Solutions which contain L-carnitine and alkanoyl L-carnitine are useful for stabilizing blood for transfusions.

Patent
   RE36331
Priority
Jun 02 1993
Filed
Mar 05 1998
Issued
Oct 05 1999
Expiry
Mar 05 2018
Assg.orig
Entity
Large
5
4
all paid
6. A transfusion bag which comprises:
(a) a sample of whole blood;
(b) a preservative-anticoagulant solution; and
(c) 4-6 mM/L of L-carnitine, alkanoyl L-carnitine or a pharmaceutically acceptable salt thereof, wherein said pharmaceutically acceptable salt is selected from the group consisting of chloride, bromide, orotate, aspartic acid, acid citrate, acid phosphate, fumarate, acid fumarate, maleate, acid maleate, acid oxalate, acid sulfate, glucoses phosphate, tartrate, and acid tartrate.
1. A method for stabilizing blood for transfusion, comprising mixing blood with a solution, said solution comprising L-carnitine, alkanoyl L-carnitine, or a pharmaceutically acceptable salt thereof, wherein said pharmaceutically acceptable salt is selected from the group consisting of chloride, bromide, orotate, aspartic acid, acid citrate, acid phosphate, fumarate, acid fumarate, maleate, acid maleate, acid oxalate, acid sulfate, glucoses phosphate, tartrate, and acid tartrate, and wherein said solution comprises 0.5-10.0 mM/L of said L-carnitine, said alkanoyl L-carnitine, or said pharmaceutically acceptable salt thereof.
2. The method of claim 1, wherein said alkanoyl L-carnitine is selected from the group consisting of acetyl L-carnitine, propionyl L-carnitine, butyryl L-carnitine, isobutyryl L-carnitine, valeryl L-carnitine, and isovaleryl L-carnitine.
3. The method of claim 1, wherein said solution comprises:
______________________________________
Glucose 80-120 mM/L
Mannitol 40-60 mM/L
K2 HPO4 24-28 mM/L
KH2 PO4 12-16 mM/L
Potassium citrate 15-20 mM/L
L-carnitine, internal salt
4-6 mM/L.
______________________________________
4. The method of claim 1, wherein said solution comprises 4-6 mM/L of said L-carnitine, said alkanoyl L-carnitine, or said pharmaceutically acceptable salt.
5. The method of claim 1, wherein said solution is mixed with said blood in a ratio to obtain a ratio of volume of solution to volume of erythrocytes of about 1:1.
7. The transfusion bag of claim 6, wherein said preservative-anticoagulant solution is selected from ACD, CPD and CPDA-1.
8. The transfusion bag of claim 6, wherein said alkanoyl L-carnitine is selected from the group consisting of acetyl L-carnitine, propionyl L-carnitine, butyryl L-carnitine, isobutyryl L-carnitine, valeryl L-carnitine, and isovaleryl L-carnitine.
9. A method for stabilizing a composition for transfusion comprising erythrocytes, said method comprising mixing said composition with a solution, said solution comprising L-carnitine, alkanoyl L-carnitine, or a pharmaceutically acceptable salt thereof, wherein said pharmaceutically acceptable salt is selected from the group consisting of chloride, bromide, orotate, aspartic acid, acid citrate, acid phosphate, fumarate, acid fumarate, maleate, acid maleate, acid oxalate, acid sulfate, glucose phosphate, tartrate and acid tartrate, and wherein said solution comprises 0.5-10.0 mM/L of said L-carnitine, said alkanoyl L-carnitine, or said pharmaceutically acceptable salt thereof. 10. A transfusion bag which comprises:
(a) a composition comprising erythrocytes;
(b) a preservative-anticoagulant solution; and
(c) 4-6 mM/L of L-carnitine, alkanoyl L-carnitine or pharmaceutically acceptable salt thereof, wherein said pharmaceutically acceptable salt is selected from the group consisting of chloride, bromide, orotate, aspartic acid, acid citrate, acid phosphate, fumarate, acid fumarate, maleate, acid maleate, acid oxalate, acid sulfate, glucose phosphate, tartrate and acid tartrate, and wherein said solution comprises 0.5-10.0 mM/L of said L-carnitine, said alkanoyl L-carnitine, or said pharmaceutically acceptable salt thereof. 11. The method of claim 9, wherein said alkanoyl L-carnitine is selected from the group consisting of acetyl L-carnitine, propionyl L-carnitine, butyryl L-carnitine, isobutyryl L-carnitine, valeryl L-carnitine, and isovaleryl L-carnitine.
12. The method of claim 9, wherein said solution comprises:
______________________________________
Glucose 80-120 mM/L
Mannitol 40-60 mM/L
K2 HPO4 24-28 mM/L
KH2 PO4 12-16 mM/L
Potassium citrate 15-20 mM/L
L-carnitine, internal salt
4-6 mM/L.
______________________________________
13. The method of claim 9, wherein said solution comprises 4-6 mM/L of said L-carnitine, said alkanoyl L-carnitine, or said pharmaceutically acceptable salt. 14. The transfusion bag of claim 10, wherein said preservative-anticoagulant solution is selected from ACD, CPD and CPDA-1. 15. The transfusion bag of claim 10, wherein said alkanoyl L-carnitine is selected from the group consisting of acetyl L-carnitine, propionyl L-carnitine, butyryl L-carnitine, isobutyryl L-carnitine, valeryl L-carnitine, and isovaleryl L-carnitine.

This application is a Reissue application of Ser. No. 08/253,275, filed Jun. 2, 1994, U.S. Pat. No. 5,496,821.

PAC FIELD OF THE INVENTION

The present invention consists in a new non-therapeutic use of L-carnitine, alkanoyl L-carnitines and their pharmacologically acceptable salts as preservative agents for blood transfusions.

The present invention also consists in new stabilizing solutions for the storage of blood containing L-carnitine, alkanoyl L-carnitines or their pharmacologically acceptable salts.

What is meant by alkanoyl L-carnitines are acetyl, propionyl, butyryl, isobutyryl, valeryl and isovaleryl L-carnitine. Hereinafter, for reasons of simplicity, we shall refer only to L-carnitine, in the understanding, however, that the description also applies to the above-mentioned alkanoyl L-carnitines and their pharmacologically acceptable salts.

As is well known, L-carnitine is necessary for the translocation of fatty acids within the mitichondria where betaoxidation takes place.

Various uses of L-carnitine are known, but all of these are of a therapeutic nature. For instance, L-carnitine is used in the cardiovascular field for the treatment of acute and chronic myocardial ischaemia, angina pectoris, heart failure and cardiac arrhythmias.

In the nephrological field, L-carnitine is administered to chronic uraemics undergoing regular haemodialytic treatment to combat myasthenia and the onset of muscular cramps.

Other therapeutic uses have to do with the normalization of the HDL:LDL+VLDL ratio and total parenteral nutrition. There is, however, no relationship between the known therapeutic uses of L-carnitine mentioned previously and the use envisaged in the present invention.

It is well known that the essential factors for good storage of blood in the liquid state are the temperature and the composition of the stabilizing solution.

The temperature must be such as to allow a reduction of the metabolic activity of the erythrocytes without damaging them. The optimal temperature is 4°C±2°C

The stabilizing solutions must be able to make the blood unclottable, to reduce the glycolytic activity of the red blood cells and, at the same time, permit such activity by providing an adequate substrate.

The efficacy of a stabilizing solution is assessed by observing both the alterations arising in the erythrocytes in vitro and their survival in vivo, after variable periods of storage at optimal temperature.

The alterations to the erythrocytes in vitro can be checked by evaluating the amount of haemoglobin released by the erythrocytes, their osomotic and mechanical fragility, the changes in their shape and volume and the chemical changes they undergo.

The stabilizing solutions used to date do not allow good storage of blood for more than 14 to 21 days.

For instance, if the blood is collected in ACD (citric acid-sodium citrate-dextrose), one of the most widely used stabilizing solutions in the past, and transfused after 14 or 21 days of storage, the in-vivo survival rates of erythrocytes 24 h after transfusion are 90 and 80%, respectively; it is also well known that the red blood cells that remain in circulation 24 h after transfusion have a survival rate equal to that of fresh blood.

During storage, erythrocytes undergo alterations with formation of spherocytes and burr cells. The erythrocytes swell and lose potassium and haemoglobin, which then increases in the plasma. At the same time there is a reduction in 2,3-DPG (2,3-diphosphoglycerate) and thus an increase in the affinity of haemoglobin for oxygen, which is released to tissues in smaller amounts.

The alterations of erythrocytes stored in ACD may be at least partly corrected by adding phosphate to the stabilizing solution. Thus CPD (citrate-phsophate-dextrose) solutions have come to be used for the storage of blood and are now the ones most commonly employed The addition of phosphate gives rise to the maintenance of a higher level of 2,3-DPG and thus a lower affinity of haemoglobin for oxygen. However, the in-vivo survival of erythrocytes stored in CPD is little better, if not indeed identical to that of erythrocytes stored in ACD.

It has now been found that the addition of L-carnitine or of one of its pharmacologically acceptable salts to the usual stabilizing solutions for the storage of blood for transfusions has the effect of dramatically improving in-vitro survival of erthrocytes and of reducing the formation of spherocytes and burr cells and the loss of haemoglobin in the plasma. As a result of these beneficial effects, the period of good storage of blood for transfusion purposes is more than doubled compared to traditional solutions.

Thus, the invention described herein consists in the use of L-carnitine and its pharmacologically acceptable salts for the production of stabilizing solutions for the storage of blood for transfusions.

Viewed from a different angle, the invention also consists in stabilizing solutions for the storage of blood for transfusion characterized by the fact that they contain L-carnitine or one of its pharmacologically acceptable salts.

What is meant by pharmacologically acceptable salts of L-carnitine, apart from the L-carnitine internal salt, is any L-carnitine salt with an acid which does not give rise to unwanted side effects. These acids are well known to pharmacologists and to experts in pharmacy.

Non-exclusive examples of such salts are chloride, bromide, orotate, aspartic acid, acid citrate, acid phosphate, fumarate and acid fumarate, maleate and acid maleate, acid oxalate, acid sulphate, glucose phosphate, tartrate and acid tartrate.

These solutions are characterized by the fact that they contain 0.5-10.0 mM/L, and preferably 4-6 mML of L-carnitine or an equivalent amount of one of its pharmacologically acceptable salts.

An example of a stabilizing solution according to the invention is composed of:

______________________________________
Glucose 80-120 mM/L
Mannitol 40-60 mM/L
K2 HPO4 24-28 mM/L
KH2 PO4 12-16 mM/L
Potassium citrate 15-20 mM/L
L-carnitine, internal salt
4-6 mM/L
______________________________________

The efficacy of L-carnitine in the use envisaged in this invention is verified by numerous studies, one of which is reported here below with reference to the attached diagrams, where:

FIG. 1 is a graph representing the osomotic fragility of eythrocytes as a function of storage time (expressed in weeks);

FIG. 2 is a graph representing the haemoglobin concentration (in mg/dL) in the storage medium as a function of storage time (expressed in weeks);

FIG. 3 is a graph representing the percentage of burr cells in the storage medium as a function of storage time (expressed in weeks).

Admitted to this study were volunteers who were habitual blood donors and who were perfectly healthy at the time the blood samples were taken. The blood samples were collected in special quadruple bags normally used for blood storage Baxter, Fenwal Division, La Chatre, France) containing CPDA-1 (CPDA-1 composition: 110 mM glucose; 55 mM mannitol; 25.8 mM K2 HPO4 ; 14.7 mM KH2 PO4 ; 17.9 mM potassium citrate), an iso-osmolar fluid commonly used for the storage of blood at 5°C The blood was poured into the above-mentioned bags by means of a centrifuge which allowed the formed elements of the haematic mass to be separated from the erythrocytes. In addition to the above-mentioned CPDA-1, some of the bags contained L-carnitine, which was always introduced under conditions of maximum sterility. The ratio of the volume of the storage fluid to the volume of the erythrocytes was close to 1:1. The bags were then placed in refrigerators at a constant temperature of 5°C

In the course of storage, aliquots of erythrocytes were collected at weekly intervals for the purpose of conducting a number of microscopic and biochemical examinations. The eryrocyte suspension was immediately examined under a phase-contrast microscope to estimate the percentage content of burr cells, which are pathological erythrocytes with a star-type morphology. Later, the eryrthocyte suspension was centrifuged, and the buffy coat was used to determine the haemoglobin content according to a method involving the derivatization of the latter to cyanomethaemoglobin (International Committee for Standardization in Haematology, S. Clin. Pathol. (1978), 31:139-145). The haemoglobin content measured is an indicator of the degree of haemolysis the erythrocyte undergoes in the course of storage in the bags. Lastly, erythrocyte osmotic fragility was evaluated according to the method of Dacie and Lewis (Dacie J. V. and Lewis S. M., Practical Haematology, New York: Churchill Livingstone, 1984: 152-6). The osmotic fragility was calculated as the amount of sodium chloride necessary (in mM/L) to obtain 50% haemolysis.

Arduini, Arduino

Patent Priority Assignee Title
7309468, May 13 2002 Becton, Dickinson and Company Protease inhibitor sample collection system
7422844, Jun 14 2001 SIGMA-TAU INDUSTRIE FARMACEUTICHE RIUNITE S P A Solution for the storage and perfusion of organs awaiting transplantation
7645425, May 13 2002 Becton, Dickinson and Company Protease inhibitor sample collection system
7989158, Jun 14 2001 Sigma-Tau Industrie Farmaceutiche Riunite S.p.A. Solution containing carnitine for the storage and perfusion of organs awaiting transplantation
8007993, Jun 14 2001 Sigma—Tau Industrie Farmaceutiche Riunite, S.p.A. Method for storage and perfusion of organs using a solution comprising L-carnitine and isovaleryl L-carnitine
Patent Priority Assignee Title
4434160, Jul 11 1980 Leopold & Co. Chem. Pharm. Fabrik Gesellschaft M.B.H. Nutrient solution for complete parenteral feeding and for increased energy production
4731360, Aug 16 1985 Merck & Co., Inc. Acylcarnitines as absorption-enhancing agents for drug delivery through mucous membranes of the nasal, buccal, sublingual and vaginal compartments
4839159, Feb 08 1988 SIGMA-TAU PHARMACEUTICALS, INC Topical L-carnitine composition
4968714, Feb 21 1989 Bayer Aktiengesellschaft Fungicidal substituted 3-amino-2-pyrazolin-5-ones, compositions and use
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 05 1998Sigma-Tau Industrie Farmaceutiche Riunite S.p.A.(assignment on the face of the patent)
Date Maintenance Fee Events
Aug 16 2003M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 01 2007M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Sep 10 2007REM: Maintenance Fee Reminder Mailed.


Date Maintenance Schedule
Oct 05 20024 years fee payment window open
Apr 05 20036 months grace period start (w surcharge)
Oct 05 2003patent expiry (for year 4)
Oct 05 20052 years to revive unintentionally abandoned end. (for year 4)
Oct 05 20068 years fee payment window open
Apr 05 20076 months grace period start (w surcharge)
Oct 05 2007patent expiry (for year 8)
Oct 05 20092 years to revive unintentionally abandoned end. (for year 8)
Oct 05 201012 years fee payment window open
Apr 05 20116 months grace period start (w surcharge)
Oct 05 2011patent expiry (for year 12)
Oct 05 20132 years to revive unintentionally abandoned end. (for year 12)