The method utilizes high resolution lithography, mask aligning, and reactive ion etching. In particular, at least two binary amplitude masks are generated. A photoresist layer on an optical element substrate is exposed through the first mask and then etched. The process is then repeated for the second and subsequent masks to create a multistep configuration. The resulting optical element is highly efficient.
|
1. Method for making high-efficiency, multilevel, diffractive optical elements comprising:
generating at least one binary amplitude mask including multilevel information, the mask being configured to provide 2N levels where N is the number of masks; and utilizing the masks' information for constructing 2N levels in the optical element, the depths of the levels being related by a fixed ratio.
2. The method of
3. The method of
4. The method of
. 5. The method of
6. The method of
7. The method of
8. The method of
9. Method for making high-efficiency multilevel diffractive optical elements comprising:
making a master optical element according to the method of using the master optical element to emboss multiple replicated optical components.
10. The method of
11. Method for making a high efficiency, multi-level, diffractive optical element comprising:
providing a substrate including at least two initial levels; generating at least one binary amplitude mask including multi-level information; and utilizing the mask to double the number of levels in the
element. . A method for making high-efficiency, multilevel, diffractive optical elements comprising: choosing a desired phase profile for a wavelength λ; generating at least two binary amplitude masks including multi-level information; and utilizing said masks to fabricate a diffractive optical element having a number of levels greater than N+1 levels, but no more than 2N levels, where N is the number of masks, said levels approximating said desired phase profile for said wavelength λ in said diffractive optical element. 13. The method of replication process. 15. A method for making high-efficiency, multilevel, diffractive optical components comprising: positioning in a replicating apparatus a master generated from at least two binary amplitude masks including multi-level information chosen for a desired phase profile for a wavelength λ and having a number of levels greater than N+1 levels, but no more than 2N levels, where N is the number of masks, said levels in said master approximating said desired phase profile for said wavelength λ in said master; utilizing said master to replicate the optical components. 16. The method of claim 15 wherein said master is a copy of a second diffractive optical element generated from at least two binary amplitude masks including multi-level information and having a number of levels greater than N+1 levels, but no more than 2N levels. 17. The method of claim 16 wherein said copy is a metal copy. 18. A method for making high-efficiency, multilevel, diffractive optical elements comprising: generating at least two binary amplitude masks for a bandwidth including multi-level information; utilizing a first of said binary amplitude masks to fabricate a diffractive optical element having a diffraction efficiency for a wavelength λ within said bandwidth; and utilizing a second of said binary amplitude masks to increase said diffraction efficiency of said diffractive optical element at said wavelength λ by providing said diffractive optical element with a number of levels greater than N+1 levels, but no more than 2N levels, where N is the number of masks. 19. The method of claim 18 wherein said increased diffraction efficiency from utilizing two masks is at least about 50%. 20. The method of claim 18 wherein said step of utilizing a second of said binary amplitude masks further includes aligning said second of said binary amplitude masks with a pattern produced by said utilizing a first of said binary amplitude masks step. 21. The method of claim 20 wherein said step of utilizing a second of said binary amplitude masks further includes utilizing said second of said binary amplitude masks to provide an approximation of a continuous phase profile for a wavelength λ in said optical element from said multi-level information of said masks. 22. The method of claim 18 wherein at least one of said binary amplitude masks provides an etch depth of no more than π. 23. The method of claim 21 wherein said second of said binary amplitude masks provides an etch depth about half of an etch depth of said first of said binary amplitude masks. 24. The method of claim 18 wherein said optical element is used as a master for replicating optical components in plastic. 25. The method of claim 18 wherein said optical element is used as a master optical element which is coupled in metal and used for a replication process. 26. A method for making high-efficiency, multilevel, diffractive optical elements comprising: choosing a desired diffractive phase profile for a wavelength λ; generating at least two binary amplitude masks including multi-level information; utilizing said masks to fabricate a diffractive optical element having a number of levels greater than N+1, but no more than 2N levels, where N is the number of masks and where at least N+1 of said levels are used to construct said diffractive phase profile. 27. A method according to claim 26 wherein said optical element is used as a master for replicating optical components in plastic. 28. A method according to claim 26 wherein said optical element is used as a master optical element which is copied in metal and used for a replication process. 29. A method for making high-efficiency, multilevel, optical elements comprising: choosing a desired phase profile for a wavelength λ; generating N masks including multi-level information; and utilizing said masks to fabricate an optical element having a number of levels greater than N+1 levels, said levels approximating said desired phase profile for said wavelength λ in said optical element. 30. The method of claim 29 wherein said generating step comprises the step of generating said N masks with an electron beam pattern generator. 31. The method of claim 29 wherein said generating step comprises the steps of: defining a pattern to be drawn on said N masks on a computer; and producing said N masks on a pattern generator using said defined pattern from said defining step. 32. The method of claim 29 wherein said utilizing step further comprises the step of fabricating said optical element as a combined diffractive refractive lens. 33. The method of claim 29 wherein said optical element is used as a master for replicating optical components in plastic. 34. The method of claim 29 wherein said optical element is used as a master optical element which is copied in metal and used for a replication process. 35. The method of claim 29 wherein said N+1 levels are discrete levels. 36. The method of claim 29 wherein said masks are binary amplitude masks. 37. The method of claim 29 wherein said desired phase profile is an arbitrary phase profile. 38. The method of claim 37 wherein said arbitrary phase profile is a generalized asphere. 39. The method of claim 29 wherein said desired phase profile is a diffractive phase profile. 40. The method of claim 22 wherein said N masks contain information for at least three levels. 41. The method of claim 29 wherein said N masks are generated by lithographic pattern generators. 42. The method of claim 29 wherein said optical element is a lens. 43. The method of claim 29 wherein said optical element corrects for spherical aberration. 44. A method for making high-efficiency, multilevel, optical components comprising: positioning in a replicating apparatus a master generated from N masks including multi-level information chosen for a desired phase profile for a wavelength λ and having a number of levels greater than N+1 levels, said levels in said master approximating said desired phase profile for said wavelength λ in said master; and utilizing said master to replicate the optical components. 45. A method for making high-efficiency, multilevel, optical elements comprising: choosing a desired phase profile for a wavelength λ; generating N masks including multi-level information; and utilizing said masks to fabricate an optical element having a number of levels greater than N+1 levels but no more than 2N levels, said levels approximating said desired phase profile for said wavelength λ in said optical element. 46. A method for making high-efficiency, multilevel, optical components comprising: positioning in a replicating apparatus a master generated from N masks including multi-level information chosen for a desired phase profile for a wavelength λ and having a number of levels greater than N+1 levels, but no more than 2N levels, said levels in said master approximating said desired phase profile for said wavelength λ in said master; utilizing said master to replicate the optical components. |
This is a continuation of copending application Ser. No. 07/399,848, filed on Aug. 29, 1989, and issued on Oct. 20, 1992 as U.S. Pat. No. 5,161,059, which is a divisional of Ser. No. 07/099,307, filed Sep. 21, 1987, and issued on Jan. 23, 1990 as U.S. Pat. No. 4,895,790.
This invention relates to high-efficiency, on-axis, multilevel, diffractive optical elements. The high efficiency of these elements allows planar or spherical elements to be diffractively converted to generalized aspheres, and dispersive materials can be diffractively compensated to behave as achromatic materials over broad wavebands. The technique of this disclosure allows ready implementation of this mixed reflective, refractive and diffractive optics in real systems.
The ability to produce arbitrary phase profiles allows for an additional degree of freedom in designing optical systems. Many optical systems now incorporate, profile of FIG. 1b results in a diffraction efficiency of 40.5%, and the four-level profile of FIG. 1c results in an efficiency of 81%. For certain optical applications, such discrete phase structures need to achieve a diffraction efficiency of 95% or higher. FIG. 2 shows the diffraction efficiency as a function of the number of discrete phase levels. Eight phase levels achieve 95% efficiency.
The method of the invention accurately and reliably produces multilevel, on-axis, diffractive optical surfaces. Optical elements can be made for use at wavelengths ranging from the ultraviolet to the infrared. These multilevel structures are useful not only for monochromatic light, but also for systems operating with fractional bandwidths as large as 40%. The methods disclosed herein take advantage of technology developed for electronic circuit fabrication such as high resolution lithography, mask aligning, and reactive ion etching. The process for defining the phase profile to be constructed will now be discussed.
Collimated monochromatic light incident on a phase Fresnel zone plate (FIG. 1a) will be diffracted with the light being focused perfectly. The necessary phase profile can be expressed in the simple form ##EQU1## where λ is the wavelength, F the focal length, and φ is evaluated modulo 2π. The phase Fresnel zone plate is an interesting yet limited example of a profile. In general, it is desirable to define arbitrary diffractive phase profiles.
There exist numerous commercially available lens design programs. Many of these programs allow one to describe a general diffractive phase profile on a given surface. The phase profile is described by making an analogy to the optical recording of holographic optical elements. The wavelength and location in space of two coherent point sources are defined and the resulting interference pattern describes the diffractive phase profile. This process describes more general profiles than a simple zone plate, however, which is still a small subset of the possible profiles. In order to make the phase profiles span a much larger set of possibilities, an additional phase term ##EQU2## can be added onto the phase determined from the two point sources. For on-axis phase profiles, the two point sources must lie on the optical axis. Furthermore, if the locations of the two point sources are both set to infinity, then the effect of their interference is null and the phase profile is completely described by the general polynomial expansion of equation (2). One of these general diffractive phase profiles can therefore be placed on any surface of an optical system.
Lens design programs have optimization routines that treat the curvatures of surfaces, the thickness of elements, and the element spacings as variables. Likewise, if a diffractive phase profile is in the system, the optimization routine can treat the polynomial coefficients, anm, as variables. A lens optimization program will determine the optimum coefficients, anm, of the diffractive phase profile for any particular lens systems.
The diffractive phase profile determined by the lens design program and defined by equation (2) contains no information on, how to achieve high diffraction efficiency. Our approach is to take the optimized anm 's and from them define a set of binary amplitude masks. The algorithm for designing these masks is shown in Table 1.
The equation φ(x,y)=C, where C is a constant, describes an equiphase contour. Mask 1 describes the set of equiphase contours that are integer multiple of π. Mask (n=2,3 . . .) describes the set of equiphase contours that are integer multiples of π/2(n-1).
The area between the first two sequential equiphase boundaries is lithographically exposed. The areas between subsequent sequential equiphase boundaries alternate from not being exposed to being exposed. This process is repeated until the total pattern is drawn, covering the full optical aperture.
Table 1 also indicates the phase depth θ to which various lithographic mask patterns are etched. The relationship between phase depth and materials depth d is simply ##EQU3## where n is the refractive index of the optical material. Column 4 of Table 1 indicates the relationship between the number of phase levels k=2N and the number of masks N.
Column 5 indicates the achievable diffraction efficiency η. It is remarkable and an important point of this disclosure that with a mere four masks, 99% diffraction efficiency can be achieved. These binary amplitude masks will then be used in the actual construction of a highly efficient diffractive phase profile.
TABLE 1 |
______________________________________ |
Multimask Design Algorithm |
1 #STR1## |
Equi-phase Phase |
Mask Boundaries Etch # Phase |
# N (l = 0, ±l, ±2, . . . ) |
Depth θ |
Levels κ |
% eff · η |
______________________________________ |
1 φ(x,y) = (l + 1) 2 40.5 |
2 #STR2## 2 4 81.0 |
3 |
3 #STR3## 4 8 95.0 |
4 |
4 #STR4## 8 16 99.0 |
______________________________________ |
Three tools necessary for practicing the method of the present invention have been developed over the past ten years by the semiconductor industry. They include sub-micron lithography, ion etchers, and mask aligners. Lithographic pattern generators are capable of drawing binary amplitude masks with feature sizes of 0.1 μm and positioning the features to an even greater accuracy. Reactive ion etchers can etch a binary profile to depths of a few microns with an accuracy on the order of tens of angstroms. Mask aligners are used routinely to align two patterns with an accuracy of fractions of a micron. These are the key technological advances that make it possible to produce high quality diffractive phase profiles.
Electron beam pattern generators produce masks that have binary transmittance profiles. A thin layer of chromium on an optically flat quartz substrate is patterned by e-beam lithography. The input to the e-beam pattern generator is a file stored on a computer tape and properly formatted for the particular machine. For multilevel diffractive elements, the algorithm described in Table 1 defines the patterns to be drawn. The number of phase levels in the final diffractive element constructed from these masks is 2N, where N is the number of masks. For example, only four masks will produce 16 phase level resulting in an efficiency of 99%.
The binary amplitude masks produced from the pattern generator are then used in a serial fashion to construct the multilevel optical element. The fabrication process using the first mask is shown in FIG. 3. An optical substrate 10 such as SiO2 on which the diffractive profile is to reside is coated with a layer of chromium 12 and a layer of photoresist 14. An e-beam generated mask 16 is then placed over the substrate 10 and illuminated with a standard uv photoresist exposure system (not shown). The photoresist layer 14 is then developed resulting in a properly patterned layer of photoresist. The photoresist acts as an etch stop for the reactive ion etching.
Reactive ion etching (RIE) is a process in which an RF electric field excites a gas to produce ions. The ions react with the material of the substrate and etch away the surface at a controlled rate. The reactive ion etching process is anisotropic so that the vertical side walls of the discrete phase profile are retained. Typical RIE etch rates are on the order of 100 Angstroms to 200 Angstroms per minute. As an example, the required first level etch depth for a quartz substrate to be used at a wavelength of 6328 Angstroms is 7030 Angstroms. The necessary etch time is on the order of one-half hour and numerous elements can be etched simultaneously. After the pattern of the first mask has been etched into the substrate, any residual photoresist and chromium are stripped away.
The same procedure outlined above is then repeated on the optical substrate 10, only this time using a second mask and etching to one half the depth of the first etch. For the second and subsequent masks an additional complication arises. These masks have to be accurately aligned to the already existing pattern produced from an earlier etch. Fortunately, the problem of accurately aligning patterns has been solved by the integrated circuit industry. Commercially available mask aligners are capable of aligning two patterns to a fraction of a micron. This accuracy is sufficient to retain diffraction limited performance for the majority of the multilevel structures designed to operate in the visible and infrared.
The simplest example of a diffractive optical element is the Fresnel zone plate described by equation (1). The applicants herein have carried out the above procedure and produced, Wwith three masks, an eight level Fresnel zone plate. FIG. 4 is an SEM photograph of the element. The element was designed for use wth with a HeNe laser of wavelength 6328 Angstroms and is a quartz substrate with a diameter of two inches. The experimentally measured diffraction efficiency of the element was 92%. Other multilevel phase Fresnel zone plates have been made for use with GaAs laser diodes.
In addition to Fresnel zone plates, the methods of the invention are utilized in making refractive/diffractive combination optical elements. Fresnel zone plates are, in practice, useful for collimating a monochromatic point source of light. An aspheric conventional lens, can perform the same function at considerably higher cost. A spherical lens is significantly less expensive yet cannot achieve perfect collimation. It is, however, possible to take a spherical lens and calcuate from a lens design program the necessary diffractive profile that when etched into a surface of the spherical lens will result in perfect collimation.
FIGS. 5a and 5b illustrate aberration correction utilizing the optical elements according to the present invention. FIG. 5a shows an uncorrected spherical aberration pattern produced by a quartz lens when tested with a HeNe laser at 6328 Angstroms. Note that FIG. 5a shows a 150 micron wide point spread function exhibiting classical spherical aberration. FIG. 5b shows the results when the lens includes an eight-phase-level pattern etched into the back surface of a plano-spherically convex quartz lens. The eight-phase-level pattern made using three masks in effect turns a spherical lens into a near-diffraction-limited asphere. Note that the power of the six micron focal point shown in FIG. 5b is increased nearly two hundred-fold over a similar spot in FIG. 5a. Such an optical element will have both refractive and diffractive properties.
The disclosed technique can not only correct for spherical aberrations in imperfect optics but for chromatic aberrations as well. All optical materials are dispersive. Dispersion is an undesirable property that must be avoided in broadband optical systems. Generally this is done by balancing the dispersive property of two different optical materials. An achromatic lens is therefore usually a doublet or a triplet lens. This approach leads to expensive and bulky optics. With efficient diffractive optics as disclosed in this patent application chromatic balancing with multiple elements can be avoided altogether. The diffractive focal power of a combined diffractive refractive lens can be used to balance the chromatic dispersion of the conventional lens provided the ratio of the diffractive to refractive focal lengths at the center wavelength is ##EQU4## In Equation 3, nc is the index of refraction of the conventional material at the center wavelength, λc, and d is the dispersion constant of the material, i.e., the slope of the index of refraction vs. wavelength curve.
FIG. 6 shows this concept, The compensating dispersion is linearly proportional to the focal length of the diffractive component. Curve 20 represents the dispersion due to the bulk dielectric of the conventional lens and curve 22 to the dispersion of the diffractive component. The horizontal axis represents the wavelength bandwidth over which the compensation occurs and the vertical axis represents the optical power (1/F). Adding the optical powers of the refractive and diffractive components together results in curve 24. By satisfying Equation 3, the optical power (and therefore focal length) can be made constant over the wavelength band.
Balancing of the chromatic aberration can occur over a very large bandwidth. Its width clearly depends on the used wavelength, the system's application, and on the linearity of the chromaticity of the refractive lens component.
FIGS. 7a, b and c show a design comparison of an F/2 silicon lens in the 3-5 micron waveband. FIG. 7a shows the points spread function of a conventional spherical lens. FIG. 7b shows the point spread function of a conventional aspheric lens and FIG. 7c shows the diffraction limited operation when both spherical and chromatic aberration corrections are etched into the surface of a simple spherical lens. FIG. 8 shows a corrected silicon lens made by the multilevel process.
A particularly useful embodiment of the present invention is in semiconductor UV lithographic systems where a lack of good transmissive materials (UV grade silica is one of a few) makes conventional broadband chromatic correction nearly impossible. Even microlithography systems based on KrF eximer lasers are severly limited by the lack of suitable UV transmitting achromatic materials. At or below 2500 Angstroms, even fused silica is so dispersive that a few Angstroms bandwidth imposes intolerable chromatic and spherical aberrations. The multilevel structures of the present invention will improve dramatically the capabilities of equipment such as contact printers, projection and proximity wafer printers, step-and-repeaters, microscopes, mask pattern generators, and mask aligners, all of which are based on UV mercury lamp or UV eximer laser optics. The binary corrective patterns for UV lithographic lenses have periodicities and feature sizes that are far larger than the UV wavelength used. A typical projection printer lens may have minimum features in the needed binary pattern of 2-5 microns. Thus, it is feasible to fabricate UV binary lenses, taking into consideration materials and pattern resolution constraints.
A shift from λ=3500 Angstroms to λ=1900 Angstroms can double circuit density. Present efforts with KrF eximer laser technology are limited to 10-4 fractional bandwidths. With binary optics chromatic corrections the limits can be extended to 10-2. Therefore, the throughput can increase by a factor of 100 with additional benefits of reduced sensitivity to image speckle and dust. Another less obvious benefit of the reduced wavelength is a doubling of depth of focus. This doubling relaxes mechanical alignment tolerances in proximity printers and extends mask lifetimes.
With the technique described in this disclosure a
1) one hundred-fold increase in throughput of lithographically patterned circuitry may be possible;
2) shift into deep UV may increase circuit density by a factor of two; and
3) shift to deep UV will also relax proximity restraints in submicron circuit designs by increasing the depth of focus by as much as 75%. Semiconductor International, May 1987, page 49
All this is possible because of fundamental dielectric materials constraints in purely refractive optical systems are eliminated or relaxed by the diffractive techniques described in this disclosure. The techniques according to the invention can thus be used for etching diffractive profiles into a lens surface to effect chromatic and spherical aberration correction for UV lithographic systems.
FIG. 9 shows a lithographic exposure system to reach deep UV for resolving 0.25 micron features. An eximer laser or mercury lamp source 30 illuminates a binary optics column 32 including on the order of 5 or 6 optical elements having the multilevel structures of the invention. The binary optics column 32 replaces conventional optics columns known in prior art lithographic exposure systems. Such conventional columns include many more optical elements than the column 32.
It should be noted that, as in circuit fabrication process, one set of masks can be used repeatedly to produce a large number of diffractive optical elements. Also, these diffractive surface profiles can be copied in metal using electroplating techniques. The metal master can then be used to emboss in plastic a large number of replicated optical components. The metal mastering and embossing replication is an established art.
Swanson, Gary J., Veldkamp, Wilfrid B.
Patent | Priority | Assignee | Title |
10203522, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
10209535, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices and methods for ocular refractive error |
10241244, | Jul 29 2016 | Lumentum Operations LLC | Thin film total internal reflection diffraction grating for single polarization or dual polarization |
10466507, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices and methods for ocular refractive error |
10520754, | Oct 17 2012 | Brien Holden Vision Institute Limited | Lenses, devices, systems and methods for refractive error |
10534198, | Oct 17 2012 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
10802183, | Jul 29 2016 | Lumentum Operations LLC | Thin film total internal reflection diffraction grating for single polarization or dual polarization |
10838235, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices, and methods for ocular refractive error |
10948743, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
11320672, | Oct 07 2012 | Brien Holden Vision Institute Limited | Lenses, devices, systems and methods for refractive error |
11333903, | Oct 17 2012 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
11644688, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices and methods for ocular refractive error |
11809024, | Apr 05 2012 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
6617188, | Mar 08 2000 | NTU Ventures PTE Ltd | Quantum well intermixing |
6657208, | Jun 22 2000 | Koninklijke Philips Electronics N V | Method of forming optical images, mask for use in this method, method of manufacturing a device using this method, and apparatus for carrying out this method |
6914723, | Nov 09 2001 | XRADIA, INC | Reflective lithography mask inspection tool based on achromatic Fresnel optics |
6917472, | Nov 09 2001 | CARL ZEISS X-RAY MICROSCOPY, INC | Achromatic fresnel optics for ultraviolet and x-ray radiation |
7379151, | Jul 15 2005 | Canon Kabushiki Kaisha | Exposure apparatus comprising cleaning apparatus for cleaning mask with laser beam |
9195074, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices and methods for ocular refractive error |
9201250, | Oct 17 2012 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
9535263, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
9541773, | Oct 17 2012 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
9575334, | Apr 05 2012 | Brien Holden Vision Institute | Lenses, devices and methods of ocular refractive error |
9759930, | Oct 17 2012 | Brien Holden Vision Institute | Lenses, devices, systems and methods for refractive error |
Patent | Priority | Assignee | Title |
3586412, | |||
3726732, | |||
4155627, | Feb 02 1976 | RCA Corporation | Color diffractive subtractive filter master recording comprising a plurality of superposed two-level relief patterns on the surface of a substrate |
4252891, | Jan 21 1976 | Method of manufacturing embossed articles of preset configuration | |
4327171, | May 28 1976 | Method of making an intra-ocular lens-mount element | |
4414059, | Dec 09 1982 | International Business Machines Corporation | Far UV patterning of resist materials |
4434224, | Feb 06 1981 | Nippon Telegraph & Telephone Corporation | Method of pattern formation |
4564584, | Dec 30 1983 | IBM Corporation; International Business Machines Corporation | Photoresist lift-off process for fabricating semiconductor devices |
4579812, | Feb 03 1984 | RPX Corporation | Process for forming slots of different types in self-aligned relationship using a latent image mask |
4632898, | Apr 15 1985 | Eastman Kodak Company | Process for fabricating glass tooling |
4690880, | Jul 20 1984 | Canon Kabushiki Kaisha | Pattern forming method |
4724043, | Sep 04 1984 | International Business Machines Corporation | Process for forming a master mold for optical storage disks |
4737447, | Nov 11 1983 | Pioneer Electronic Corporation | Process for producing micro Fresnel lens |
4810621, | Nov 18 1985 | HUGHES DANBURY OPTICAL SYSTEMS, INC | Contact lithographic fabrication of patterns on large optics |
4895790, | Sep 21 1987 | Massachusetts Institute of Technology | High-efficiency, multilevel, diffractive optical elements |
4936665, | Oct 13 1987 | HIGH RESOLUTION OPTICS CORPORATION | High resolution imagery systems and methods |
GB2129157, | |||
JP209123, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 07 1995 | Massachusetts Institute of Technology | (assignment on the face of the patent) | / | |||
Mar 30 2007 | Digital Optics Corporation | TESSERA NORTH AMERICA, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 024697 | /0727 | |
Jul 01 2011 | TESSERA NORTH AMERICA, INC | DigitalOptics Corporation East | CORRECTIVE ASSIGNMENT TO CORRECT THE PATENT NO 7817833 PREVIOUSLY RECORDED AT REEL: 027768 FRAME: 0541 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 036733 | /0896 | |
Jul 01 2011 | TESSERA NORTH AMERICA, INC | DigitalOptics Corporation East | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 027768 | /0541 |
Date | Maintenance Fee Events |
Feb 12 2001 | M181: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Feb 12 2001 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 08 2005 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Jun 08 2005 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Feb 03 2010 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Oct 26 2002 | 4 years fee payment window open |
Apr 26 2003 | 6 months grace period start (w surcharge) |
Oct 26 2003 | patent expiry (for year 4) |
Oct 26 2005 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 26 2006 | 8 years fee payment window open |
Apr 26 2007 | 6 months grace period start (w surcharge) |
Oct 26 2007 | patent expiry (for year 8) |
Oct 26 2009 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 26 2010 | 12 years fee payment window open |
Apr 26 2011 | 6 months grace period start (w surcharge) |
Oct 26 2011 | patent expiry (for year 12) |
Oct 26 2013 | 2 years to revive unintentionally abandoned end. (for year 12) |