A light-weight face mask can heat and humidify inhaled air with previously-exhaled air by passing the air through a highly-effective and highly-efficient heat exchanger disposed within the mask. The heat exchanger has a multitude of layers of metallic mesh through which the air passes generally linearly. The warm exhaled air heats the mesh which in turn heats the incoming air before it is inhaled. Moisture from the exhaled air condenses on the relatively-cool heat exchanger and humidifies the incoming air. inhaled air enters the mask generally upwardly, and exhaled air exits it generally downwardly.
|
17. A respiratory face mask capable of being worn by a person, i.e., a wearer, who has a head, and a face, nose, chin and mouth, which mask comprises the following:
an inner flexible shell capable of covering the wearer's face from the nose to the chin, said shell capable of being spaced apart from the wearer's face, and capable of providing an insulating air space between the wearer's face and the mask when the mask is worn, with peripheral edges of the inner shell able to be placed in contact with the wearer's face to form an air seal when the mask is worn; a heat exchanger disposed in a pocket in the inner shell located opposite a position which can define the wearer's mouth, and to be in open communication with the wearer's mouth, with the heat exchanger including a multitude of layers of metallic mesh, the layers being provided in a sheetlike arrangement, one layer upon another, and being such that air can flow back and forth across the layered arrangement in a direction from outside layer to inside layer and from inside layer to outside layer in a direction substantially perpendicular to the layers in the mask during breathing by the wearer; an outer shell having edges and joining the inner shell above and on either side of the heat exchanger, with the outer shell being spaced apart from the heat exchanger and the inner shell; an opening between the the inner shell and the outer shell below the heat exchanger to allow entry of air inhaled by the wearer of the mask when the mask is worn and the wearer's head is in an upright position upwardly, and discharge of air exhaled by the wearer of the mask when the mask is worn and the wearer's head is in an upright position downwardly--such that exhaled air can heat the heat exchanger, which in turn can heat the inhaled air--with the outer shell, the opening and the heat exchanger being located on the mask so as to be able to reduce a tendency of the heat exchanger to otherwise freeze in cold weather when the mask is worn when snow is falling or blowing, wherein the mask is light-weight and useful for warming and humidifying inhaled air efficiently with negligible pressure differential for the wearer.
1. A light-weight respiratory face mask for warming and humidifying inhaled air of a person who can wear the mask, i.e., a wearer, and who has a head, and a face, nose, chin and mouth, efficiently with negligible pressure differential, which comprises:
(a) an inner flexible shell capable of covering the wearer's face from the nose to the chin, said shell capable of being spaced apart from the wearer's face, and capable of providing an insulating air space between the wearer's face and the mask when the mask is worn, with peripheral edges of the inner shell able to be placed in contact with the wearer's face to form an air seal when the mask is worn; (b) a heat exchanger disposed in a pocket in the inner shell located opposite a position which can define the wearer's mouth, and to be in open communication with the wearer's mouth, with the heat exchanger consisting of about 15 to about 50 layers of metallic mesh, and with each of the layers of the metallic mesh having a surface area and a thermal conductivity within each layer of the metallic mesh appropriate to the metallic mesh employed and low thermal conductivity to adjacent layer(s) of the metallic mesh, the layers being provided in a sheetlike arrangement, one layer upon another, and being such that air can flow back and forth across the layered arrangement in a direction from outside layer to inside layer and from inside layer to outside layer in a direction substantially perpendicular to the layers in the mask during breathing by the wearer; (c) an outer shell in a position opposite the wearer's mouth when the mask is worn, with the outer shell having edges and joining the inner shell above and on either side of the heat exchanger, and the outer shell spaced apart from the heat exchanger and the inner shell; (d) an opening between the inner shell and the outer shell below the heat exchanger to allow entry of air inhaled by the wearer of the mask when the mask is worn and the wearer's head is in an upright position upwardly, and discharge of air exhaled by the wearer of the mask when the mask is worn and the wearer's head is in an upright position downwardly, such that exhaled air can heat the heat exchanger, which in turn can heat the inhaled air, with the outer shell, the opening and the heat exchanger being located on the mask so as to be able to reduce a tendency of the heat exchanger to otherwise freeze in cold weather when the mask is worn when snow is falling or blowing.
2. The mask of
3. The mask of
4. The mask of
5. The mask of
7. The mask of
8. The mask of
9. The mask of
10. The mask of
11. The mask of
14. The mask of
15. The mask of
18. The mask of
19. The mask of
20. The mask of
21. In a respiratory face mask including a facepiece and a metallic heat exchanger, said mask useful for warming and humidifying cold outside air wherein inhaled air comes directly into the mask from the outside air through the heat exchanger, and exhaled air goes from inside the mask through the heat exchanger directly to the outside air, the improvement which comprises an outer shell attached to the facepiece in a front part of the mask with the heat exchanger being a multi-layered metallic mesh heat exchanger enclosed inside the mask behind the outer shell, with an opening to the outside air provided below the multi-layered metallic mesh heat exchanger in the outer shell of the mask for inhalation and exhalation therethrough, wherein the opening and the multi-layered metallic mesh heat exchanger are located on the mask so as to be able to reduce a tendency of the heat exchanger to otherwise freeze in cold weather when the mask is worn when snow is falling or blowing. 22. A respiratory face mask which can be worn by a person, i.e., a wearer, who has a head, including a face, which mask comprises the following:
an inner shell, with an edge thereof able to be placed in contact with the wearer's face to form an air seal when the mask is worn; a heat exchanger disposed in the mask, including a multitude of layers of metallic mesh, the layers being provided in a sheetlike arrangement, one layer upon another, and being such that air can flow back and forth across the layered arrangement in a direction from outside layer to inside layer and from inside layer to outside layer in a direction substantially perpendicular to the layers in the mask, and substantially perpendicular to the face of the wearer, during breathing by the wearer; an outer shell, generally spaced apart from the inner shell and the heat exchanger, which can deflect exhaled air downwardly to outside air through an opening when the mask is worn and the wearer's head is in an upright position; the opening being below the heat exchanger to allow entry of air inhaled by the wearer of the mask when the mask is worn and the wearer's head is in an upright position upwardly, and discharge of air exhaled by the wearer of the mask when the mask is worn and the wearer's head is in an upright position downwardly--such that exhaled air can heat the heat exchanger, which in turn can heat the inhaled air--with the outer shell, the opening and the heat exchanger being located on the mask so as to be able to reduce a tendency of the heat exchanger to otherwise freeze in cold weather when the mask is worn when snow is falling or blowing, wherein the mask is useful for warming and humidifying inhaled air efficiently, and wherein the inhaled air comes directly into the mask from the outside air through the heat exchanger, and the exhaled air goes from inside the mask through the heat exchanger directly to the outside air.
23. The mask of |
Experiments were conducted to determine the effectiveness of the invention in heating inhaled air. A commercial respirator was modified for the experiments. Tape was placed over two input ports, and the centrally-located output port was enlarged to a diameter of about 4.5 centimeters. A rectangular pocket for a heat exchanger was fabricated to be about 4.5 centimeters high and about 5.7 centimeters long, and it placed within the mask in front of the round opening. The space around the pocket was partially filled with a silicone caulk to hold the pocket in place and leave a relatively small gap between the caulk and the face. Thirty layers of metallic mesh, about 4.5 by 5.7 centimeters, were placed in the heat-exchanger pocket. The mesh was comprised of aluminum wires about 0.025 centimeters in diameter, spaced about 0.16 centimeters apart center to center in one direction and spaced apart about 0.14 centimeters in the perpendicular direction. Temperature of the air was measured inside the mask immediately adjacent to the inner layer of mesh while breathing through the mask. Temperature measurements were made with a Digitherm electronic indoor/outdoor thermometer. The remote sensor that was placed inside the mask was about 0.6 centimeters thick high and about 1.6 centimeters in diameter. With an outdoor temperature of 33.4 degrees F., and a body temperature of 97.5 degrees F., the air temperature in the mask stabilized at 87.8 degrees F., after 2 minutes. Assuming that the measured temperature, M, is the average of the temperature of the air entering the mask from the heat exchanger, H, and of the temperature of the air breathed out of the mouth, B, then M=(B+H)/2, and H=2M-B. In this case, H=2(87.8)-97.5=78.1 degrees F. In this example, the mask heated the outside air 44.7 degrees F. The most that the mask could heat the air is 97.5-33.4=64.1 degrees F. The percent effectiveness is 100% times the ratio of the measured increase in temperature to the difference between body and outdoor temperatures. In this example, the percent effectiveness is 100%(44.7 degrees F./64.1 decrees F.)=70%. This data and similar data are tabulated below. All temperatures are given in degrees Fahrenheit, i.e., F.
______________________________________ |
Number of layers of mesh |
30 8 16 20 30 |
Outside temperature |
33.4 36.1 36.1 36.1 36.1 |
Measured temperature |
87.8 82.7 83.3 86.3 88.3 |
Calculated input air temperature |
78.1 67.9 69.1 74.7 79.1 |
Increase in temperature |
44.7 31.8 33.0 38.6 43.0 |
Percent effectiveness |
70 52 54 63 70 |
______________________________________ |
Type of mesh |
"standard" |
"fine" none |
______________________________________ |
Number of layers of mesh |
16 32 16 32 0 |
Outside temperature |
17.7 17.9 18.3 18.5 18.7 |
Measured temperature |
80.7 84.9 84.7 89.4 72.0 |
Calculated input air temperature |
63.9 72.3 71.9 81.3 46.5 |
Increase in temperature |
46.2 54.4 53.6 62.8 27.2 |
Percent effectiveness |
57 68 68 79 35 |
______________________________________ |
One can see from this data that the mask heats the inhaled air to some extent even with no metallic mesh in the heat-exchanger pocket, and that the amount of heating increased with increasing number of layers to nearly 80 percent effectiveness. One can also see that the "fine" mesh was more effective than the "standard" mesh for a selected number of layers. On the other hand, the "fine" mesh had about 4 times the number of wires in a selected area, and therefore, each layer of "fine" mesh was 4 times as heavy as the "standard" mesh. One can also see that 32 layers of "standard" mesh was as effective in heating air as 16 layers of the "fine" mesh, even though 32 layers of "standard" mesh weighed half as much as 16 layers of "fine" mesh. Even with thirty-six layers of standard mesh in the heat exchanger, no resistance to breathing was evident. The pressure differential between the inside of the mask was measured while a person was breathing through it. The pressure differential was less than about 0.02 inches of water column during normal breathing and less than about 0.1 inches of water when breathing was as fast as possible.
The invention accordingly or by incorporation of features from originally filed claims includes the following embodiments:
A light-weight respiratory face mask for warming and humidifying inhaled air efficiently with negligible pressure differential, which includes the following: an inner flexible shell covering the face from the nose to the chin, the inner shell generally spaced apart from the face, which provides an insulating air space between the face and the mask, with peripheral edges of the inner shell contacting the face to form an air seal; a heat exchanger disposed in a pocket in the inner shell located opposite the mouth, and in open communication with the mouth, with the heat exchanger consisting of about 15 to 50 layers of metallic mesh, each of the layers having a high surface area and having high thermal conductivity within the layer and low thermal conductivity to adjacent layers; an outer shell opposite the mouth, the outer shell joining the inner shell above and on either side of the heat exchanger, and the outer shell spaced apart from the heat exchanger and the inner shell; an opening between the inner shell and the outer shell below the heat exchanger to allow entry of inhaled air generally upward and discharge of exhaled air generally downward such that exhaled air heats the heat exchanger which in turn heats the inhaled air. In addition, the mask can include the following features: its outer shell can be such as to protrude less than about 3 centimeters beyond the wearer's nose; the surface area of metal in the heat exchanger can be substantially less than about two thousand square centimeters (about three hundred square inches); each layer of the heat exchanger can have an area of 6 to 24 square centimeters; the thickness of the multitude of metallic layers can be less than 2.5 centimeters when pressed together; the layers of mesh can be aluminum or brass; the layers of mesh can be aluminum screening that consists of aluminum wires about 0.025 centimeters in diameter, spaced about 0.141 centimeters center to center in one direction and spaced about 0.159 centimeters apart in the perpendicular direction; at least a portion of of the outer layer of mesh in the heat exchanger can be at least two centimeters above the lower edge of the opening in the mask; adjacent layers of metallic mesh can be connected along at least one edge; the heat exchanger can be centrally located, and the width of the heat exchanger can exceed the height; a flexible cavity can be provided within the mask for easily and quickly inserting and removing a heat exchanger pack consisting of layers of metallic mesh; it can have the color of one of the many flesh tones; it can have facial expressions drawn, painted, or printed on the frontal surface; it can have attached to each edge a strap assembly which passes around the wearer's head, thereby holding the mask in place, and the strap assembly can be attached with at least one adjustable interlocking component, and it can have at least a portion of the strap assembly elastic.
As can be appreciated from the foregoing and the drawings, the layers of metallic mesh can be provided in a sheetlike arrangement, one layer upon another. They can be such that air can flow back and forth across the layered arrangement in a direction from outside layer to inside layer and from inside layer to outside layer in a direction substantially perpendicular to the layers in the mask during breathing by the mask wearer.
And accordingly, this invention can relate to a light-weight face mask for heating and humidifying inhaled air with previously-exhaled air by passing the air through a highly-effective, highly-efficient heat exchanger disposed within the mask, with the heat exchanger consisting of a multitude of layers of metallic mesh through which the air passes generally linearly. The warm exhaled air heats the mesh which in turn heats the incoming air before it is inhaled. Moisture from the exhaled air condenses on the relatively cool heat exchanger and humidifies the incoming air. Inhaled air enters the mask generally upwardly, and exhaled air exits it generally downwardly.
It will be understood that certain features and subcombinations have utility and may be used without reference to other features and subcombinations. This is contemplated and within the scope of my claims. It is further obvious plain that various changes may be made in details within the scope of my claims without departing from the spirit of my invention. It is to be understood, therefore, that my invention is not to be limited to the specific details shown and described.
Accordingly, a mask of the invention can include a multi-layered metallic mesh heat exchanger enclosed inside the mask and has an opening below the heat exchanger in the outer shell for inhalation and exhalation. Along these lines, the invention can include a respiratory face mask which can be worn by a person, i.e., a wearer, who has a head, including a face, which mask includes an inner shell, with an edge thereof able to be placed in contact with the wearer's face to form an air seal when the mask is worn; a heat exchanger disposed in the mask, including a multitude of layers of metallic mesh, the layers being provided in a sheetlike arrangement, one layer upon another, and being such that air can flow back and forth across the layered arrangement in a direction from outside layer to inside layer and from inside layer to outside layer in a direction substantially perpendicular to the layers in the mask during breathing by the wearer; an outer shell, generally spaced apart from the inner shell and the heat exchanger, which can deflect exhaled air downwardly through an opening when the mask is worn and the wearer's head is in an upright position; the opening being below the heat exchanger to allow entry of air inhaled by the wearer of the mask when the mask is worn and the wearer's head is in an upright position upwardly, and discharge of air exhaled by the wearer of the mask when the mask is worn and the wearer's head is in an upright position downwardly--such that exhaled air can heat the heat exchanger, which in turn can heat the inhaled air--with the outer shell, the opening and the heat exchanger being located on the mask so as to be able to reduce a tendency of the heat exchanger to otherwise freeze in cold weather when the mask is worn when snow is falling or blowing, wherein the mask is useful for warming and humidifying inhaled air efficiently.
Patent | Priority | Assignee | Title |
10058671, | Oct 22 2001 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Application device for a breathing mask arrangement |
10137270, | Oct 04 2005 | ResMed Pty Ltd | Cushion to frame assembly mechanism |
10183138, | Oct 25 2005 | ResMed Pty Ltd | Interchangeable mask assembly |
10195385, | Sep 07 2001 | ResMed Pty Ltd | Forehead pad for respiratory mask |
10245403, | Oct 22 2001 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask arrangement as well as an application device and a forehead support device for same |
10434273, | Oct 14 2005 | ResMed Pty Ltd | Cushion to frame assembly mechanism |
10596342, | Oct 19 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas |
10751496, | Mar 04 2008 | ResMed Pty Ltd | Mask system with shroud |
10835704, | May 15 2019 | Applied Research Associates, Inc.; APPLIED RESEARCH ASSOCIATES, INC | Reusable respiratory protection device |
10864342, | Jan 30 2007 | ResMed Pty Ltd | Mask with removable headgear connector |
10905585, | Feb 21 2020 | Respiratory therapeutic electric heat source face mask | |
11052211, | Oct 25 2005 | ResMed Pty Ltd | Interchangeable mask assembly |
11077274, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
11096438, | Feb 21 2020 | All weather electric indoor/outdoor heat exchanger face mask | |
11103668, | Jan 11 2009 | Humid Med Technology (PTY) LTD | Humidification face mask |
11305085, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
11331447, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
11369765, | Oct 14 2005 | ResMed Pty Ltd | Cushion to frame assembly mechanism |
11395893, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
11529486, | Mar 04 2008 | ResMed Pty Ltd | Mask system with shroud having extended headgear connector arms |
11529487, | Oct 14 2005 | ResMed Pty Ltd | Cushion to frame assembly mechanism |
11529488, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
11596757, | Oct 25 2005 | ResMed Pty Ltd | Interchangeable mask assembly |
11633564, | Oct 14 2005 | ResMed Pty Ltd | Cushion to frame assembly mechanism |
11833277, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
11833305, | Oct 14 2005 | ResMed Pty Ltd | Cushion/frame assembly for a patient interface |
11890418, | Oct 25 2005 | ResMed Pty Ltd | Interchangeable mask assembly |
6631718, | Jun 08 1999 | SleepNet Corporation | Air mask with seal |
7210481, | May 26 2000 | SleepNet Corporation | Nose mask |
7219669, | Jun 08 1999 | SleepNet Corporation | Nose mask |
7721732, | Apr 04 2002 | QXTEC, Inc. | Respiratory heat exchanger |
8371301, | Oct 19 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas |
8402972, | Jan 17 2002 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask arrangement and a forehead support device for same |
8479738, | Oct 22 2001 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask arrangement as well as an application device and a forehead support device for same |
8505535, | May 02 2003 | ResMed Pty Ltd | Mask system |
8517023, | Jan 30 2007 | ResMed Pty Ltd | Mask system with interchangeable headgear connectors |
8522784, | Mar 04 2008 | ResMed Pty Ltd | Mask system |
8528561, | Mar 04 2008 | ResMed Pty Ltd | Mask system |
8550084, | Mar 04 2008 | ResMed Pty Ltd | Mask system |
8746250, | Oct 19 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas |
8875710, | Oct 22 2001 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Application device for a breathing mask arrangement |
8944061, | Oct 14 2005 | ResMed Limited | Cushion to frame assembly mechanism |
8960196, | Jan 30 2007 | ResMed Pty Ltd | Mask system with interchangeable headgear connectors |
8991395, | Mar 04 2008 | ResMed Limited | Mask system |
9027556, | Mar 04 2008 | ResMed Limited | Mask system |
9072853, | Sep 07 2001 | ResMed R&D Germany GmbH | Forehead pad for respiratory mask |
9119931, | Mar 04 2008 | ResMed Pty Ltd | Mask system |
9144656, | Oct 22 2001 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask arrangement as well as an application device and a forehead support device for same |
9259549, | Jan 17 2002 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask arrangement and a forehead support device for same |
9381316, | Oct 25 2005 | ResMed Pty Ltd | Interchangeable mask assembly |
9662467, | Oct 19 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas |
9757533, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
9757534, | Oct 22 2001 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask arrangement as well as an application device and a forehead support device for same |
9770568, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
9889266, | Oct 22 2001 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask arrangement as well as an application device and a forehead support device for same |
9895503, | May 02 2003 | ResMed Pty Ltd | Mask system |
9937315, | Jan 30 2007 | ResMed Pty Ltd | Mask with removable headgear connector |
9950131, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
9962510, | Oct 25 2005 | ResMed Pty Ltd | Respiratory mask assembly |
9962511, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
Patent | Priority | Assignee | Title |
2381568, | |||
2626343, | |||
2741246, | |||
3249108, | |||
3326214, | |||
3333585, | |||
3814094, | |||
3835853, | |||
4136691, | Apr 30 1976 | Oy Kontekla | Respiration mask |
4150671, | Feb 18 1977 | Warm air weathermask | |
4196728, | Sep 01 1978 | Breathing apparatus | |
4200094, | Apr 05 1977 | Siemens Aktiengesellschaft | Apparatus for warming and moistening a respiration gas |
4269183, | Mar 26 1979 | Cold weather breathing mask | |
4325365, | Dec 11 1980 | STEELEWORKS, INC | Athlete's breathing apparatus |
4458679, | Jun 01 1982 | Cold weather respiratory mask | |
4473071, | Jul 30 1982 | Combination heat exchanger breathing aid and muffler | |
4478215, | Jul 26 1982 | Breathing device | |
4601287, | Apr 01 1981 | Heated survival face mask | |
4620537, | Mar 04 1985 | Cold weather face mask | |
4671268, | Sep 23 1985 | Cold weather breathing mask | |
4683869, | May 06 1986 | Breath transfer device | |
4793343, | Aug 20 1987 | Respiratory heated face mask | |
4829997, | Feb 18 1988 | UNIVERSITY OF VICTORIA, A CANADIAN UNIVERSITY | Portable heat exchanger for inhalation rewarming |
5007114, | Jul 14 1988 | Japan Air Lines Co., Ltd. | Humidity-retaining mask |
5010594, | Jun 27 1989 | Japan Air Lines Co., Ltd. | Dampening mask for use in aircraft |
5086766, | Apr 16 1988 | Virotherm Laboratories Ltd. | Medical breathing apparatus |
5433192, | Dec 28 1990 | Insinooritoimisto Megsent Oy | Breathing mask having a cellulose heat and moisture exchanger formed therein |
5435299, | Oct 22 1991 | Respiratory mask | |
5595173, | Jun 29 1995 | Rehumidification filter for ventilation mask |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
May 12 2008 | REM: Maintenance Fee Reminder Mailed. |
Nov 05 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 30 2002 | 4 years fee payment window open |
Sep 30 2002 | 6 months grace period start (w surcharge) |
Mar 30 2003 | patent expiry (for year 4) |
Mar 30 2005 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 30 2006 | 8 years fee payment window open |
Sep 30 2006 | 6 months grace period start (w surcharge) |
Mar 30 2007 | patent expiry (for year 8) |
Mar 30 2009 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 30 2010 | 12 years fee payment window open |
Sep 30 2010 | 6 months grace period start (w surcharge) |
Mar 30 2011 | patent expiry (for year 12) |
Mar 30 2013 | 2 years to revive unintentionally abandoned end. (for year 12) |