A method and system for high-speed, high-resolution, 3-D imaging of an object including an anamorphic magnification and field lens system to deliver the light reflected from the object to a small area position detector having a position-sensing direction. Preferably, an acousto-optic deflector together with associated lens elements scans a beam of modulated laser light across the object to produce a telecentric, flat field scan. The deflector has a feedback loop to enable uniform illumination of the object. The light scattered from the object is collected by a telecentric receiver lens. A combined spatial and polarization filtering plane preferably in the form of a programmable mask is provided to control the polarization and acceptance angles of the collected light. A reduction or focusing lens is positioned immediately behind the filtering plane and is utilized as a telescope objective. The lens system includes a negative cylinder lens having a relatively large focal length and a field lens having a relatively small focal length. The cylinder lens and the reduction lens magnify the image in the position sensing direction of the detector and the field lens delivers the magnified light to the detector. The detector is a photodetector such as a lateral effect photodiode or a rectangular lateral effect detector. A pre-amplifier provides a pair of electrical signals which are utilized by signal processing circuitry to compute the centroid of the light spot.
|
2. An imaging system for the high speed, high-resolution 3-D imaging of an object at a vision station to develop dimensional information associated with the object, the system including: a source for scanning a beam of controlled light in a scanning direction at the surface of the object at a first predetermined angle to generate a corresponding reflected light signal; a first set of optical components for creating a relatively small focused spot of light from the reflected light signal, the set of optical components including first and second lenses for receiving the reflected light signal at a second angle and for filtering the received light signal; measuring means, including a small area position detector having a detector area and having a position-sensing direction substantially orthogonal to the scanning direction for measuring the amount of radiant energy in the reflected light signal and producing at least one electrical signal proportional to the measurement; and signal processing means for computing a centroid value for the reflected light signal from the at least one electrical signal, wherein the improvement comprises:
an anamorphic magnification and field lens system for converting the focused spot of light into an enlarged elongated spot of light, the lens system including a third lens for magnifying the focused spot of light in the position-sensing direction of the position detector and a fourth lens having a relatively short focal length for reducing the focused spot of light in the scanning direction to form the elongated spot of light, wherein a position detector comprises a single detector element including the detector area of less than 20 mm2 and having a relatively small capacitance and dark current and the lens system uniformly imaging the entire elongated spot of light to a discrete extended region of the detector area, to obtain a relatively high signal to noise ratio, the extended region being elongated in a scan dimension substantially orthogonal to the position-sensing direction, wherein spatial noise resulting from variations in sensitivity from point to point in the detector area are averaged.
1. A method for the high-speed, high-resolution, 3-D imaging of an object at a vision station to develop dimensional information associated with the object, the method including the steps of: scanning a beam of controlled light in a scanning direction at the surface of the object at a first predetermined angle to generate a corresponding reflected light signal; receiving said reflected light signal at a second angle with a set of optical components for creating a relatively small focused spot of light from the reflected light signal, the set of optical components including first and second lenses; filtering the received light signal with the set of optical components; measuring the amount of radiant energy in the reflected light signal with a small area position detector having a detector area and having a position-sensing direction substantially orthogonal to the scanning direction and producing at least one electrical signal proportional to the measurement; and computing a centroid value for the reflected light signal from the at least one electrical signal; wherein the improvement comprises:
converting the focused spot of light into an enlarged, elongated spot of light and imaging the filtered light signal to the small area position detector with an anamorphic magnification and field lens system, including a third lens for magnifying the focused spot of light in the position-sensing direction of the position detector and a fourth lens having a relatively short focal length for reducing the focused spot of light in the scanning direction to form the elongated spot of light, wherein the position detector comprises a single detector element including the detector area of less than 20 mm2 and having a relatively small capacitance and dark current and wherein the entire elongated spot of light is uniformly imaged to a discrete extended region of the detector area, to obtain a relatively high signal to noise ratio, the extended region being elongated in a scan dimension substantially orthogonal to the position-sensing direction, wherein spatial noise resulting from variations in sensitivity from point to point in the detector area are averaged.
15. A method for the high-speed, high-resolution, 3-D imaging of a relatively small object at a vision station to develop dimensional information associated with the object, the method including the steps of: scanning a beam of controlled modulated light in a scanning direction at the surface of the object at a first predetermined angle to generate a corresponding reflected light signal; receiving said reflected light signal at a second angle with a set of optical components for creating a relatively small focused spot of light from the reflected light signal, the set of optical components including first and second lenses, filtering the received light signal with the set of optical components; measuring the amount of radiant energy in the reflected light signal with a small area position detector having a detector area and having a position-sensing direction substantially orthogonal to the scanning direction and producing at least one electrical signal proportional to the measurement; demodulating the at least one electrical signal; and computing a centroid value for the reflected light signal from the at least one demodulated signal; wherein the improvement comprises:
converting the focused spot of light into an enlarged, elongated spot of light and imaging the filtered light signal to the position detector with an anamorphic magnification and field lens system, including a third lens for magnifying the focused spot of light in the position-sensing direction of the position detector and a fourth lens having a relatively short focal length for reducing the focused spot of light in the scanning direction to form the elongated spot of light, wherein the position detector comprises a single detector element including the detector area of less than 20 mm2 and having a relatively small capacitance and dark current and wherein the entire elongated spot of light is uniformly imaged to a discrete extended region of the detector area, to obtain a relatively high signal to noise ratio, the extended region being elongated in a scan dimension substantially orthogonal to the position-sensing direction, wherein spatial noise resulting from variations in sensitivity from point to point in the detector area are averaged.
3. The invention as claimed in
4. The invention as claimed in
5. The invention as claimed in
7. The invention as claimed in
8. The invention as claimed in
9. The invention as claimed in
10. The invention as claimed in
11. The invention as claimed in
12. The invention as claimed in
13. The invention as claimed in
14. The invention as claimed in
16. The invention as claimed in
17. The invention as claimed in
18. The invention as claimed in
19. The invention as claimed in
20. The invention as claimed in
21. An imaging system for the high-speed, high-resolution 3-D imaging of a small object at a vision station to develop dimensional information associated with the object, the system comprising: a flying spot laser scanner including a light deflector scanning a beam of controlled light in a scanning direction at the surface of the object at a first predetermined triangulation angle of less than 20 degrees to generate a corresponding reflect light signal; a first set of optical components for creating a relatively small focused spot of light from the reflected light signal, the first set of optical components including first and second lenses for receiving the reflected light signal at a second angle and for filtering the received light signal; measuring means, including a single, small area position detector having a detector area and having a position-sensing direction substantially orthogonal to the sensing direction for measuring the amount of radiant energy int he reflected light signal and producing at least one electrical signal proportional to the measurement; signal processing means for computing a centroid value for the reflected light signal from the at least one electrical signal; and an anamorphic magnification and field lens system for converting the focused spot of light into an enlarged elongated spot of light, the lens system including a third lens for magnifying the focused spot of light in the position-sensing direction of the position detector and a fourth lens having a relatively short focal length for reducing the focused spot of light in the scanning direction to form the elongated spot of light, wherein the position detector comprises a single detector element including the detector are of less than 20 mm2 and having a relatively small capacitance and dark current, the lens system uniformly imaging the entire elongated spot of light to a discrete extended region of the detector area, to obtain a relatively high signal to noise ratio, the extended region being elongated in a scan dimension substantially orthogonal to the position-sensing direction, wherein spatial noise resulting from variations in sensitivity from point to point in the detector area are averaged. 22. A method for the high-speed, high-resolution, 3-D imaging of an object (20) at a vision station to develop dimensional information associated with the object, the method including the steps of: scanning a beam of controlled light in a scanning direction at the surface (18) of the object at a first predetermined angle to generate a corresponding reflected light signal; receiving said reflected light signal at a second angle with a set of optical components for creating a relatively small focused spot of light from the reflected light signal, the set of optical components including first and second lenses (40 and 42); filtering the received light signal with the set of optical components; measuring the amount of radiant energy in the reflected light signal with a small area position detector (53) having a detector area and having a position-sensing direction substantially orthogonal to the scanning direction and producing at least one electrical signal proportional to the measurement; and computing a centroid value for the reflected light signal from the at least one electrical signal wherein the improvement comprises:
converting the focused spot of light into an enlarged, elongated spot of light and imaging the filtered light signal to the small area position detector with an anamorphic magnification and field lens system (48), including a third lens (50) for magnifying the focused spot of light in the position-sensing direction of the position detector and a fourth lens (52) having a relatively short focal length for reducing the focused spot of light in the scanning direction to form the elongated spot of light, wherein the position detector comprises a single detector element including the detector area of less than 1 cm2 and having a low capacitance and dark current and wherein the entire elongated spot of light is uniformly imaged to a discrete extended region of the detector area to obtain a relatively high signal to noise ratio, the extended region being elongated in a scan dimension substantially orthogonal to the position-sensing direction wherein spatial noise resulting from variations in sensitivity from point to point in the detector area are
averaged.23. The method of an anamorphic magnification and field lens system (48) for converting the focused spot of light into an elongated spot of light, the lens system including a third lens (50) for magnifying the focused spot of light in the position-sensing direction of the position detector and a fourth lens (52) having a relatively short focal length for reducing the focused spot of light in the scanning direction to form the elongated spot of light, wherein the position detector comprises a single detector element including the detector area of less than 1 cm2 and having a relatively small capacitance and dark current and the lens system uniformly imaging the entire elongated spot of light to a discrete extended region of the detector area to obtain a relatively high signal to noise ratio, the extended region being elongated in a scan dimension substantially orthogonal to the position sensing direction, wherein spatial noise resulting from variations in sensitivity from point to point in the detector area are averaged.25. The imaging system of claim 24 wherein the source is a flying spot laser scanner including a light deflector (14) for scanning the beam of controlled light in the scanning direction at the surface of the object at a first predetermined triangulation angle to generate the corresponding reflected light signal.26. The imaging system of claim 24 wherein the first predetermined triangulation angle is less than 20 degrees. . The invention as claimed in claim 22 or claim 24 wherein the fourth lens has a focal length in the range of 20 to 30 mm.28. The invention as claimed in claim 27 wherein the fourth lens has a speed in the range of f/0.5 to f/0.7.29. The invention as claimed in claim 27 wherein the third lens is a negative cylinder lens having a long focal length.30. The invention as claimed in claim 29 wherein the third lens has a focal length in the range of -300 to -1,000 mm.31. The invention as claimed in claim 27 wherein the fourth lens is a double convex field lens.32. The invention as claimed in claim 27 wherein the second and third lens cooperate to magnify the received light signal in the position-sensing direction of the position detector. The invention as claimed in claim 22 or claim 24 wherein the set of optical components includes a programmable mask (44) correlated to a height profile of the object for filtering the received light signal.34. The invention as claimed in claim 31 wherein the first lens has a first focal length and wherein the first lens is adapted to be located a distance approximately equal to the first focal length from the object.35. The invention as claimed in claim 34 wherein the mask is located a distance from the first lens approximately equal to the first focal length.36. The invention as claimed in claim 22 or claim 24 wherein the set of optical components includes a mask (44) having a fixed aperture (46) for filtering the received light signal.37. The invention as claimed in claim 22 or claim 24 wherein the detector area is less than 20 mm2.38. The invention as claimed in claim 22 or claim 23 or claim 24 wherein the beam of controlled light is a laser scanning beam.39. The invention as claimed in claim 38 wherein the laser scanning beam is provided by an acousto-optic deflector (14).40. The invention as claimed in claim 39 wherein the light deflector further provides a D.C. beam being measured to produce a control signal proportional to the measurement, the control signal being utilized to control the light deflector so that the light deflector illuminates the object in a substantially uniform fashion.41. The invention as claimed in claim 22 or claim 23 or claim 24 wherein the field of view of the received light signal is translated across the position detector by translation means to expand the range of dimensional information associated with the object.42. The invention as claimed in claim 39 wherein the translation means includes a tracking mirror (54) for reflecting the received light signal and a controller (56) for controlling movement of the tracking mirror. 43. A method for the high-speed, high-resolution, 3-D imaging of an object at a vision station to develop dimensional information associated with the object including scanning a beam of controlled light in a scanning direction at the surface of the object in a manner to create a reflected beam of light; spacial filtering the reflected beam of light; delivering the reflected beam of light to a position sensitive detector having a position-sensing direction and an area sufficiently small to keep the capacitance down so the speed is up; and using said position sensitive detector with an anamorphic lens system for providing an elongated line of light across a discrete extended region which is elongated orthogonally to the position sensitive direction of the detector, whereby to achieve the high-speed and high-resolution.44. The method of claim 43 wherein the position sensitive detector is a photodiode. |
This application is related to U.S. Patent Application entitled "METHOD AND SYSTEM FOR HIGH-SPEED, 3-D IMAGING OF AN OBJECT AT A VISION STATION", U.S. Ser. No. 052,841 filed May 21, 1987 now U.S. Pat. No. 4,796,997 and having the same Assignee as the present application. The entire disclosure of U.S. Ser. No. 052,841 is hereby expressly incorporated by reference.
This invention relates to a method and system for imaging an object at a vision station to develop dimensional information associated with the object and, in particular to a method and system for the high-speed, high resolution imaging of an object at a vision station to develop dimensional information associated with the object by projecting a beam of controlled light at the object.
A high-speed, high resolution (i.e. approximately 1 mil and finer) 3-D laser scanning system for inspecting miniature objects such as circuit board components, solder, leads and pins, wires, machine tool inserts, etc., can greatly improve the capabilities of machine vision systems. In fact, most problems in vision are 3-D in nature and two-dimensional problems are rarely found.
Several methods have been used to acquire 3-D data: time of flight, phase detection, autofocus, passive stereo, texture gradients, or triangulation. The latter approach is well suited for high resolution imaging and is perhaps the most well known technique.
In the general scanning triangulation method a laser beam is scanned across the object to be inspected with a deflector and the diffusely scattered light is collected and imaged onto a position sensitive detector The scanner can be a rotating polygon, galvanometer, resonant scanner, holographic deflector, or acousto-optic deflector Likewise, the position sensitive detector can be a linear or area array sensor, a lateral effect photodiode, a bi-cell, or an electro-optic position sensing device. Sometimes, a pair of position detectors are used to reduce shadowing. With linear arrays or area cameras there is severe trade off between shadows, light sensitivity and field of view.
For obtaining very high speed and low light sensitivity, the position sensing system described in the above-noted patent application is preferred However, if it is not required to detect very low light levels, lateral effect photodiodes can be used at data rates up to about 1 MHz and are inexpensive, commercially available devices.
Often triangulation-based methods and systems have used the concept of "structural light". As described in U.S. Pat. No. 4,105,925 such a method involves projecting a line or multiple lines onto the surface of the object to be inspected and detecting the displacement of the projected line (or multiple lines) with a video camera. Such systems are now available off-the-shelf and are relatively inexpensive.
The primary disadvantages of such a system are the very low speeds (typically 10,000 points/second) and, in the case of multiple projected lines in a single image, ambiguous interpretations of the data result from overlap of adjacent stripes and multiple scattered light between stripes. Both disadvantages can be overcome by replacing (1) the line projector with a flying spot scanner and (2) the video camera with one of several types of position sensitive detectors, as illustrated in U.S. Pat. No. 4,375,921.
Conventional triangulation by scanners or structured light systems often utilize conventional imaging lenses (i.e., reduction lenses, 35 mm lenses, or cylinder lenses designed for long line detectors) to deliver light to large area position sensitive detectors such as area 2is.canning scanning (i.e. 1st order) light and the DC beam (0th order).
The DC beam is sensed by a photodetector 26 of the loop 24. The resulting electrical signal is used by an automatic gain control circuit 28 (i.e., including an amplifier and an integrator) of the loop 24 to attenuate or amplify the RF power applied to the A-O deflector 14 at a balanced mixer. The resulting intensity distribution is flat to about 1% which provides a significant advantage for greyscale inspection and a modest dynamic range improvement for 3-D inspection.
There is generally indicated at 38 an optical system for use in optically processing the light signal reflected from the object 20. The optical system 38 includes a set of optical components, including a telecentric receiver lens 40 to collect scattered light from the object 20 at a position approximately one focal length from the object 20. A reduction focusing lens 42 operates as a telescope objective. The lenses 40 and 42 operates as a preferred conjugate. The reduction lens 42 can be interchanged to accommodate various reduction and magnification ratios. The reduction lens 42 is placed directly behind a mask 44.
The mask 44 is located at one focal length from the receiver lens 40 and functions as a telecentric stop to provide a spatial and polarization filtering plane. In one embodiment, the mask forms a rectangular aperture (i.e. spatial filter) positioned at the intermediate spatial filtering plane to reject background noise (i.e. stray light) which arises from secondary reflections from objects outside of the desired instantaneous field of view of the system 10. The mask 44 may be a fixed aperture 46 or electromechanical shutter, or, preferably, is a liquid crystal, binary, spatial light modulator or valve which is dynamically reconfigured under software control. Such a configuration is useful for inspection of very shiny objects (reflowed solder, wire bond, loops, pin grids, etc.) which are in close proximity from which multiple reflections will be created. Consequently, both the angle (through stop size) and polarization of the input light can be digitally controlled prior to delivery to a detector.
If desired, the spatial filter or strip can be programmed in a chosen pattern of opaque and transmissive patterns correlated with the height profile of the object to be detected. For example, a height measurement of shiny pins placed on a shiny background will be more reliable if only a narrow strip corresponding to the height range over which properly positioned pins is viewed. Multiple reflections may produce a signal return which is significantly larger than the return produced by useful light. If properly placed, the position of the pin will be reported If defective, no pin will be found.
When a conventional triangulation-based scanner is used (i.e. a solid state device having no moving parts but an area detector) the aperture 46 of the mask 44 is no larger than necessary for detection of a specified height range, but is still preferably programmable.
The optical system 38 further includes an anamorphic magnification and field lens system, generally indicated at 48. The lens systems 48 includes a pair of anamorphic elements or lenses 50 and 52. The lens 50 is a very long focal length, precision negative cylinder lens to magnify the image in the position-sensing direction. The focal length of the lens 50 is typically between about -300 mm and -1000 mm and may have a focal length in the range of -200 to -1200 mm.
The lens 52 is a custom short focal length cylinder lens having a speed of about f/0.5 or f/0.6 and may have a speed in the range of f/0.4 to f/0.7 which is used to expand the field of view and light gathering capability of the system 38. The lens 52 has a preferred focal length of about 25 mm and may have a focal length in the range of 20 to 30 mm.
FIG. 2a illustrates the profile of a "step object" wherein several positions on the stop object are labelled.
FIG. 2b illustrates the labelled positions of FIG. 2a as seen in a large area detector as a laser spot is scanned along the object. This represents the prior art.
FIG. 2c shows the same labelled positions of FIG. 2a, and also shows the effect of using the pair of lenses 50 and 52. The lenses 50 and 52 convert a small focused spot of light into a smooth, enlarged rectangular or elliptical spot which uniformly illuminates an extended region of a single position sensitive detector 53 and averages spatial noise resulting from variations in sensitivity from point to point.
The combination of the lenses 42 and 50 serve to provide magnification in the position sensing dimension. The magnification in the position sensing direction is usually greater than 1:1, thereby yielding microscopic magnification.
The lens 52 serves as an anamorphic field lens into which the scan line is imaged. The length of the imaged scan line can be almost as large as the lens 52 (i.e. -40 mm) but is clearly much larger than the dimension of the detector 53. Hence, it serves as the reduction optic. The lens 52 can be fabricated in the form of a double convex singlet, a plane convex "hemi-cylinder" or with a gradient index optic having a radial gradient or a combination thereof. A double convex design, however, is preferable.
In order to extend the depth measurement range of the system 10, a translating tracking mirror 54 is included and can be placed at any of several convenient positions provided it is behind the mask 44 to maintain telecentricity. Alternatively, a small angle deflector can be used but will deviate rather than translate the light beam.
The translating mirror 54 is mounted on a precision miniature translation stage which is displaced under software control via a control or controller 56 which, in turn, is coupled to a signal processing circuit 58.
The mirror 54 is useful because it can significantly extend the measurement range of the system 10. For example, the position sensor or detector at any instant can discriminate about 256 levels or height. Several inspection tasks may demand in extension of this height range. For example, it may be desirable to measure the height of solder on pads which requires depth sensitivity of about 0.0004 inch. On the other hand, it may be desirable also to measure the position and geometry of component leads which are to be aligned with the pads. The leads may extend upward about 0.25" or more to the body of the component. This exceeds the linear measurement range of lateral photodiodes. Also, wire loops are very thin and require high spatial and depth resolution for an accurate measurement. However, these wires may also extend up to 0.25" and a sensor which is to accommodate this entire range at the required 0.0002" inch height and spatial resolution is not practical.
The translating mirror 54 alleviates this problem. The only requirement is that the lens 40 receive the light. The lens 40 can be expected to provide an image size (in the position sensing dimension) which is somewhat larger than the detector 53. Displacing the mirror 54 has the effect of translating the total field of view (constrained by the lens 40) across the detector 53 so that many more levels of height can be sensed while still utilizing the small area detector 53.
Preferably, a single detector element is utilized as a small area position sensitive detector 53 of the system 10. The system 10 can obtain quite accurate z (i.e. height) measurements with a lateral effect photodiode (LEP), the internal resistance of which provides the depth sensing and centroid computation capability through attenuation of signal currents. The position detector 53 is preferably a lateral effect photodiode like the Si-Tek 2L2 or 2L4 or a special rectangular lateral effect detector. These position sensitive devices have substantial speed and depth range advantages over linear arrays. Bi-cells or digital masks (i.e. optical encoder) are not preferred.
The detector 53 is coupled to a pre-amplifier 58 which, in turn, is coupled to the signal processing circuit 58 which computes the centroid of the light spot thereby allowing for non-uniform and directional intensity distributions.
The signal processing circuit or unit 58 expands/compresses the variable data in order to obtain the proper Z value, grey scale information and special values indicating incorrect height information. The signal processing circuit 58 is described in greater detail in the above-noted application.
Although the system 10 is designed to support a scanning mechanism with no moving parts, it can also be used in the synchronized scanning geometry approach to provide additional benefits, namely increasing resolution using a very small point detector and spatial averaging over the detector.
The above-described imaging method and system present numerous advantages. For example, imaging can be performed at high resolution and at quasi-video rates to obtain full 3-D information. A large scan line (i.e. field of view) is achieved as well as a high signal-to-noise ratio, height sensitivity and light gathering capability and low capacitance and "dark current". Also, such a method and system offer the potential of accurate, quasi-video frame rate depth sensing at low cost.
While the best mode for carrying out the invention has herein been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for carrying out the invention as defined by the following claims.
Svetkoff, Donald J., Doss, Brian L.
Patent | Priority | Assignee | Title |
6441973, | Aug 16 1996 | GE HEALTHCARE NIAGARA INC | Digital imaging system for assays in well plates, gels and blots |
6483345, | Jun 23 1999 | CIENA LUXEMBOURG S A R L ; Ciena Corporation | High speed level shift circuit for low voltage output |
6501554, | Jun 20 2000 | ISMECA SEMICONDUCTOR HOLDING SA | 3D scanner and method for measuring heights and angles of manufactured parts |
6522777, | Jul 08 1998 | ISMECA SEMICONDUCTOR HOLDING SA | Combined 3D- and 2D-scanning machine-vision system and method |
6563653, | Aug 16 1996 | GE HEALTHCARE NIAGARA INC | Digital imaging system for assays in well plates, gels and blots |
6603103, | Jul 08 1998 | ISMECA SEMICONDUCTOR HOLDING SA | Circuit for machine-vision system |
6624899, | Jun 29 2000 | Schmitt Measurement Systems, Inc. | Triangulation displacement sensor |
6741363, | Dec 01 1998 | Carl Zeiss Optotechnik GmbH | Method and an apparatus for the optical detection of a contrast line |
6870611, | Jul 26 2001 | Orbotech Ltd | Electrical circuit conductor inspection |
6956963, | Jul 08 1998 | ISMECA SEMICONDUCTOR HOLDING SA | Imaging for a machine-vision system |
7006212, | Oct 04 2000 | Orbotech Ltd. | Electrical circuit conductor inspection |
7142301, | Jul 08 1999 | CEDAR LANE TECHNOLOGIES INC | Method and apparatus for adjusting illumination angle |
7202965, | Jul 16 2002 | Method of using printed forms to transmit the information necessary to create electronic forms | |
7353954, | Jul 08 1998 | LEMAIRE,CHARLES A | Tray flipper and method for parts inspection |
7557920, | Jul 08 1999 | CEDAR LANE TECHNOLOGIES INC | Method and apparatus for auto-adjusting illumination |
7719670, | Jul 08 1998 | Charles A., Lemaire | Parts manipulation, inspection, and replacement system and method |
7773209, | Jul 08 1998 | Charles A., Lemaire | Method and apparatus for parts manipulation, inspection, and replacement |
8056700, | Jul 08 1998 | Charles A., Lemaire | Tray flipper, tray, and method for parts inspection |
8286780, | Apr 08 2008 | Charles A., Lemaire | Parts manipulation, inspection, and replacement system and method |
8314938, | Jul 30 2010 | Canon Kabushiki Kaisha | Method and apparatus for measuring surface profile of an object |
8324529, | Nov 14 2007 | HAMAMATSU PHOTONICS K K | Laser machining device with a converged laser beam and laser machining method |
8408379, | Jul 08 1998 | Charles A., Lemaire | Parts manipulation, inspection, and replacement |
8575514, | Nov 14 2007 | Hamamatsu Photonics K.K. | Light irradiation device and light irradiation method irradiating converged light with an object |
Patent | Priority | Assignee | Title |
4299491, | Dec 11 1979 | United Technologies Corporation | Noncontact optical gauging system |
4473750, | Jul 25 1980 | Hitachi, Ltd. | Three-dimensional shape measuring device |
4534650, | Apr 27 1981 | Inria Institut National de Recherche en Informatique et en Automatique | Device for the determination of the position of points on the surface of a body |
4627734, | Jun 30 1983 | National Research Council of Canada | Three dimensional imaging method and device |
4643578, | Mar 04 1985 | RVSI Inspection LLC | Arrangement for scanned 3-D measurement |
4732485, | Apr 17 1985 | OLYMPUS OPTICAL CO , LTD | Optical surface profile measuring device |
4758093, | Jul 11 1986 | ROBOTIC VISION SYSTEMS, INC , 425 RABRO DR , EAST, HAUPPAUGE, NY 11788 | Apparatus and method for 3-D measurement using holographic scanning |
4796997, | May 27 1986 | GSI Lumonics Corporation | Method and system for high-speed, 3-D imaging of an object at a vision station |
4798469, | Oct 02 1985 | Noncontact gage system utilizing reflected light | |
JP117102, | |||
JP169822, |
Date | Maintenance Fee Events |
Dec 17 2002 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Feb 08 2003 | 4 years fee payment window open |
Aug 08 2003 | 6 months grace period start (w surcharge) |
Feb 08 2004 | patent expiry (for year 4) |
Feb 08 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 08 2007 | 8 years fee payment window open |
Aug 08 2007 | 6 months grace period start (w surcharge) |
Feb 08 2008 | patent expiry (for year 8) |
Feb 08 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 08 2011 | 12 years fee payment window open |
Aug 08 2011 | 6 months grace period start (w surcharge) |
Feb 08 2012 | patent expiry (for year 12) |
Feb 08 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |