back of the housing which is covered by a bridge. Underneath the bridge are a series of electrical contacts for making connection with the conductive traces. The tab contains an internal resilient foam which is compressed as it is inserted between the housing and the bridge, and exerts an outward force to maintain the tab in place and create an electrical connection between the conductive traces and the contacts.

For a fuller understanding of the nature and advantages of the invention, reference should be made to the ensuing detailed description taken in conjunction with the accompanying drawings.

FIG. 1 is a perspective view of a sensor according to the present invention;

FIG. 2 is a perspective view of the sensor of FIG. 1 showing the flexible web being wrapped around a finger; and

FIG. 3 is a perspective view of the separated disposable and reusable members of FIG. 1 illustrating how the connection is made.

FIG. 1 shows a sensor 10 according to the present invention. Sensor 10 consists of a flexible, disposable webbing 12 and a reusable housing 14. Housing 14 includes a rigid portion 16 and a deformable pad 18. A patient's finger 20, shown in phantom, is shown placed on top of deformable pad 18.

Flexible web 12 includes a photoemitter 22, which preferably includes two photoemitters, one for red light and one for infrared light. A photodetector 24 is included in deformable pad 18. A copper grid 23 is disposed over photodetector 24. A transparent window 25 covers photodetector 24. All or substantially all of the portion of window 25 extending beyond photodetector 24 is colored black. In addition, a black area 29 is printed on the underside of foam layer 28. Grid 23, photodetector 24 and photoemitter 22 are electrically connected to a sensor monitoring system through conductors in a cable 26 connected to housing 14.

Grid 23 is a Faraday shield (electrostatic screen) connected to ground for reducing interference. The thin window 25 extends over the copper grid so that the grid will not bulge out pad 18. Before the black coating was added, shift errors in the data values were noticed. The black coating eliminated these errors. The reason is not certain, but the coating over the window may prevent reflections from most of the copper, while the black coating on the foam layer 28 may prevent light from being shunted through the foam layer to the detector, bypassing the finger.

Webbing 12 has a top foam layer 28 with an adhesive surface. Before use, this adhesive layer is covered with protective plastic (not shown), which is peeled off for use.

FIG. 2 illustrates how the flexible webbing 12 is bent over and attached to finger 20. A first arm 30 of the flexible web is wrapped around the side of housing 14 and will continue to be wrapped around its bottom in the direction of arrow 32. Similarly, the other arm 34 will be wrapped around finger 20 and housing 14. As can be seen, photoemitters 22, shown in phantom, are now on top of the finger, directly opposite photodetector 24, which is not visible in this view. As can be seen, only the bottom of finger 20 contacts deformable pad 18. At least the top of the finger will be adhered to by web 12. The sides and front may also be adhered to, depending on the shape of the finger and how the sensor is attached. The top is the portion which is most important to be adhering, since it contains the photoemitter which should not move relative to the finger. This provides a secure connection which reduces motion artifacts and puts the disposable, flexible portion in contact with most of the surfaces of the finger so that it is exposed to more contamination than the reusable portion.

FIG. 3 illustrates the electrical connection between flexible web 12 and rigid housing 14. FIG. 3 shows adhesive layer 28 partially peeled back from a web base 36. In between web base 36 and adhesive layer 28, an elongate plastic substrate 38 is placed, with a series of conductive traces 40 on its top surface. Two conductive traces connect to photoemitters 22, and two connect to a calibration resistor 55, described below. Elongate plastic substrate 38 forms a tail 42. Web base 36 can be just large enough to hold tail 42 to adhesive layer 28, as shown, or could conform to the shape of adhesive layer 28. Web base 36 has an adhesive surface for holding tail 42 to layer 28.

A compressible foam member 44 is placed between the halves of tail 42. In the preferred embodiment, the foam is made of Poron foam from Roger's Corp. A pair of tabs 46 extend from the top half of the tail having the conductive traces. The tabs and the foam member provide part of the attachment mechanism as explained below.

A channel 48 is formed on the bottom side of the rigid housing 16, opposite deformable pad 18. A series of electrical contacts 50 (shown in phantom) are located in the channel. The contacts are covered by a bridge 52 extending across the housing. A pair of grooves 54 are formed in the channel. The grooves are slightly larger than the tabs 46 on the flexible web.

To connect the flexible web to the rigid housing, the tail 42 of the flexible circuit is inserted into the space beneath bridge 52. As the tail moves forward, the plastic foam 44 compresses. As the tail's tabs 46 move over the channel's grooves 54, the spring action of the foam pushes the tabs into the grooves. The tabs and grooves ensure that the flexible circuit is not inserted too far and prevent inadvertent removal of the flexible circuit. The spring action of the foam also pushes one set of contacts against the other to enhance the electrical connection. In addition, the scraping action of one set of contacts against the other during insertion and withdrawal of the flexible circuit will help remove any oxidation or debris on the contacts. To remove, the tabs are lifted out of the grooves by pulling the flexible web away from the housing and the tail is withdrawn from the space beneath the bridge.

Cable 26 contains 6 wires. Two are connected to calibration resistor 55 through two of contacts 50 and conductive traces 40. Two are connected to photoemitters 22 through the other two of contacts 50 and conductive traces 40. The remaining two wires are connected to photodetector 24.

In the preferred embodiment, the plastic substrate is formed from white, substantially opaque polyester. White nylon may also be used, or a clear plastic. The adhesive may be white, with a clear window for the photoemitters.

The preferred embodiment of the sensor according to this invention includes an encoding/decoding system such as that described in U.S. Pat. No. 4,621,643. The flexible web supports an encoding resistor 55 in electrical communication with the monitor. As explained in that patent, the value of the resistor is selected to match the wavelengths of the red and infrared LED's. That patent also describes the necessary sensor monitoring electronics.

In an alternative embodiment, the sensor's photodetector may be mounted in the flexible web with the emitters and the encoding resistor mounted in the rigid housing.

In the preferred embodiment, the rigid housing is made from injection molded polycarbonate. Alternatively, injection molded ABS plastic may be used. U.S. Pat. No. 4,685,464 contains additional details on construction of a rigid housing and deformable pad including the placement of the photodetector.

As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. For example, the compression effect of foam 44 could be obtained instead by making bridge 52 a spring-action clip, which is opened by holding one end down during insertion and then released, with a spring on the clip holding the tab in place. Other variations in the way electrical contact is made are also possible. Instead of the adhesive layer, the flexible portion could be attached to the finger and rigid housing using velcro or other securing mechanisms. The flexible web could be made of foil or other color materials than white or clear. The sensor could be a surface sensor, with adhesive for reducing motion artifact on the disposable portion. Accordingly, the disclosure of a preferred embodiment of the invention is intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.

Delonzor, Russell, Warring, Jessica, Swedlow, David B.

Patent Priority Assignee Title
10098577, Sep 07 2011 Covidien LP Technique for remanufacturing a medical sensor
10123726, Mar 01 2005 Cercacor Laboratories, Inc. Configurable physiological measurement system
10213108, Mar 25 2002 Masimo Corporation Arm mountable portable patient monitor
10219706, Mar 25 2002 Masimo Corporation Physiological measurement device
10251585, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
10251586, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
10327683, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
10335033, Mar 25 2002 Masimo Corporation Physiological measurement device
10342487, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
10420493, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
10463284, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
10646144, Dec 07 2015 TRUE WEARABLES, INC Wireless, disposable, extended use pulse oximeter apparatus and methods
10659963, Feb 12 2018 Single use medical device apparatus and methods
10729402, Dec 04 2009 Masimo Corporation Calibration for multi-stage physiological monitors
10750983, Nov 24 2009 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
10856788, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
10869602, Mar 25 2002 Masimo Corporation Physiological measurement communications adapter
10980457, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
10984911, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11109783, Dec 07 2015 True Wearables, Inc. Wireless, disposable, extended use pulse oximeter apparatus and methods
11317283, Feb 12 2018 Single use medical device apparatus and methods
11331042, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
11430572, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11484205, Mar 25 2002 Masimo Corporation Physiological measurement device
11534087, Nov 24 2009 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
11545263, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11571152, Dec 04 2009 Masimo Corporation Calibration for multi-stage physiological monitors
11647923, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
11647924, Dec 07 2015 True Wearables, Inc. Wireless, disposable, extended use pulse oximeter apparatus and methods
6073038, Jan 29 1996 Philips Electronics North America Corporation Extended life disposable pulse oximetry sensor
6144868, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
6149481, Jan 29 1996 Philips Electronics North America Corporation Extended life disposable pulse oximetry sensor and method of making
6321100, Jul 13 1999 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe with disposable liner
6343224, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
6385821, Feb 17 2000 OSI OPTOELECTRONICS, INC Apparatus for securing an oximeter probe to a patient
6519487, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
6546267, Nov 26 1999 NIHON KOHDEN CORPORATION Biological sensor
6654621, Aug 29 2001 SMITHS MEDICAL ASD, INC Finger oximeter with finger grip suspension system
6681454, Feb 17 2000 OSI OPTOELECTRONICS, INC Apparatus and method for securing an oximeter probe to a patient
6684091, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage method
6721585, Oct 15 1998 JPMorgan Chase Bank, National Association Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
6735459, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
6745061, Aug 21 2002 Datex-Ohmeda, Inc.; Datex-Ohmeda, Inc Disposable oximetry sensor
6792300, Mar 21 1991 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing light piping
6813511, Mar 21 1991 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing ambient noise
6920345, Jan 24 2003 Masimo Corporation Optical sensor including disposable and reusable elements
7225007, Jan 24 2003 Masimo Corporation Optical sensor including disposable and reusable elements
7245953, Apr 12 1999 Intel Corporation Reusable pulse oximeter probe and disposable bandage apparatii
7377794, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor interconnect
7477924, May 02 2006 Covidien LP Medical sensor and technique for using the same
7483730, Mar 21 1991 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing ambient noise
7483731, Sep 30 2005 Covidien LP Medical sensor and technique for using the same
7499740, Feb 25 2004 Covidien LP Techniques for detecting heart pulses and reducing power consumption in sensors
7522948, May 02 2006 Covidien LP Medical sensor and technique for using the same
7563110, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor interconnect
7574244, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
7574245, Sep 27 2006 Covidien LP Flexible medical sensor enclosure
7590439, Aug 08 2005 Covidien LP Bi-stable medical sensor and technique for using the same
7596398, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor attachment
7647083, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor equalization
7647084, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7650177, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
7657294, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
7657295, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7657296, Aug 08 2005 Covidien LP Unitary medical sensor assembly and technique for using the same
7658652, Sep 29 2006 Covidien LP Device and method for reducing crosstalk
7676253, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7680522, Sep 29 2006 Covidien LP Method and apparatus for detecting misapplied sensors
7684842, Sep 29 2006 Covidien LP System and method for preventing sensor misuse
7684843, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7689259, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
7693559, Aug 08 2005 Covidien LP Medical sensor having a deformable region and technique for using the same
7698909, Feb 13 2004 Covidien LP Headband with tension indicator
7729733, Mar 01 2005 CERCACOR LABORATORIES, INC Configurable physiological measurement system
7729736, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7738937, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7761127, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor substrate
7764982, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor emitters
7794266, Sep 29 2006 Covidien LP Device and method for reducing crosstalk
7809420, Jun 25 2003 Covidien LP Hat-based oximeter sensor
7810359, Oct 01 2002 Covidien LP Headband with tension indicator
7813779, Jun 25 2003 Covidien LP Hat-based oximeter sensor
7822453, Oct 01 2002 Covidien LP Forehead sensor placement
7869849, Sep 26 2006 Covidien LP Opaque, electrically nonconductive region on a medical sensor
7869850, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
7877126, Jun 25 2003 Covidien LP Hat-based oximeter sensor
7877127, Jun 25 2003 Covidien LP Hat-based oximeter sensor
7880884, Jun 30 2008 Covidien LP System and method for coating and shielding electronic sensor components
7881762, Sep 30 2005 Covidien LP Clip-style medical sensor and technique for using the same
7887345, Jun 30 2008 Covidien LP Single use connector for pulse oximetry sensors
7890153, Sep 28 2006 Covidien LP System and method for mitigating interference in pulse oximetry
7894869, Mar 09 2007 Covidien LP Multiple configuration medical sensor and technique for using the same
7899509, Oct 01 2002 Covidien LP Forehead sensor placement
7899510, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7904130, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7957780, Mar 01 2005 CERCACOR LABORATORIES, INC Physiological parameter confidence measure
7979102, Jun 25 2003 Covidien LP Hat-based oximeter sensor
8050728, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor drivers
8060171, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8062221, Sep 30 2005 Covidien LP Sensor for tissue gas detection and technique for using the same
8068891, Sep 29 2006 Covidien LP Symmetric LED array for pulse oximetry
8070508, Dec 31 2007 Covidien LP Method and apparatus for aligning and securing a cable strain relief
8071935, Jun 30 2008 Covidien LP Optical detector with an overmolded faraday shield
8073518, May 02 2006 Covidien LP Clip-style medical sensor and technique for using the same
8078246, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
8092379, Sep 29 2005 Covidien LP Method and system for determining when to reposition a physiological sensor
8092993, Dec 31 2007 Covidien LP Hydrogel thin film for use as a biosensor
8112375, Mar 31 2008 Covidien LP Wavelength selection and outlier detection in reduced rank linear models
8130105, Mar 01 2005 CERCACOR LABORATORIES, INC Noninvasive multi-parameter patient monitor
8133176, Apr 14 1999 Covidien LP Method and circuit for indicating quality and accuracy of physiological measurements
8145288, Aug 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8175667, Sep 29 2006 Covidien LP Symmetric LED array for pulse oximetry
8175671, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8175672, Apr 12 1999 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatii
8190223, Mar 01 2005 Masimo Corporation Noninvasive multi-parameter patient monitor
8190224, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8190225, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8195264, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8199007, Dec 31 2007 Covidien LP Flex circuit snap track for a biometric sensor
8219170, Sep 20 2006 Covidien LP System and method for practicing spectrophotometry using light emitting nanostructure devices
8221319, Mar 25 2009 Covidien LP Medical device for assessing intravascular blood volume and technique for using the same
8224411, Mar 01 2005 CERCACOR LABORATORIES, INC Noninvasive multi-parameter patient monitor
8224412, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
8229533, Oct 16 1995 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing ambient noise
8233954, Sep 30 2005 Covidien LP Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
8233955, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
8244325, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
8255027, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor substrate
8257274, Sep 25 2008 Covidien LP Medical sensor and technique for using the same
8260391, Sep 12 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8265724, Mar 09 2007 Covidien LP Cancellation of light shunting
8280469, Mar 09 2007 Covidien LP Method for detection of aberrant tissue spectra
8301217, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor emitters
8311601, Jun 30 2009 Covidien LP Reflectance and/or transmissive pulse oximeter
8311602, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
8315685, Sep 27 2006 Covidien LP Flexible medical sensor enclosure
8346328, Dec 21 2007 Covidien LP Medical sensor and technique for using the same
8352004, Dec 21 2007 Covidien LP Medical sensor and technique for using the same
8352009, Sep 30 2005 Covidien LP Medical sensor and technique for using the same
8352010, Sep 30 2005 Covidien LP Folding medical sensor and technique for using the same
8364220, Sep 25 2008 Covidien LP Medical sensor and technique for using the same
8366613, Dec 26 2007 Covidien LP LED drive circuit for pulse oximetry and method for using same
8385996, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor emitters
8391941, Jul 17 2009 Covidien LP System and method for memory switching for multiple configuration medical sensor
8396527, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8412297, Oct 01 2003 Covidien LP Forehead sensor placement
8417309, Sep 30 2008 Covidien LP Medical sensor
8417310, Aug 10 2009 Covidien LP Digital switching in multi-site sensor
8423112, Sep 30 2008 Covidien LP Medical sensor and technique for using the same
8428675, Aug 19 2009 Covidien LP Nanofiber adhesives used in medical devices
8433383, Oct 12 2001 Covidien LP Stacked adhesive optical sensor
8437822, Mar 28 2008 Covidien LP System and method for estimating blood analyte concentration
8437826, May 02 2006 Covidien LP Clip-style medical sensor and technique for using the same
8442608, Dec 28 2007 Covidien LP System and method for estimating physiological parameters by deconvolving artifacts
8452364, Dec 28 2007 Covidien LP System and method for attaching a sensor to a patient's skin
8452366, Mar 16 2009 Covidien LP Medical monitoring device with flexible circuitry
8452367, Oct 01 2002 Covidien LP Forehead sensor placement
8483787, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor drivers
8483790, Oct 18 2002 Covidien LP Non-adhesive oximeter sensor for sensitive skin
8505821, Jun 30 2009 Covidien LP System and method for providing sensor quality assurance
8509869, May 15 2009 Covidien LP Method and apparatus for detecting and analyzing variations in a physiologic parameter
8515515, Mar 25 2009 Covidien LP Medical sensor with compressible light barrier and technique for using the same
8528185, Aug 08 2005 Covidien LP Bi-stable medical sensor and technique for using the same
8548550, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
8577434, Dec 27 2007 Covidien LP Coaxial LED light sources
8577436, Aug 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8581732, Mar 01 2005 Carcacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
8600467, Nov 29 2006 MASIMO LABORATORIES, INC Optical sensor including disposable and reusable elements
8600469, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
8634889, Mar 01 2005 CERCACOR LABORATORIES, INC Configurable physiological measurement system
8634891, May 20 2009 Covidien LP Method and system for self regulation of sensor component contact pressure
8660626, Sep 28 2006 Covidien LP System and method for mitigating interference in pulse oximetry
8692992, Sep 22 2011 Covidien LP Faraday shield integrated into sensor bandage
8700116, Sep 29 2011 Covidien LP Sensor system with pressure application
8706179, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatii
8718735, Mar 01 2005 Cercacor Laboratories, Inc. Physiological parameter confidence measure
8718736, Jul 23 2009 Covidien LP Physiological sensor with offset adhesive layer
8726496, Sep 22 2011 Covidien LP Technique for remanufacturing a medical sensor
8781544, Mar 27 2007 CERCACOR LABORATORIES, INC Multiple wavelength optical sensor
8781548, Mar 31 2009 Covidien LP Medical sensor with flexible components and technique for using the same
8781549, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
8801613, Dec 04 2009 JPMorgan Chase Bank, National Association Calibration for multi-stage physiological monitors
8849365, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
8868150, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
8897850, Dec 31 2007 Covidien LP Sensor with integrated living hinge and spring
8912909, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
8914088, Sep 30 2008 Covidien LP Medical sensor and technique for using the same
8929964, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor drivers
8965471, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
8965473, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8989831, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
9002425, Jul 23 2009 Covidien LP Physiological sensor with offset adhesive layer
9010634, Jun 30 2009 Covidien LP System and method for linking patient data to a patient and providing sensor quality assurance
9131882, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
9138182, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
9161722, Sep 07 2011 Covidien LP Technique for remanufacturing a medical sensor
9167995, Mar 01 2005 Cercacor Laboratories, Inc. Physiological parameter confidence measure
9241662, Mar 01 2005 Cercacor Laboratories, Inc. Configurable physiological measurement system
9289167, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
9351675, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
9549696, Mar 01 2005 Cercacor Laboratories, Inc. Physiological parameter confidence measure
9610040, Sep 22 2011 Covidien LP Remanufactured medical sensor with flexible Faraday shield
9750443, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
9788735, Mar 25 2002 Masimo Corporation Body worn mobile medical patient monitor
9795300, Mar 25 2002 Masimo Corporation Wearable portable patient monitor
9839381, Nov 24 2009 CERCACOR LABORATORIES, INC Physiological measurement system with automatic wavelength adjustment
9848807, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
9861304, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
9872623, Mar 25 2002 Masimo Corporation Arm mountable portable patient monitor
9895107, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
D455834, Aug 29 2001 SMITHS MEDICAL ASD, INC Finger oximeter
D984645, Feb 14 2020 GlucoModicum Oy Biometric sensor
RE41317, Oct 15 1998 JPMorgan Chase Bank, National Association Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
RE41912, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
RE43169, Oct 15 1998 JPMorgan Chase Bank, National Association Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
RE43860, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
RE44823, Oct 15 1998 Masimo Corporation Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
Patent Priority Assignee Title
3167658,
3599629,
3602213,
3617374,
3769974,
3807388,
4013067, Jun 26 1974 Siemens Aktiengesellschaft Warning apparatus for indicating a threat of impending shock
4091803, Feb 17 1975 Thomas, Orr Transducers
4305401, May 16 1979 Hughes Aircraft Company Digital watch/infrared plethysmograph having a quick release remote pulse sensor having a finger cuff
4350165, May 23 1980 TRW Inc. Medical electrode assembly
4370984, Apr 30 1979 Conmed Corporation X-Ray transparent medical electrode
4380240, Jun 28 1977 Duke University, Inc. Apparatus for monitoring metabolism in body organs
4406289, Sep 12 1980 Nederlandse Centrale Organisatie Voor Toegepast-Natuurwetenschappelijk Device for the indirect, non-invasive and continuous measurement of blood pressure
4611601, Feb 17 1984 Transamerica Delaval Inc. Disposable transducer systems
4644092, Jul 18 1985 AMP Incorporated Shielded flexible cable
4653498, Sep 02 1982 Nellcor Puritan Bennett Incorporated Pulse oximeter monitor
4653501, Apr 17 1986 NDM ACQUISITION CORP Medical electrode with reusable conductor
4700708, Sep 02 1982 LIONHEART TECHNOLOGIES, INC Calibrated optical oximeter probe
4824242, Sep 26 1986 SensorMedics Corporation Non-invasive oximeter and method
4825879, Oct 08 1987 CRITIKON COMPANY, L L C Pulse oximeter sensor
4830014, May 11 1983 Nellcor Puritan Bennett Incorporated Sensor having cutaneous conformance
4834532, Dec 05 1986 STATE OF OREGON ACTING BY AND THROUGH THE STATE BOARD OF HIGHER EDUCATION ON BEHALF OF OREGON HEALTH SCIENCES UNIVERSITY, THE Devices and procedures for in vitro calibration of pulse oximetry monitors
4848335, Feb 16 1988 Aspen Laboratories, Inc. Return electrode contact monitor
4863757, Feb 06 1987 POLY-FLEX CIRCUITS, INC Printed circuit board
4865038, Oct 09 1986 RIC Investments, LLC Sensor appliance for non-invasive monitoring
4867165, Jun 03 1987 Philips Electronics North America Corporation Method for determining the perfusion
4928691, Oct 08 1987 Nellcor Incorporated Lingual oximeter probe
4960614, Feb 06 1987 POLY-FLEX CIRCUITS, INC Printed circuit board
4964408, Apr 29 1988 JPMorgan Chase Bank, National Association Oximeter sensor assembly with integral cable
5006397, Feb 06 1987 POLY-FLEX CIRCUITS, INC Printed circuit board
5036128, Jun 14 1989 POLY-FLEX CIRCUITS, INC Printed circuit board
5047260, Feb 06 1987 POLY-FLEX CIRCUITS, INC Method for producing a shielded plastic enclosure to house electronic equipment
5061551, Feb 06 1987 POLY-FLEX CIRCUITS, INC Printed circuit board
5069213, Apr 29 1988 JPMorgan Chase Bank, National Association Oximeter sensor assembly with integral cable and encoder
5080098, Dec 18 1989 SMITHS INDUSTRIES MEDICAL SYSTEMS, INC Non-invasive sensor
5090410, Jun 28 1989 SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO , LTD Fastener for attaching sensor to the body
5094240, Mar 18 1988 Nicolay GmbH Pulse/oxygen sensor and method of making
5193547, Jul 16 1984 Edwards Lifesciences Corporation Universal connector means for transducer/monitor systems
5209230, Oct 19 1990 Nellcor Puritan Bennett Incorporated Adhesive pulse oximeter sensor with reusable portion
5261415, Jul 12 1991 Ciba Corning Diagnostics Corp.; CIBA CORNING DIAGONSTICS CORP CO2 mainstream capnography sensor
CA671279,
DE2348992,
EP19478,
EP284943,
WO8909566,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 10 1995Nellcor Puritan Bennett Incorporated(assignment on the face of the patent)
Aug 25 1995Nellcor IncorporatedNellcor Puritan Bennett IncorporatedCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0076870406 pdf
Date Maintenance Fee Events
Nov 10 2000M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 15 2000ASPN: Payor Number Assigned.
Nov 12 2004M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 22 20014 years fee payment window open
Jun 22 20026 months grace period start (w surcharge)
Dec 22 2002patent expiry (for year 4)
Dec 22 20042 years to revive unintentionally abandoned end. (for year 4)
Dec 22 20058 years fee payment window open
Jun 22 20066 months grace period start (w surcharge)
Dec 22 2006patent expiry (for year 8)
Dec 22 20082 years to revive unintentionally abandoned end. (for year 8)
Dec 22 200912 years fee payment window open
Jun 22 20106 months grace period start (w surcharge)
Dec 22 2010patent expiry (for year 12)
Dec 22 20122 years to revive unintentionally abandoned end. (for year 12)