A container of blow-moulded oriented thermoplastic material includes a base structure comprising a convex annular surface (which may be divided into a plurality of feet (118) by radial webs (112) and a central re-entrant portion (116). In blow-moulding the container, a moulded preform is enclosed within a mould heated, and stretched such that its bottom surface impinges upon a projecting surface of the mould bottom corresponding to the topmost surface (158) of the re-entrant portion. After blow-moulding, the material of the re-entrant portion (116) remains unoriented and relatively thick in comparison to the material of the remainder of the base. The unoriented material in the base is substantially confined to the re-entrant portion (116) which itself is strengthened by its relatively thick walls and the base thus exhibits improved creep and stress cracking properties.
|
29. A container of blow-moulded oriented thermoplastic material, said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation, formed by rotating a generally convex curve extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define a bottom surface having a central re-entrant portion; the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion; and wherein said bottom surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall and an inner wall portion extending from said outer, convex wall portion towards the center of the base portion; wherein said unoriented, relatively thick material is confined substantially to said re-entrant portion and wherein the diameter of said re-entrant portion is in the range of 5% to 30% of the overall diameter of said side wall.
2. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; wherein the diameter of said re-entrant portion is in the range 5% to 30% of the overall diameter of said base portion.
1. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the upper most regions of said convex, inner wall portions; and wherein said convex, inner wall portions converge to form a cusp at the center of said base portion, and said unoriented, relatively thick material is confined substantially to the point of said cusp.
17. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly form said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion, and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein said base portion is provided with a plurality of generally convex stabilizing feet spaced around said annular, convex surface and extending downwardly from the outer wall portions thereof; and wherein the diameter of said re-entrant portion is in the range 5% to 30% of the overall diameter of said base portion.
16. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly form said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein said base portion is provided with a plurality of generally convex stabilizing feet spaced around said annular, convex surface and extending downwardly from the outer wall portions thereof; and wherein said convex, inner wall portions converge to form a cusp at the center of said base and said unoriented, relatively thick material is confined substantially to the point of said cusp.
11. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein said base portion includes a plurality of radial webs extending from the bottom of said body portion toward the centre of said base portion and including means dividing said convex annular surface into a plurality of feet spaced around the circumference of said base portion; and wherein the diameter of said re-entrant portion is in the range 5% to 30% of the overall diameter of said base portion.
4. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion enclosing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein the upper ends of said upwardly extending, convex inner wall portions are closed by a topmost surface extending therebetween, and wherein said unoriented relatively thick material is confined substantially to said topmost surface and the adjacent uppermost ends of said inner wall portions; and wherein the diameter of the re-entrant portion is in the range 10% to 20% of the overall diameter of said base portion.
7. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein sad annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein the upper ends of said upwardly extending, convex inner wall portions form a truncated cusp having a closed topmost surface, said unoriented relatively thick material being confined substantially to said topmost surface of said truncated cusp and the adjacent uppermost ends of said inner wall portions; and wherein the diameter of the re-entrant portion is in the range 10% to 20% of the overall diameter of said base portion.
10. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein said base portion includes a plurality of radial webs extending from the bottom of said body portion towards the centre of said base portion and including means dividing said convex annular surface into a plurality of feet spaced around the circumference of said base portion; and wherein said convex, inner wall portions converge to form a cusp at the center of said base portion, and said unoriented, relatively thick material is confined substantially to the point of said cusp.
19. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, therein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein said base portion is provided with a plurality of generally convex stabilizing feet spaced around said annular, convex surface and extending downwardly from the outer wall portion thereof; and wherein the upper ends of said upwardly extending, convex inner wall portions are closed by a topmost surface extending therebetween, and wherein said unoriented relatively thick material is confined substantially to said topmost surface and the adjacent upper ends of said inner wall portions, and wherein the diameter of said re-entrant portion is in the range 10% to 20% of the overall diameter of said base portion.
14. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said lower wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein said base portion is provided with a plurality of generally convex stabilizing feet spaced around said annular, convex surface and extending downwardly from the outer wall portions thereof; wherein the upper ends of said upwardly extending, convex inner wall portions are closed by a topmost surface extending therebetween, and wherein said unoriented relatively thick material is confined substantially to said topmost surface and the adjacent upper ends of said inner wall portions; and wherein the diameter of the re-entrant portion is in the range 10% to 20% of the overall diameter of said base portion.
23. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding; said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein said base portion is provided with a plurality of generally convex stabilizing feet spaced around said annular, convex surface and extending downwardly from the outer wall portions thereof; and wherein the upper ends of said upwardly extending inner wall portions forms a truncated cusp having a closed topmost surface, said unoriented relatively thick material being confined substantially to said topmost surface of said truncated cusp and the adjacent upper ends of said inner wall portions; and wherein the diameter of the re-entrant portion is in the range 10% to 20% of the overall diameter of said base portion.
15. A container of blow-moulded oriented thermoplastic material of the type formed by enclosing a moulded preform in a mould corresponding to the shape of the container, heating the preform and stretching it to the full length of the mould so that its bottom surface impinges upon the bottom surface of the mould prior to blow-moulding, said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall wherein said base portion is defined by a figure of rotation formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define an annular, convex surface having a central re-entrant portion, the material in the vicinity of the center of said re-entrant portion being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion and wherein said annular, convex surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall to a lowermost point and an inner wall portion extending upwardly from said lowermost point towards the center of the base portion; and wherein said inner wall portions are generally convex, and said unoriented, relatively thick material is confined substantially to the uppermost regions of said convex, inner wall portions; and wherein said base portion includes a plurality of radial webs extending from the bottom of said body portion towards the centre of said base portion and including means dividing said convex annular surface into a plurality of feet spaced around the circumference of said base portions; and wherein the diameter of the re-entrant portion is in the range of 10% to 20% of the overall diameter of said base portion; and wherein the upper ends of said upwardly extending, convex inner wall portions form a truncated cusp having a closed topmost surface said unoriented relatively thick material being confined substantially to said topmost surface of said truncated cusp and the adjacent upper ends of said inner wall portions.
3. A container as claimed in
8. A container as claimed in any one of
9. A container as claimed in any one of
12. A container as claimed in
13. A container as claimed in
18. A container as claimed in
20. A container as claimed in any one of
21. A container as claimed in any one of
22. A container as claimed in any one of
24. A container as claimed in any one of
25. A container as claimed in any one of
26. A container as claimed in any one of
27. A container as claimed in any one of
28. A container as claimed in any one of
30. The container of
diameter of said side wall.33. The container of claim 32 wherein the diameter of said unoriented relatively thick material is in the range of 10% to 20% of the overall diameter of said side wall.34. The container of claim 32 wherein said base portion is provided with a plurality of generally convex stabilizing feet spaced around said base portion and extending downwardly from the outer wall portion thereof.35. A container of blow-moulded oriented thermoplastic material, said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation, formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define a bottom surface; the material in the vicinity of the center of said bottom surface being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion; and wherein said bottom surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall and an inner wall portion extending from said outer, convex wall portion towards the center of said bottom surface; wherein said unoriented, relatively thick material is confined substantially to the center of said bottom surface and wherein the thickness of the material in the range of up to 30% of the overall diameter of said side wall is from 1.2 times to 10 times the thickness of the material of the remainder of the base portion.36. The container of claim 35 wherein the thickness of the material in the range of up to 30% of the overall diameter of said sidewall is from 1.95 times to 7.14 times the thickness of the material of the remainder of the base portion.37. A container of blow-moulded oriented thermoplastic material, said container comprising a generally cylindrical body portion with a central longitudinal axis, said body portion having a side wall, a radius and a base portion closing the bottom end of said side wall, wherein said base portion is defined by a figure of rotation, formed by rotating a generally convex curve, extending from the bottom end of said side wall to the central longitudinal axis of the body portion, about said axis so as to define a bottom surface; the material in the vicinity of the center of said bottom surface being unoriented and relatively thick in comparison with the oriented material of the remainder of the base portion; and wherein said bottom surface comprises, in transverse cross-section, first and second downwardly convex portions each comprising an outer, convex wall portion extending downwardly from said side wall and an inner wall portion extending from said outer, convex wall portion towards the center of said bottom surface; wherein said unoriented, relatively thick material is confined substantially to the center of said bottom surface and wherein the thickness of the material in the range of up to 20% of the overall diameter of said side wall is from 1.2 times to 10 times the thickness of the material of the remainder of the base portion.38. The container of claim 37 wherein the thickness of the material in the range of up to 20% of the overall diameter of said sidewall is from 1.95 times to 7.14 times the thickness of the material of the remainder of the base portion.39. The container as in any of claims 1-7, 10-19, 23, 29, 30, 35, 36, or 37-38 under internal pressure provided by contents in the container.40. The container of claim 39 wherein said contents comprise a liquid.41. The container of claim 40 wherein said liquid is a drink.42. The container of claim 41 wherein said drink is a carbonated drink. |
FIG. 16 shows a conventional plastics container for comparison with FIGS. 14 and 15.areas other than the center of the bottom surface and are useful in many applications. It has been found, however, that they may not be sufficiently strong to prevent their re-entrant portions being blown out by the internal pressures generated by more highly pressurized liquids, especially in larger bottle sizes. This can be prevented by thickening the wall of the re-entrant portion, which may be accomplished by reintroducing an amount of unoriented material into the re-entrant portion.
This may be achieved simply by truncating the central cusp 18, as at dotted line 78 of FIG. 2. In this way the bottom of the preform, when stretched, contacts a projecting surface of the bottom of the mould so that a limited amount of relatively thick unoriented material is present around the centre of the base when the bottle is blown. This strengthens the re-entrant portion but will not materially affect the overall strength of the base so long as the unoriented material is restricted substantially to the re-entrant portion itself.
It has also been found that the shape and size of the re-entrant portion is important in obtaining a sufficiently strong structure. For example, by simply truncating the cusp 18 of FIG. 2 as described, the sides of the re-entrant portion diverge at a relatively large angle so that its resistance to deformation is limited. It is preferred, therefore to modify the shape of the re-entrant portion such as is shown in FIGS. 10 and 11.
The base of FIG. 10 comprises first and second downwardly convex portions 80, 82 as before. In this case, however, the re-entrant portion has been modified to take the form of a truncated cone 84 having relatively steep sides 86, 88 and closed by a substantially flat top surface 90. The remainder of the convex portions 80,82 may each comprise, for example, an arcuate bottom portion 92 and a straight line outer side wall 94. As illustrated, the base is further provided with peripheral stabilizing feet 96 spaced around its circumference.
The base of FIG. 11 comprises first and second convex portions 98, 100, somewhat similar to those of FIG. 9, and having its central re-entrant portion modified in a similar manner to that of FIG. 10 so as to define a flat-topped, truncated cone 102 extending upwardly from the points 104, 106. This base is further modified by the introduction of radial webs 108 extending from the base of the side walls 110 of the container to the base of the central truncated cone 102. These serve to further strengthen the base by dividing the annular surface defined by rotation of the convex portions 98, 100 into a plurality of segments.
As explained above, when moulding bases of FIGS. 10 and 11, the stretched preform impinges upon the projecting surface of the mould-bottom corresponding to the top surface of the truncated cones 84, 102 such that the material in the vicinity of this surface remains unoriented and relatively thick when the bottle is blown, such unoriented material being largely confined to the cones 84, 102 themselves.
A further advantage which arises from moulding a bottle in this shape is that the the area of unoriented relatively thick material contains and protects the gate area of the preform and provides a gradual transition between unoriented and oriented material is obtained and reduces stress on the transition between the unoriented and oriented material to prevent separation so that the weak points created by the abrupt transition observed in conventional bottles are eliminated. Thus, in the present case, the strength of the base will not be so greatly affected if the unoriented material does extend beyond the central truncated cone center of the bottom surface. This factor is particularly relevant to the enhanced resistance of the base to stress cracking.
FIGS. 12 and 13 show a particularly preferred embodiment of the invention somewhat similar to that of FIG. 11. As in FIG. 11, the base is divided into segments by radial webs 112 extending from the vertical side wall 114 of the bottle to the bottom of the central re-entrant portion 116, thereby defining a plurality of stabilizing feet 118. Each web 112 comprises a first straight line portion 120 extending downwardly and inwardly from point A to point B at an angle of 32° to the vertical, an arcuate portion 122 of radius R18 and centre 124 extending from point B to point C, and a second straight line portion 126 extending from point C to point D at an angle of 17° to the horizontal. In profile, the feet 118 each comprise a first arcuate portion 128 of radius R19 and centre 130 extending from point A to point E, a second arcuate portion 132 of radius R20 and centre 134 extending from point E to point F, and a straight line portion 136 extending upwardly and inwardly at an angle of 20° to the horizontal to meet the second straightline portion of the web 112 at point G. The feet 118 themselves preferably comprise generally planar lateral and bottom surfaces 138 and 140 and a curved outer surface 148.
The central re-entrant portion 116 is radiused into the web 112 at point D by an arcuate portion 150, radius R21 and centre 152, and the side walls thereof are defined by a further arcuate portion 154, radius R22 and centre 156. The upper end of the re-entrant portion is closed by a substantially flat surface 158. As is best seen in FIG. 13, the webs 112 define generally convex strips of material 160 such that the feet 118 are spaced from one another around the circumference of the base. As illustrated the base is provided with six feet 118.
Suitable dimensions for a two liter bottle as shown in FIGS. 12 and 13 are as follows: overall radius of base--53 mm; R18--60 mm; R19--40 mm; R20--5 mm; R21--10 mm; R22--10 mm. The top surface 158 of the re-entrant portion 116 is 10 mm in diameter and the re-entrant portion 116 itself is 7.5 mm deep. A one liter bottle might have a base radius of 44.3 mm with the other dimensions scaled accordingly.
In some cases, it may be preferable to replace the flat top surface 158 of the re-entrant portion 116 with an upwardly domed surface. The profile of the radial webs 112 may also be varied to comprise different combinations of arcuate and/or straight line portions.
The diameter of the re-entrant portion 116 should be to a range of 5% to 30% of the overall base diameter and preferably in the range 10% to 20% and the angle of divergence of the sidewalls of the re-entrant portion preferably less than 60°. Additionally, as previously stated, the unoriented material forming the walls of the re-entrant portion 116 is thicker than the walls of the remainder of the base and the ratio of the thicknesses of these walls should be in the range 1.2:1 to 10:1. Outside this range the base may be blown out due to internal pressure so that the thickness of the base as a whole would have to be increased, increasing the weight and cost of the bottle.
FIGS. 14 and 15 show bottles similar to that of FIGS. 12 and 13 which were subjected to comparative tests with a conventional one piece blow-moulded bottle as shown in FIG. 16. The test procedures and results are detailed below.
Polyethylene phthalate resin (I.V. 0.76, available from ICI Ltd) was injection moulded to form preforms of 36 grams for a 1 liter volume bottle and of 53 grams for a 2 liter volume bottle. The injection moulding machine was model XL225 sold by HUSKY Co with a mould for 32 pieces. The temperature for moulding was about 260°C to 280°C 1 liter volume bottles corresponding to the shape shown in FIG. 14 (Example 1) and 2 liter volume bottles corresponding to the shape shown in FIG. 15 (Example 2) were made from the above preforms under the following conditions:
Blow moulding machine: Corpoplast Co B-40
Blow moulding temperature: about 90°C
Blow moulding pressure: about 40 bar
Ten each of the bottles of Examples 1 and 2 were measured by the following methods. The results are shown as an average of ten bottles in Table 1.
(1) Thickness of the wall
The thickness of the walls of the portions 170 and 171 in FIG. 14 and of the portions 180 and 181 in FIG. 15 was measured by a micrometer after cutting the bottom
(2) Density
In order to know the degree of orientation, the portions or pieces where the wall thickness was measured were subject to measurement of their density by a density-gradient tube.
(3) Internal pressure test
Into the bottles, water was charged in an amount of 1 liter (Example 1) or 2 liters (Example 2) and sodium bicarbonate and citric acid were added in such an amount that the carbonic acid gas volume corresponds to 4 volumes. After the bottles were allowed to stand at 40°C for 24 hours, the degree of deformation of the bottom of the bottles was determined visually. The standards of the estimation of the deformation were the following A, B, and C:
A: Substantially no deformation
B: Deformation was observed but self-standing ability was kept
C: Significant deformation and impossibility of self standing
(4) Creep test
The same procedures as those of the internal pressure test were repeated, that is, the bottles were charged with water and kept at 4 volumes of the carbonic acid gas volume and allowed to stand at 40°C for 24 hours. Then, the increased volume of the bottles was determined in percent based on the original volume of the bottles.
2 liter volume bottles having the shape as shown in FIG. 16 were commercially obtained and measured by the same methods as those of Examples 1 and 2. The results are shown in Table 1.
TABLE 1 |
______________________________________ |
Comparative |
Example 1 Example 2 Example |
______________________________________ |
Weight of bottle |
36 53 57 |
(g) |
Volume of bottle |
1 2 2 |
(l) |
Wall thickness |
(mm) (measured |
portions) |
Re-entrant portion |
2.00(170) 2.05(180) 2.00(190) |
Adjacent portion |
0.28(171) 1.05(181) 2.32(191) |
Density at 23°C, |
50% |
relative humidity |
(g/cc) |
Re-entrant portion |
1.330(130)(170) |
1.330(140)(180) |
1.330(150) |
Adjacent portion |
1.350(131)(171) |
1.340(141)(181) |
1.330(151) |
Estimation of |
A B B |
Internal pressure |
test |
Creep (%) 2.8 3.8 6∅]. |
______________________________________ |
As seen in the above, it was found that the bottles of Examples 1 and 2 are not deformed and keep their self-standing ability even under a high internal pressure due to contents such as carbonated drinks. Moreover, in the bottles of Examples 1 and 2, even if the wall thickness of the portions 171 (in FIG. 14) and 181 (in FIG. 15) is smaller than that of the corresponding portion 191 (in FIG. 16) of the bottle of Comparative Example, the bottles of the Examples 1 and 2 have no problem of internal pressure deformation and stress cracking, which allows the bottle weight to be reduced. Further, the creep characteristics are superior in the bottles of Examples 1 and 2 to that of the Comparative Example.
By controlling the presence of unoriented material in the base structure and the thickness of the walls of the re-entrant portion, the present invention provides a one piece blow-moulded plastic container having materially improved creep and stress cracking properties when compared with existing one piece bottles, so allowing a significant reduction in the weight of the bottle and hence in production costs.
In addition, the preferred embodiment illustrated in FIGS. 12 and 13 provides a wider effective base diameter than existing bottles and is therefore more stable on filling lines during the bottling process. The webs 112 also help to brace the base against deformation and the general shape of the feet 118 is chosen to minimize the effects of the internal pressure exerted thereon. These features provide a base structure which is inherently resistant to deformation and which is further enhanced by the presence of the thickened re-entrant portion 116 as described herein.
Patent | Priority | Assignee | Title |
10035690, | Jan 06 2009 | CO2PAC LIMITED | Deformable container with hoop rings |
10118331, | Apr 07 2006 | CO2PAC LIMITED | System and method for forming a container having a grip region |
10189596, | Aug 15 2011 | CO2PAC LIMITED | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
10214407, | Oct 31 2010 | Graham Packaging Company, L.P. | Systems for cooling hot-filled containers |
10246238, | Aug 31 2000 | CO2PAC LIMITED | Plastic container having a deep-set invertible base and related methods |
10273072, | Sep 30 2002 | CO2 Pac Limited | Container structure for removal of vacuum pressure |
10315796, | Sep 30 2002 | CO2 Pac Limited | Pressure reinforced deformable plastic container with hoop rings |
10351325, | Sep 30 2002 | CO2 Pac Limited | Container structure for removal of vacuum pressure |
10501225, | Jul 30 2003 | CO2PAC LIMITED | Container handling system |
10661939, | Jul 30 2003 | CO2PAC LIMITED | Pressure reinforced plastic container and related method of processing a plastic container |
10836552, | Feb 09 2007 | CO2PAC LIMITED | Method of handling a plastic container having a moveable base |
11377286, | Sep 30 2002 | CO2 Pac Limited | Container structure for removal of vacuum pressure |
11377287, | Feb 09 2007 | CO2PAC LIMITED | Method of handling a plastic container having a moveable base |
11565866, | Feb 09 2007 | C02PAC Limited | Plastic container having a deep-set invertible base and related methods |
11565867, | Feb 09 2007 | C02PAC Limited | Method of handling a plastic container having a moveable base |
11731823, | Feb 09 2007 | CO2PAC LIMITED | Method of handling a plastic container having a moveable base |
11897656, | Feb 09 2007 | CO2PAC LIMITED | Plastic container having a movable base |
6569376, | Apr 13 2001 | AMCOR RIGID PACKAGING USA, LLC | Process for improving material thickness distribution within a molded bottle and bottle therefrom |
6612451, | Apr 19 2001 | Graham Packaging Company, L P | Multi-functional base for a plastic, wide-mouth, blow-molded container |
6634517, | Sep 17 2001 | CONSTAR INTERNATIONAL L L C ; Constar International LLC | Base for plastic container |
6672470, | Apr 13 2001 | Amcor Limited | Process for improving material thickness distribution within a molded bottle and a bottle therefrom |
6942116, | May 23 2003 | AMCOR RIGID PACKAGING USA, LLC | Container base structure responsive to vacuum related forces |
7051889, | Apr 03 2001 | Sidel | Thermoplastic container whereof the base comprises a cross-shaped impression |
7150372, | May 23 2003 | AMCOR RIGID PACKAGING USA, LLC | Container base structure responsive to vacuum related forces |
7451886, | May 23 2003 | AMCOR RIGID PACKAGING USA, LLC | Container base structure responsive to vacuum related forces |
7543713, | Apr 19 2001 | CO2PAC LIMITED | Multi-functional base for a plastic, wide-mouth, blow-molded container |
7574846, | Mar 11 2004 | CO2PAC LIMITED | Process and device for conveying odd-shaped containers |
7717282, | Aug 31 2000 | CO2 Pac Limited | Semi-rigid collapsible container |
7726106, | Jul 30 2003 | CO2PAC LIMITED | Container handling system |
7735304, | Jul 30 2003 | CO2PAC LIMITED | Container handling system |
7799264, | Mar 15 2006 | CO2PAC LIMITED | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
7900425, | Oct 14 2005 | CO2PAC LIMITED | Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein |
7926243, | Jan 06 2009 | CO2PAC LIMITED | Method and system for handling containers |
7980404, | Apr 19 2001 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
8011166, | Mar 11 2004 | CO2PAC LIMITED | System for conveying odd-shaped containers |
8017065, | Apr 07 2006 | CO2PAC LIMITED | System and method for forming a container having a grip region |
8047389, | Feb 26 2003 | CO2 Pac Limited | Semi-rigid collapsible container |
8075833, | Apr 15 2005 | CO2PAC LIMITED | Method and apparatus for manufacturing blow molded containers |
8096098, | Jan 06 2009 | CO2PAC LIMITED | Method and system for handling containers |
8127955, | Aug 31 2000 | CO2 Pac Limited | Container structure for removal of vacuum pressure |
8152010, | Sep 30 2002 | CO2 Pac Limited | Container structure for removal of vacuum pressure |
8162655, | Apr 07 2006 | CO2PAC LIMITED | System and method for forming a container having a grip region |
8171701, | Jan 06 2009 | CO2PAC LIMITED | Method and system for handling containers |
8235704, | Apr 15 2005 | CO2PAC LIMITED | Method and apparatus for manufacturing blow molded containers |
8276774, | May 23 2003 | AMCOR RIGID PACKAGING USA, LLC | Container base structure responsive to vacuum related forces |
8323555, | Apr 07 2006 | CO2PAC LIMITED | System and method for forming a container having a grip region |
8381496, | Apr 19 2001 | CO2PAC LIMITED | Method of hot-filling a plastic, wide-mouth, blow-molded container having a multi-functional base |
8381940, | Sep 30 2002 | CO2 Pac Limited | Pressure reinforced plastic container having a moveable pressure panel and related method of processing a plastic container |
8429880, | Jan 06 2009 | CO2PAC LIMITED | System for filling, capping, cooling and handling containers |
8485375, | Dec 21 2006 | SA DES EAUX MINERALES D EVIAN SAEME | Plastic bottle with a champagne base and production method thereof |
8529975, | Apr 19 2001 | CO2PAC LIMITED | Multi-functional base for a plastic, wide-mouth, blow-molded container |
8584879, | Aug 31 2000 | CO2PAC LIMITED | Plastic container having a deep-set invertible base and related methods |
8590729, | Mar 27 2008 | CONSTAR INTERNATIONAL L L C ; Constar International LLC | Container base having volume absorption panel |
8616395, | May 23 2003 | AMCOR RIGID PACKAGING USA, LLC | Hot-fill container having vacuum accommodating base and cylindrical portions |
8627944, | Jul 23 2008 | CO2PAC LIMITED | System, apparatus, and method for conveying a plurality of containers |
8636944, | Dec 08 2008 | CO2PAC LIMITED | Method of making plastic container having a deep-inset base |
8671653, | Jul 30 2003 | CO2PAC LIMITED | Container handling system |
8720163, | Sep 30 2002 | CO2 Pac Limited | System for processing a pressure reinforced plastic container |
8726616, | Oct 14 2005 | CO2PAC LIMITED | System and method for handling a container with a vacuum panel in the container body |
8794462, | Mar 15 2006 | CO2PAC LIMITED | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
8833579, | May 23 2003 | AMCOR RIGID PACKAGING USA, LLC | Container base structure responsive to vacuum related forces |
8839972, | Apr 19 2001 | CO2PAC LIMITED | Multi-functional base for a plastic, wide-mouth, blow-molded container |
8919587, | Oct 03 2011 | CO2PAC LIMITED | Plastic container with angular vacuum panel and method of same |
8962114, | Oct 30 2010 | CO2PAC LIMITED | Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof |
9022776, | Mar 15 2013 | Graham Packaging Company, L P | Deep grip mechanism within blow mold hanger and related methods and bottles |
9090363, | Jul 30 2003 | CO2PAC LIMITED | Container handling system |
9133006, | Oct 31 2010 | Graham Packaging Company, L P | Systems, methods, and apparatuses for cooling hot-filled containers |
9145223, | Aug 31 2000 | CO2 Pac Limited | Container structure for removal of vacuum pressure |
9150320, | Aug 15 2011 | CO2PAC LIMITED | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
9211968, | Sep 30 2002 | CO2 Pac Limited | Container structure for removal of vacuum pressure |
9346212, | Mar 15 2013 | Graham Packaging Company, L.P. | Deep grip mechanism within blow mold hanger and related methods and bottles |
9387971, | Sep 30 2002 | C02PAC Limited | Plastic container having a deep-set invertible base and related methods |
9394072, | May 23 2003 | AMCOR RIGID PACKAGING USA, LLC | Hot-fill container |
9522749, | Apr 19 2001 | CO2PAC LIMITED | Method of processing a plastic container including a multi-functional base |
9624018, | Sep 30 2002 | CO2 Pac Limited | Container structure for removal of vacuum pressure |
9688427, | Aug 31 2000 | CO2 Pac Limited | Method of hot-filling a plastic container having vertically folding vacuum panels |
9707711, | Apr 07 2006 | CO2PAC LIMITED | Container having outwardly blown, invertible deep-set grips |
9751679, | May 23 2003 | AMCOR RIGID PACKAGING USA, LLC | Vacuum absorbing bases for hot-fill containers |
9764873, | Oct 14 2005 | CO2PAC LIMITED | Repositionable base structure for a container |
9802730, | Sep 30 2002 | CO2 Pac Limited | Methods of compensating for vacuum pressure changes within a plastic container |
9878816, | Sep 30 2002 | CO2 PAC LTD | Systems for compensating for vacuum pressure changes within a plastic container |
9969517, | Sep 30 2002 | CO2PAC LIMITED | Systems and methods for handling plastic containers having a deep-set invertible base |
9993959, | Mar 15 2013 | Graham Packaging Company, L.P. | Deep grip mechanism for blow mold and related methods and bottles |
9994378, | Aug 15 2011 | CO2PAC LIMITED | Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof |
D476896, | Sep 17 2001 | CONSTAR INTERNATIONAL L L C ; Constar International LLC | Container base |
Patent | Priority | Assignee | Title |
3511401, | |||
3727783, | |||
3733309, | |||
3870181, | |||
3881621, | |||
3935955, | Feb 13 1975 | Continental Can Company, Inc. | Container bottom structure |
4231483, | Nov 10 1977 | Solvay & Cie. | Hollow article made of an oriented thermoplastic |
4247012, | Aug 13 1979 | Sewell Plastics, Inc. | Bottom structure for plastic container for pressurized fluids |
4249667, | Oct 25 1979 | CONTINENTAL PET TECHNOLOGIES, INC , A DELAWARE CORPORATION | Plastic container with a generally hemispherical bottom wall having hollow legs projecting therefrom |
4318489, | Jul 31 1980 | PepsiCo, Inc. | Plastic bottle |
4381061, | May 26 1981 | Alltrista Corporation | Non-paneling container |
4467929, | May 29 1980 | PLM AB, A CORP OF SWEDEN | Oriented plastic container |
4620639, | Nov 07 1978 | YOSHINO KOGYOSHO CO., LTD. | Synthetic resin thin-walled bottle |
4755404, | May 30 1986 | GRAHAM PACKAGING PET TECHNOLOGIES INC | Refillable polyester beverage bottle and preform for forming same |
EP2082, | |||
EP42132, | |||
FR2217219, | |||
FR2471921, | |||
GB2067160, | |||
WO8605462, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 16 1996 | North American Container, Inc. | (assignment on the face of the patent) | / | |||
Oct 11 1997 | Norderney Investments Limited | NORTH AMERICAN CONTAINER, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008753 | /0805 | |
Oct 07 2004 | NORTH AMERICAN CONTAINER, INC | NORTH AMERICAN CONTAINER, INC F K A NORTH AMERICAN CONTAINER OF MISSOURI, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015232 | /0798 |
Date | Maintenance Fee Events |
Feb 18 2004 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Feb 18 2004 | M1557: Surcharge, Petition to Accept Pymt After Exp, Unavoidable. |
Feb 18 2004 | PMFP: Petition Related to Maintenance Fees Filed. |
Apr 21 2004 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 21 2004 | PMFP: Petition Related to Maintenance Fees Filed. |
May 04 2004 | PMFG: Petition Related to Maintenance Fees Granted. |
Date | Maintenance Schedule |
Apr 04 2003 | 4 years fee payment window open |
Oct 04 2003 | 6 months grace period start (w surcharge) |
Apr 04 2004 | patent expiry (for year 4) |
Apr 04 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 04 2007 | 8 years fee payment window open |
Oct 04 2007 | 6 months grace period start (w surcharge) |
Apr 04 2008 | patent expiry (for year 8) |
Apr 04 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 04 2011 | 12 years fee payment window open |
Oct 04 2011 | 6 months grace period start (w surcharge) |
Apr 04 2012 | patent expiry (for year 12) |
Apr 04 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |