A seal assembly is provided which includes a gimbal-like structure permitting rotation of a mounting member relative to the housing. The rotation of the mounting member allows the seal member to align with an instrument being inserted therethrough. The seal assembly is adapted to be detachably mounted to a cannula assembly for use in endoscopic surgery.
|
1. A seal assembly which comprises:
(i) a housing having a passage defining a longitudinal axis and disposed between at least two open ends, (ii) a mounting member rotatably mounted within said housing, and (iii) a seal member at least partially disposed within said passage and mounted to said mounting member, said seal member having an aperture formed therein through which a surgical instrument may pass; wherein rotation of said mounting member relative to said housing angularly displaces said aperture of said seal member relative to said longitudinal axis.
13. A seal assembly which comprises:
(i) a housing having a passage defining a longitudinal axis and disposed between at least two open ends; (ii) a mounting member movably mounted within said housing; (iii) a seal member at least partially disposed within said passage and mounted to said mounting member, said seal member having an aperture formed therein through which a surgical instrument may pass; and (iv) a bellows structure extending from said mounting member and secured to said housing, said bellows structure ensuring a substantially fluid-tight seal between said mounting member and said housing, regardless of the relative position of said mounting member with respect to said housing; wherein movement of said mounting member relative to said housing displaces said aperture of said seal member relative to said longitudinal axis.
11. In combination:
(a) a cannula assembly which includes a cannula housing mounted at one end to a cannula, said cannula housing including a valve assembly disposed at least partially within said housing, said valve assembly being adapted to provide a fluid-tight seal; and (b) a seal assembly removably mounted with respect to said cannula assembly, said seal assembly including a seal assembly housing including mounting means for mounting to said cannula housing and having a passage defining a longitudinal axis and disposed between at least two open ends, a mounting member rotatably mounted within said seal assembly housing, and a seal member at least partially disposed within said passage and mounted to said mounting member, said seal member having an aperture formed therein through which a surgical instrument may pass; wherein rotation of said mounting member relative to said seal assembly housing angularly displaces said aperture of said seal member with respect to the longitudinal axis.
2. The seal assembly of
3. A seal assembly of
4. The seal assembly of
5. The seal assembly of
6. The seal assembly of
7. The seal assembly of
8. The seal assembly of
9. The seal assembly of
10. The seal assembly of
12. The combination of
14. A seal assembly according to
resilient material.17. A seal assembly according to claim 16, wherein said resilient material is polyisoprene.18. In combination: (a) a cannula assembly which includes a cannula housing mounted at one end to a cannula, said cannula housing including a valve assembly disposed at least partially within said housing, said valve assembly being adapted to provide a fluid-tight seal; (b) a seal assembly removably mounted with respect to said cannula assembly, said seal assembly including a seal assembly housing including mounting means for mounting to said cannula housing and having a passage defining a longitudinal axis and disposed between at least two open ends, a mounting member movably mounted within said seal assembly housing, and a seal member at least partially disposed within said passage and mounted to said mounting member, said seal member having an aperture formed therein through which a surgical instrument may pass; and (c) a bellows structure extending from said mounting member and secured to said seal assembly housing, said bellows structure ensuring a substantially fluid-tight seal between said mounting member and said seal assembly housing, regardless of the relative position of said mounting member with respect to said seal assembly housing; wherein movement of said mounting member relative to said seal assembly housing displaces said aperture of said seal member with respect to the longitudinal axis.19. A combination according to claim 18, wherein said mounting member is rotatably mounted within said housing. |
This is a continuation of application Ser. No. 08/317,416, filed on Oct. 3, 1994 which is a continuation of application Ser. No. 08/091,794, filed Jul. 14, 1993, both of which are abandoned.
1. Field of the Invention
This invention relates to seal systems which are adapted to allow the introduction of surgical instrumentation into a patient's body. In particular, the invention is applicable to a cannula assembly wherein a cannula housing includes or is adapted to receive a seal assembly to sealingly accommodate instruments of different diameters inserted through the seal assembly and cannula.
2. Description of the Related Art
In laparoscopic procedures surgery is performed in the interior of the abdomen through a small incision; in endoscopic procedures surgery is performed in any hollow viscus of the body through narrow tubes or cannula inserted through a small entrance incision in the skin. Laparoscopic and endoscopic procedures generally require that any instrumentation inserted into the body be sealed, i.e. provisions must be made to ensure that gases do not enter or exit the body through the incision as, for example, in surgical procedures in which the surgical region is insufflated. Moreover, laparoscopic and endoscopic procedures often require the surgeon to act on organs, tissues, and vessels far removed from the incision, thereby requiring that any instruments used in such procedures be relatively long and narrow.
For such procedures, the introduction of a tube into certain anatomical cavities such as the abdominal cavity is usually accomplished by use of a trocar assembly comprised of a cannula assembly and an obturator assembly. Since the cannula assembly provides a direct passage for surgical instrumentation from outside the patient's body to access internal organs and tissue, it is important that the cannula assembly maintain a relatively gas-tight interface between the abdominal cavity and the outside atmosphere. The cannula assembly thus generally includes a cannula attached to a cannula housing containing a seal assembly adapted to maintain a seal across the opening of the cannula housing.
Since surgical procedures in the abdominal cavity of the body require insufflating gases to raise the cavity wall away from vital organs, the procedure is usually initiated by use of a Verres needle through which a gas such as CO2 is introduced into the body cavity, thereby creating a pneumoperitoneum. Thereafter, the pointed obturator of the obturator assembly is inserted into the cannula assembly and used to puncture the abdominal wall. The gas provides a positive pressure which raises the inner body wall away from internal organs, thereby providing the surgeon with a region within which to operate and avoiding unnecessary contact with the organs by the instruments inserted through the cannula assembly. Following removal of the obturator assembly from the cannula assembly, laparoscopic or endoscopic surgical instruments may be inserted through the cannula assembly to perform surgery within the abdominal cavity.
Without the obturator assembly to block the flow of insufflation gas out from the cavity, other structure must be provided to maintain a relatively fluid-tight interface between the abdominal cavity and the outside atmosphere. Generally in the context of insufflatory surgical procedures, there are two sealing requirements for cannula assemblies. The first requirement is to provide a substantially fluid-tight seal when an instrument is not being introduced into or is not already present in the cannula. The second requirement is to provide a substantially fluid-tight seal when an instrument is being introduced into or is already present in the cannula. Additionally, as endoscopic and laparoscopic surgical procedures and techniques have advanced, it has become desirable to accommodate surgical instrumentation of varying outside diameters through a single cannula assembly in a given surgical procedure, thereby minimizing the number of cannulae required and facilitating efficiency in the surgical procedure.
To meet the first sealing requirement, various seals have been provided for maintaining the pneumoperitoneum in the cavity when no trocar or other surgical instrument is present in the cannula. For example, a pivotally mounted flapper valve may be provided which pivots open upon insertion of an instrument and pivots closed, under a spring bias, once the instrument is removed. Conventional flapper valves may also be manually opened by pivoting a lever provided on the exterior of the housing. An example of such a flapper valve is disclosed in U.S. Pat. No. 4,943,280 to Lander. Trumpet valves are also well known for use in sealing a cannula assembly in the absence of a surgical instrument.
U.S. Pat. No. 4,655,752 to Honkanen et al. discloses a cannula including a housing and first and second seal members. The first seal member is conically tapered towards the bottom of the housing and has a circular opening in its center, while the second seal member is cup-shaped. The second seal member includes at least one slit to allow for passage of instruments.
U.S. Pat. No. 4,929,235 to Merry et al. discloses a self-sealing catheter introducer having a sealing mechanism to prevent blood or fluid leakage that includes a planar sealing element having a slit, and a conical sealing element distal of said planar sealing element so that if the distal conical sealing element is moved distally it rests upon the planar sealing element, each sealing element being adapted to surround a tube.
U.S. Pat. Nos. 4,874,377 and 5,064,416 to Newgard et al. relate to a self-occluding intravascular cannula assembly in which an elastomeric valving member is positioned transversely to a housing and is peripherally compressed to cause displacement, distortion and/or rheological flow of the elastomeric material. A frustoconical dilator projection is provided which cooperates with the elastomeric valving member in moving the valving member to a non-occluding position.
U.S. Pat. No. 5,104,3838 to Shichman relates to a trocar adapter seal which is adapted to be associated with a cannula assembly and which advantageously reduces the diameter of the cannula assembly to accommodate instruments of smaller diameter. The trocar adapter seal may be removed from the cannula assembly so that the cannula assembly may once again accommodate instruments of larger diameter. WO 93/04717 to Mueller et al. describes a similar trocar adapter seal system in which a pair of seal adapter plates are slidably mounted to the cannula housing and may be selectively positioned transverse the cannula housing aperture for accommodating surgical instrumentation therethrough.
Cannula assemblies have also been developed which are provided with a series of resilient sealing elements having a central aperture, e.g., commonly assigned, co-pending applications Ser. No. 07/874,291 filed Apr. 24, 1992 and Ser. No. 07/873,416 filed Apr. 24, 1992. Upon insertion of an instrument, the sealing elements resiliently receive the instrument, while maintaining a seal around the instrument across a range of instrument diameters, e.g., 5 to 12 mm. Upon withdrawal of the instrument, a fluid-tight seal is provided by the internal sealing elements.
Although attempts have been made to provide a seal assembly as part of or for use in conjunction with a cannula assembly which maintains the integrity of the seal between the body cavity and the atmosphere outside the patient's body, seal systems provided to date have failed to address the full range of surgeons' needs, especially when it is desired to utilize different instruments having different diameters therethrough.
The present invention provides a seal assembly which will allow a surgeon to efficaciously utilize instruments of varying diameter in a surgical procedure. The seal assembly of the invention obviates the need for multiple adapters to accommodate instruments of varying diameter by providing an apertured resilient seal member which is mounted in a gimbal-like assembly, thereby facilitating alignment of the instrument with the aperture of the seal member.
In accordance with the present invention, a seal assembly is provided which includes a housing that defines a concave ring-like track on its inner face. The seal assembly further includes a mounting member to which a resilient seal member is mounted. The mounting member has a convexly oriented arcuate outer wall that is configured and dimensioned to ride within the ring-like track. An axial cylindrical guide wall is preferably associated with the mounting member to guide surgical instruments into alignment with the aperture of the seal member. A limiter ring is also preferably associated with the housing to limit the range of motion of the mounting member relative to the housing. In a preferred embodiment, the limiter ring limits the angular motion of the mounting member to between 20 to 25 degrees relative to the axis of the housing. Internal structure may also be provided within the housing to ensure a fluid tight seal distal to the resilient seal member, e.g., a flexible bellows member.
The resilient seal member of the invention is configured and dimensioned to provide a fluid-tight seal with instruments of varying diameter. In one embodiment, the resilient seal member is cone shaped and includes an aperture of approximately 4 mm diameter. The resilience of the material from which the seal member is fabricated, e.g., polyisoprene, allows the aperture to expand or stretch to accommodate instruments of greater diameter, e.g., up to 12 mm in diameter. Structure may also be provided adjacent the proximal side of the conical seal member, e.g., multi-lobed seal protector elements, to protect the resilient seal member from puncture or laceration as a surgical instrument aligns itself with the central aperture.
Preferably, the seal assembly of the invention is adapted to be associated with a cannula assembly. The cannula assembly typically includes a tubular cannula and a cannula housing within which is positioned a cannula seal assembly. The seal cannula assembly typically provides structure which is adapted to provide a fluid-tight seal in the absence of a surgical instrument. Suitable cannula seal assemblies include a spring loaded flapper valve, a trumpet valve, a duck bill valve, or the like. The seal assembly of the invention may be associated with the cannula housing by any suitable means, e.g., a bayonnet lock.
In use, the seal assembly of the invention may be associated with a cannula assembly at any point the surgeon desires flexibility in the instrument sizes he may utilize therethrough. Thus, for example, if the surgeon is utilizing a 12 mm cannula assembly in an endoscopic surgical procedure and determines that it would be advantageous to have the flexibility to use instruments ranging in size from 4 to 12 mm through that cannula assembly, the seal assembly of the invention may be secured to the cannula assembly. Thereafter, instruments ranging in diameter from 4 to 12 mm may be efficaciously introduced therethrough. The cylindrical guide wall guides the instrument toward the aperture of the resilient seal member. The mounting member rides within the ring-like track, angularly repositioning itself with respect to the housing in response to force exerted thereon by the instrument contacting a wall thereof.
The movement of the mounting member relative to the housing which is accommodated by the gimbal-like structure of the present invention also facilitates seal maintenance once an instrument is being used within the body cavity. In particular, as an instrument is manipulated, the resilient seal member transversely repositions itself through movement of the mounting member relative to the housing, thereby ensuring that the resilient seal member maintains a fluid-tight seal around the instrument shaft.
The foregoing features of the present invention will become more readily apparent and will be better understood by referring to the following detailed description of preferred embodiments of the invention, which are described hereinbelow with reference to the drawings wherein:
FIG. 1 is a side view, partially in section, of a seal assembly of the present invention mounted to a cannula assembly;
FIG. 2 is a side view of the assembly of FIG. 1 with the mounting member and associated structure in a second position; and
FIG. 3 is a sectional side view of a portion of the seal assembly of the invention.
The present invention contemplates the use of all types of endoscopic and laparoscopic surgical instruments therethrough including, but not limited to, clip appliers, surgical staplers, lasers, endoscopes, laparoscopes, forceps, photographic devices, graspers, dissectors, suturing devices, scissors, and the like. All of such devices are referred to herein as "instruments".
The seal assembly of the present invention, either alone or in combination with a seal system internal to a cannula assembly, provides a substantial seal between a body cavity of a patient and the outside atmosphere before, during and after insertion of an instrument through the cannula assembly. Moreover, the seal assembly of the present invention is capable of accommodating instruments of varying diameters, e.g., from 5 mm to 15 mm, by providing a gas tight seal with each instrument when inserted. The flexibility of the present seal assembly greatly facilitates endoscopic surgery where a variety of instruments having differing diameters are often needed during a single surgical procedure.
Referring to the drawings, in which like reference numerals identify identical or similar parts, FIGS. 1 and 2 illustrate seal assembly 10 mounted to cannula assembly 12. Cannula assembly 12 includes a cannula 14 and a cannula housing 16. Within cannula housing 16 is a distally directed duck bill valve 18 which tapers inward to a sealed configuration, as shown. The diameter of cannula 14 may vary, but typically ranges from 10 to 15 mm for use with the seal assembly 10 of the present invention.
Seal assembly 10 includes a housing 20 which defines an internal passage 22. Housing 20 typically has a substantially cylindrical configuration. A cylindrical guide wall 24 is positioned within passage and is mounted to mounting member 25. Guide wall 24 is fabricated from a rigid plastic material, e.g., ABS, and functions to guide an instrument inserted into passage 22 into alignment with an aperture 26 formed in conical seal member 28 (see FIG. 3). Seal member 28 is fabricated from a resilient material, e.g., polyisoprene or natural rubber, and aperture 26 is adapted to stretch to sealingly engage instruments of varying diameter, e.g., from 4 to 12 mm.
Mounting member 25 is fabricated from a rigid plastic, e.g., lexan, and has a convexly oriented arcuate outer wall 30 that is adapted to cooperate with a concave ring-like track 32 formed on an inner face of housing 20. The arcuate outer wall 30 of mounting member 25 is adapted to rotate within the corresponding ring-like track 32 of housing 20. Although the mounting member 25 is free to rotate around the longitudinal axis A of cannula assembly 12, the rotation of mounting member 25 relative to housing 20 which is of importance to the present invention is the rotation of mounting member 25 relative to the axis transverse to the longitudinal axis A. This rotation may be measured as an angle relative to the longitudinal axis of cannula assembly, as designated by angle "D" in FIG. 2. A lubricant may be provided between outer wall 30 and track 32 to facilitate such rotation. A limiter ring 34 is formed on housing 20 to limit the freedom of movement of mounting member 25 with respect to housing 20. Preferably, limiter ring 34 limits the rotation of mounting member 25 relative to housing 20 to an angular orientation, designated by "D" in FIG. 2, of up to about 25 degrees.
A bellows structure 36 is mounted to and extends distally from mounting member 25. Bellows 36 is fabricated from a resilient material, e.g., polyisoprene, and ensures a substantial fluid-tight seal within housing 20, regardless of the relative position of mounting member with respect to housing 20. A cylindrical protective wall 38 is provided interior of bellows structure 36 to protect bellows 36 from puncture or laceration as an instrument is inserted through housing 20, and to guide such instrument toward duckbill valve 18. As mounting member 25 rotates relative to housing 20, bellows 36 stretches at one side and compresses on the opposite side to accommodate such motion.
Seal assembly 10 may be joined to cannula assembly 12 in a variety of ways. In a preferred embodiment, housing 20 of seal assembly 10 and cannula housing 16 of cannula assembly 12 are adapted to detachably engage each other, e.g., through a bayonnet lock or like mechanical means. Other means of joining seal assembly 10 to cannula assembly 12 will be readily apparent to one of ordinary skill in the art.
Referring to FIG. 3, a seal protector 40 may be provided adjacent the proximal side of seal member 28. Seal protector 40 functions to prevent direct contact between the potentially sharp leading edge of a surgical instrument while facilitating the passage of the instrument through aperture 26. A preferred design for seal protector 40 includes a pair of members 40a, 40b having triangularly shaped sections 42 which define slits 44, the respective members 40a, 40b being positioned such that the slits 44 of the first member bisect the triangular sections 42 of the second member, and vice versa. The triangularly shaped sections 42 deflect and contact the seal member 28 as an instrument is passed therethrough, thereby protecting the seal member 28 from puncture/laceration. The seal protectors 40a, 40b described herein are described in more detail in copending, commonly assigned Ser. No. 07/950,205, the contents of which are hereby incorporated by reference.
In use, seal assembly 10 is mounted to cannula assembly 12. An instrument is inserted into seal assembly 10 through passage 22 and into cylindrical guide wall 24 in housing 20. If the axis of the instrument is not perfectly aligned with the axis A of the cannula assembly 12/seal assembly 10, then the surgical instrument will contact the interior of guide wall 24 and/or the wall of seal member 28. This contact causes mounting member 25 to rotate within housing 10, up to the angular limit of limiting ring 34, thereby bringing aperture 26 into alignment with the surgical instrument. The seal protector(s) 40 deflect as the instrument passes through seal member 28. Aperture 26 stretches to accommodate the instrument diameter, as necessary. The instrument passes further distally into the cannula housing 16, passing through duckbill valve 18 and cannula 14, into the body cavity. As the instrument passes distally, mounting member 25 is free to rotate further with respect to housing 20. In particular, if angle D is initially relatively large as the instrument passes through aperture 26, the angle D typically is typically reduced as the instrument passes further into the cannula 14 and/or body cavity. In addition, as the surgeon manipulates the instrument within the body cavity, mounting member 25 is free to rotate relative to housing 20, thereby allowing seal member 28 to maintain sealing engagement with the instrument passed therethrough.
While the invention has been particularly shown, and described with reference to the preferred embodiments, it will be understood by those skilled in the art that various modifications and changes in form and detail may be made therein without departing from the scope and spirit of the invention. Accordingly, modifications such as those suggested above, but not limited thereto, are to be considered within the scope of the invention.
Green, David T., Castro, Salvatore
Patent | Priority | Assignee | Title |
10039542, | Mar 06 2009 | Cilag GmbH International | Methods and devices for providing access into a body cavity |
10206701, | May 07 2010 | Ethicon LLC | Compound angle laparoscopic methods and devices |
10426516, | May 28 1997 | Covidien LP | Trocar seal system |
10470751, | Mar 06 2009 | Cilag GmbH International | Methods and devices for providing access into a body cavity |
10478219, | Oct 14 2005 | Applied Medical Resources Corporation | Surgical access port |
10799267, | Aug 25 2006 | TELEFLEX MEDICAL INCORPORATED | Caged floating seal assembly |
11064870, | Aug 11 2017 | Boston Scientific Medical Device Limited | Biopsy cap for use with endoscope |
11266394, | Mar 06 2009 | Cilag GmbH International | Methods and devices for providing access into a body cavity |
11504157, | Oct 14 2005 | Applied Medical Resources Corporation | Surgical access port |
6551282, | Feb 23 1998 | Covidien LP | Universal seal for use with endoscopic cannula |
6595946, | Feb 25 2000 | Tyco Healthcare Group LP | Valve assembly |
6663598, | May 17 2000 | Boston Scientific Scimed, Inc | Fluid seal for endoscope |
6702787, | May 02 1997 | Covidien LP | Trocar seal system |
6767340, | Dec 19 2000 | CITIBANK, N A | Sealing valve assembly for medical products |
6863661, | May 17 2000 | SciMed Life Systems, Inc. | Fluid seal for endoscope |
6908449, | Dec 19 2000 | CITIBANK, N A | Sealing valve assembly for medical products |
6908454, | Feb 15 2002 | TELEFLEX MEDICAL INCORPORATED | Anchoring assembly for a medical instrument |
6923783, | Feb 25 2000 | Tyco Healthcare Group LP | Valve assembly |
6942671, | Nov 06 2000 | Covidien LP | Surgical sealing apparatus |
7011314, | Apr 26 2002 | TELEFLEX MEDICAL INCORPORATED | Floating seal assembly for a trocar |
7169130, | Feb 23 1998 | Covidien LP | Universal seal for use with endoscopic cannula |
7214228, | Jan 14 2003 | Tunnel port apparatus | |
7217275, | Jan 14 2003 | Tunnel port apparatus with serial gas-check assembly | |
7244244, | May 28 1997 | Covidien LP | Trocar seal system |
7316699, | Feb 08 2002 | TELEFLEX MEDICAL INCORPORATED | Introducer assembly for medical instruments |
7537583, | May 17 2000 | Boston Scientific Scimed, Inc. | Fluid seal for endoscope |
7559918, | Feb 25 2000 | Tyco Healthcare Group LP | Valve assembly |
7582071, | Mar 28 2005 | Covidien LP | Introducer seal assembly |
7608082, | Jan 06 2005 | Covidien LP | Surgical seal for use in a surgical access apparatus |
7632250, | May 10 2002 | Covidien LP | Introducer seal assembly |
7645266, | May 17 2000 | Boston Scientific Scimed, Inc. | Fluid seal for endoscope |
7731695, | Aug 25 2006 | TELEFLEX MEDICAL INCORPORATED | Caged floating seal assembly |
7749198, | May 22 2007 | Covidien LP | Surgical portal apparatus with variable adjustment |
7798991, | Nov 14 2006 | KARL STORZ ENDOVISION, INC | Trocar and cannula assembly having variable opening sealing gland and related methods |
7837612, | Apr 08 2005 | Ethicon Endo-Surgery, Inc | Tissue suspension device |
7842013, | Jan 23 2004 | KARL STORZ ENDOVISION, INC | Trocar and cannula assembly having conical valve and related methods |
7850655, | Feb 25 2000 | Covidien LP | Valve assembly |
7896846, | May 02 1997 | Covidien LP | Trocar seal system |
7896847, | Mar 28 2005 | Covidien LP | Introducer seal assembly |
7918827, | Sep 25 2007 | Covidien LP | Seal assembly for surgical access device |
7938804, | Mar 30 2009 | Covidien LP | Surgical access apparatus with seal and closure valve assembly |
7951118, | May 10 2002 | Covidien LP | Introducer seal assembly |
7981086, | May 24 2007 | Covidien LP | Surgical access assembly with winepress seal |
8002934, | May 02 1997 | Covidien LP | Trocar seal system |
8007472, | Feb 23 1998 | Covidien LP | Universal seal for use with endoscopic cannula |
8012129, | Jun 25 2008 | Covidien LP | Surgical portal apparatus with waffle seal |
8025641, | Dec 18 2009 | Covidien LP | Powered variable seal diameter trocar employing a winepress mechanism |
8033995, | Jun 05 2009 | Cilag GmbH International | Inflatable retractor with insufflation and method |
8092430, | Mar 03 2008 | Covidien LP | Single port device with multi-lumen cap |
8118783, | Jan 30 2008 | Covidien LP | Access assembly with spherical valve |
8123682, | Apr 05 2004 | Covidien LP | Surgical hand access apparatus |
8133174, | May 30 2007 | Covidien LP | Self constricting orifice seal |
8137267, | Apr 08 2009 | Cilag GmbH International | Retractor with flexible sleeve |
8152774, | Feb 25 2000 | Covidien LP | Valve assembly |
8156934, | Sep 21 2006 | TRODEK LTD | Device for securing airway tubing to a patient |
8192405, | May 02 1997 | Covidien LP | Trocar seal system |
8206357, | Mar 26 2009 | Covidien LP | Articulating surgical portal apparatus with spring |
8226553, | Mar 31 2009 | Cilag GmbH International | Access device with insert |
8231525, | Jan 29 2004 | Boston Scientific Scimed, Inc. | Endoscope channel cap |
8235947, | Mar 28 2005 | Covidien LP | Introducer seal assembly |
8241209, | Jun 05 2009 | Cilag GmbH International | Active seal components |
8257251, | Apr 08 2009 | Cilag GmbH International | Methods and devices for providing access into a body cavity |
8257316, | May 22 2007 | Covidien LP | Surgical portal apparatus with variable adjustment |
8267898, | May 02 1997 | Covidien LP | Trocar seal system |
8328844, | Apr 05 2004 | Covidien LP | Surgical hand access apparatus |
8343041, | May 19 2008 | Boston Scientific Scimed, Inc | Integrated locking device with passive sealing |
8353824, | Mar 31 2009 | Cilag GmbH International | Access method with insert |
8357085, | Mar 31 2009 | Cilag GmbH International | Devices and methods for providing access into a body cavity |
8361109, | Jun 05 2009 | Cilag GmbH International | Multi-planar obturator with foldable retractor |
8388521, | May 19 2008 | Boston Scientific Scimed, Inc | Integrated locking device with active sealing |
8409086, | Dec 18 2009 | Covidien LP | Surgical portal with rotating seal |
8414485, | Mar 03 2008 | Covidien LP | Single port device with multi-lumen cap |
8419635, | Apr 08 2009 | Cilag GmbH International | Surgical access device having removable and replaceable components |
8430851, | Oct 14 2005 | Applied Medical Resources Corporation | Surgical access port |
8454563, | Oct 09 2009 | KARL STORZ ENDOVISION, INC | Trocar and cannula assembly having improved conical valve, and methods related thereto |
8465422, | Jun 05 2009 | Cilag GmbH International | Retractor with integrated wound closure |
8475490, | Jun 05 2009 | Cilag GmbH International | Methods and devices for providing access through tissue to a surgical site |
8480570, | Feb 12 2007 | Boston Scientific Scimed, Inc | Endoscope cap |
8485971, | Apr 05 2004 | Covidien LP | Surgical hand access apparatus |
8517995, | Apr 08 2005 | Ethicon Endo-Surgery, Inc. | Access device |
8545450, | Apr 08 2005 | Ethicon Endo-Surgery, Inc | Multi-port laparoscopic access device |
8551048, | Nov 06 2000 | Covidien LP | Surgical sealing apparatus |
8562592, | May 07 2010 | Ethicon Endo-Surgery, Inc | Compound angle laparoscopic methods and devices |
8579860, | Jan 30 2008 | Covidien LP | Access assembly with spherical valve |
8579870, | Dec 19 2000 | CITIBANK, N A | Sealing valve assembly for medical products |
8652034, | Oct 04 2011 | Warsaw Orthopedic, Inc. | Surgical instrument stabilizer and method |
8702657, | May 02 1997 | Covidien LP | Trocar seal system |
8715165, | May 17 2000 | Boston Scientific Scimed, Inc. | Fluid seal for endoscope |
8753264, | May 17 2000 | Boston Scientific Scimed, Inc. | Fluid seal for endoscope |
8795163, | Jun 05 2009 | Cilag GmbH International | Interlocking seal components |
8821391, | Mar 06 2009 | Cilag GmbH International | Methods and devices for providing access into a body cavity |
8821445, | Aug 25 2006 | TELEFLEX MEDICAL INCORPORATED | Caged floating seal assembly |
8888746, | Mar 03 2008 | Covidien LP | Single port device with multi-lumen cap |
8926506, | Mar 06 2009 | Cilag GmbH International | Methods and devices for providing access into a body cavity |
8932275, | Jul 07 2006 | Covidien LP | Surgical seal assembly |
8968249, | May 10 2002 | Covidien LP | Introducer seal assembly |
8968250, | Oct 14 2005 | Applied Medical Resources Corporation | Surgical access port |
9005116, | Mar 31 2009 | Cilag GmbH International | Access device |
9028402, | Apr 05 2004 | Covidien LP | Surgical hand access apparatus |
9028448, | Jun 19 2008 | Covidien LP | Access seal with interstitial channels |
9033928, | Mar 03 2008 | Covidien LP | Single port device with multi-lumen cap |
9066754, | Oct 09 2009 | GENICON, INC | Trocar and cannula assembly having improved conical valve, and methods related thereto |
9078695, | Jun 05 2009 | Cilag GmbH International | Methods and devices for accessing a body cavity using a surgical access device with modular seal components |
9131831, | May 19 2008 | Boston Scientific Scimed, Inc. | Integrated locking device with passive sealing |
9226760, | May 07 2010 | Cilag GmbH International | Laparoscopic devices with flexible actuation mechanisms |
9333001, | Oct 08 2009 | Ethicon Endo-Surgery, Inc | Articulable laparoscopic instrument |
9351717, | Mar 06 2009 | Cilag GmbH International | Methods and devices for providing access into a body cavity |
9402611, | Dec 18 2009 | Covidien LP | Surgical portal with rotating seal |
9468426, | May 07 2010 | Ethicon Endo-Surgery, Inc. | Compound angle laparoscopic methods and devices |
9474540, | Oct 08 2009 | Ethicon Endo-Surgery, Inc | Laparoscopic device with compound angulation |
9549759, | Mar 03 2008 | Covidien LP | Single port device with multi-lumen cap |
9737334, | Mar 06 2009 | Cilag GmbH International | Methods and devices for accessing a body cavity |
9833259, | Oct 14 2005 | Applied Medical Resources Corporation | Surgical access port |
9901373, | Aug 25 2006 | TELEFLEX MEDICAL INCORPORATED | Caged floating seal assembly |
D634006, | Oct 31 2007 | Erblan Surgical, INC | Double-cone sphincter introducer assembly and integrated valve assembly |
Patent | Priority | Assignee | Title |
2008340, | |||
2402306, | |||
2797837, | |||
3086797, | |||
3197173, | |||
3288137, | |||
3438607, | |||
3487837, | |||
3568679, | |||
3683911, | |||
3766916, | |||
3811440, | |||
3856010, | |||
3875938, | |||
3893446, | |||
3915168, | |||
3920215, | |||
3970089, | Aug 05 1974 | Cardiovascular catheter seal device | |
3977008, | Apr 10 1972 | Zumbach Electronic-Automatic | Method and an apparatus for detecting and recording the number of phenomena |
3994287, | Jul 01 1974 | Centre de Recherche Industrielle du Quebec | Trocar |
4000739, | Jul 09 1975 | Cordis Corporation | Hemostasis cannula |
4126133, | Jul 13 1977 | Intracorporeal catheter improvement | |
4149535, | May 06 1976 | Gist-Brocades N.V. | Catheter holding device |
4177814, | Jan 18 1978 | Cabot Technology Corporation | Self-sealing cannula |
4212297, | Oct 16 1978 | Micro-fluid exchange coupling apparatus | |
4231400, | May 30 1978 | Removable two-way connector for a faucet nozzle | |
4240411, | Apr 25 1977 | Olympus Optical Co., Ltd. | Device for sealing an endoscope channel |
4243034, | Oct 17 1978 | Viggo AB | Cannula or catheter assembly |
4318401, | Apr 24 1980 | President and Fellows of Harvard College | Percutaneous vascular access portal and catheter |
4324239, | Jun 20 1980 | Whitman Medical Corp. | Safety valve for preventing air embolism and hemorrhage |
4378013, | Sep 23 1980 | B BRAUN MEDICAL, INC | Flow controller for IV chamber |
4380234, | Aug 16 1979 | Baxter Travenol Laboratories, Inc. | Infusion needle attachment |
4392854, | Nov 28 1980 | Device for fixing catheters or the like | |
4397641, | Apr 03 1981 | Catheter support device | |
4424833, | Oct 02 1981 | Medtronic Ave, Inc | Self sealing gasket assembly |
4430081, | Jan 06 1981 | Cook, Inc. | Hemostasis sheath |
4436519, | May 28 1981 | HENLEY OPERATING COMPANY A CORP OF TEXAS | Removable hemostasis valve |
4464178, | Nov 25 1981 | HORIZON MEDICAL PRODUCTS, INC | Method and apparatus for administration of fluids |
4473369, | Jan 11 1982 | Baxter Travenol Laboratories, Inc. | Continuous ambulatory peritoneal dialysis clamping system |
4475548, | Jun 01 1982 | Fitting for endotracheal tube apparatus and method of making the fitting | |
4496348, | Nov 29 1979 | Abbott Laboratories | Venipuncture device |
4516293, | Apr 23 1981 | Clamping structure | |
4519793, | Feb 09 1983 | Catheter holder | |
4533349, | Nov 08 1982 | Medical Engineering Corporation | Skin mounted drainage catheter retention disc |
4579120, | Sep 30 1982 | Pacesetter, Inc | Strain relief for percutaneous lead |
4580573, | Oct 20 1983 | MEDICAL DEVICE TRUST | Catheter introducer |
4583977, | Aug 15 1984 | Vsesojuzny Nauchno-Issledovatelsky Institut Meditsinskikh Polimerov | Device for lengthy fixation of a tube introduced into the patient's body |
4593681, | Jan 18 1985 | Stabilizing device for use in arthroscopic and endoscopic surgery | |
4610665, | Jan 18 1983 | Terumo Kabushiki Kaisha | Medical instrument |
4610674, | Sep 13 1984 | Terumo Kabushi Kaisha | Catheter introducing instrument |
4626245, | Aug 30 1985 | Cordis Corporation | Hemostatis valve comprising an elastomeric partition having opposed intersecting slits |
4632671, | Apr 12 1985 | HORIZON MEDICAL PRODUCTS, INC | Conduit anchor adapted to receive stylet |
4634421, | Jul 26 1985 | JOHNSON & JOHNSON MEDICAL INC | Valve for incontinent patients |
4645492, | Oct 11 1983 | Cabot Technology Corporation | Catheter anchoring device |
4650474, | Dec 20 1983 | Laboratories Merck-Clevenot | Device for elimination of urine through ureterostoma |
4654030, | Feb 24 1986 | Endotherapeutics Corporation | Trocar |
4655752, | Oct 24 1983 | Smith & Nephew, Inc | Surgical cannula |
4673393, | Dec 28 1984 | Terumo Kabushiki Kaisha | Medical instrument |
4699616, | Jun 13 1986 | Hollister Incorporated | Catheter retention device and method |
4717385, | Apr 12 1985 | The Beth Israel Hospital Association | Surgical tube anchoring device and method for using same |
4723550, | Nov 10 1986 | Cordis Corporation | Leakproof hemostasis valve with single valve member |
4767411, | Jul 14 1987 | Protective catheter sleeve | |
4786028, | Mar 05 1986 | Heatrae-Sadia Heating Limited | Fluid flow control valve |
4798594, | Sep 21 1987 | Cordis Corporation | Medical instrument valve |
4817631, | May 23 1985 | Angiomed AG | Method for removing tissue from a body |
4839471, | Feb 18 1988 | SIECOR TECHNOLOGY, INC | Seals |
4842591, | Jan 21 1988 | LUTHER MEDICAL PRODUCTS, INC | Connector with one-way septum valve, and assembly |
4869717, | Apr 25 1988 | Gas insufflation needle with instrument port | |
4874377, | May 26 1988 | GORDON, MARK G | Self-occluding intravascular cannula assembly |
4874378, | Jun 01 1988 | Cordis Corporation | Catheter sheath introducer |
4874380, | Jan 07 1988 | E R SQUIBB & SONS, INC | Catheter retaining device |
4883053, | Sep 18 1987 | Beth Israel Hospital | Self-supporting angulator device for precise percutaneous insertion of a needle or other object |
4895346, | May 02 1988 | The Kendall Company | Valve assembly |
4895565, | Sep 21 1987 | CORDIS CORPORATION, A FL CORP | Medical instrument valve |
4897081, | May 25 1984 | TMCA FOUNDATION INC | Percutaneous access device |
4909798, | Nov 12 1987 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Universal hemostasis cannula |
4915694, | Oct 02 1987 | VITAPHORE CORPORATION, SAN CARLOS, CALFORNIA, A CORP OF CA | Antimicrobial wound dressing and skin fixator for percutaneous conduits |
4917668, | Mar 18 1988 | B.. Braun Melsungen AG | Valve for permanent venous cannulae or for catheter insertion means |
4929235, | Jul 31 1985 | Merit Medical Systems, Inc | Self-sealing percutaneous tube introducer |
4959055, | Mar 13 1989 | Retainer for a percutaneous tube | |
4960259, | Mar 28 1989 | SUNNANVADER, LARS | Shut-off valve for a liquid flow line or infusion device |
4960412, | Apr 15 1988 | Merit Medical Systems, Inc | Catheter introducing system |
4966589, | Nov 14 1988 | FLUIDICS INTERNATIONAL, INC | Intravenous catheter placement device |
4978341, | Apr 07 1988 | Schneider Europe | Introducer valve for a catheter arrangement |
5000745, | Nov 18 1988 | HENLEY OPERATING COMPANY A CORP OF TEXAS | Hemostatis valve |
5009391, | May 02 1988 | The Kendall Company | Valve assembly |
5009643, | Aug 09 1989 | RICHARD WOLF MEDICAL INSTRUMENTS CORP | Self-retaining electrically insulative trocar sleeve and trocar |
5026352, | Feb 03 1989 | Smiths Group PLC | Adjustable fitments for medical tubes |
5041095, | Dec 22 1989 | Cordis Corporation | Hemostasis valve |
5053014, | Feb 01 1990 | MEDEX, INC | Catheter with controlled valve |
5053016, | Dec 31 1987 | United States Surgical Corporation | Valve seat for an insufflation cannula assembly |
5064416, | May 26 1988 | SUMMIT ENTERPRISES, A CA GENERAL PARTNERSHIP | Self-occluding intravascular cannula assembly |
5073169, | Oct 02 1990 | RAIKEN, STEVE | Trocar support |
5104383, | Oct 17 1989 | United States Surgical Corporation | Trocar adapter seal and method of use |
5104389, | Jun 27 1991 | Cordis Corporation | Medical instrument valve with foam partition member having vapor permeable skin |
5127626, | Oct 31 1989 | Applied Medical Resources Corporation | Apparatus for sealing around members extending therethrough |
5127909, | Apr 05 1990 | United States Surgical Corporation | Flapper valve for an insufflation cannula assembly |
5137520, | Apr 24 1991 | Cannula skirt | |
5158553, | Dec 26 1990 | BIOSURFACE ENGINEERING TECHNOLOGIES, INC | Rotatably actuated constricting catheter valve |
5167636, | Oct 24 1991 | Mectra Labs, Inc. | Cannula sealing mechanism |
5176648, | Dec 13 1991 | Design Standards Corporation | Introducer assembly and instrument for use therewith |
5180373, | Jun 07 1991 | Tyco Healthcare Group LP; United States Surgical Corporation | Valve system for introducing objects into anatomical body portions |
5188609, | Jul 08 1991 | Bryman Medical Inc. | Swivel clip medical tube holder |
5197955, | Oct 18 1991 | Ethicon, Inc | Universal seal for trocar assembly |
5201714, | Mar 05 1992 | Conmed Corporation | Laparoscopic cannula |
5207652, | Oct 23 1991 | Bioderm | Medical apparatus fixation and infection control device |
5209736, | Oct 18 1991 | ETHICON, INC , A CORP OF NJ | Trocar method and apparatus |
5209737, | Jul 18 1991 | Applied Medical Resources, Inc. | Lever actuated septum seal |
5211370, | Jan 06 1992 | Variable orifice sealing valve | |
5215531, | Apr 24 1991 | Lap Associates of Nashville II | Cannula skirt |
5224935, | May 02 1990 | E. R. Squibb & Sons, Inc. | Catheter retainer |
5226891, | Apr 07 1992 | Applied Medical Resources; APPLIED MEDICAL RESOURCES, INC , A CORPORATION OF CA | Seal protection apparatus |
5232453, | Jul 14 1989 | CONVATEC TECHNOLOGIES INC | Catheter holder |
5242415, | Aug 14 1992 | L-Vad Technology, Inc. | Percutaneous access device |
5263939, | Oct 09 1992 | Surgin Surgical Instrumentation, Inc.; SURGIN SURGICAL INSTRUMENTATION, INC | Retainer for laparoscopic cannula |
5267968, | Jul 09 1992 | Retention bolster for percutaneous catheters | |
5279575, | Aug 13 1992 | BRIGHAM & WOMEN S HOSPITAL | Locking pivotal surgical orifice |
5312364, | Aug 06 1993 | PYNG MEDICAL CORP | Intraosseous infusion device |
5330436, | May 26 1992 | Introducing device | |
5352211, | Jul 11 1993 | Louisville Laboratories | External stability device |
5354283, | Jan 07 1994 | CHASE MANHATTAN BANK, AS AGENT, THE | Trocar retention apparatus |
5356391, | Jun 22 1992 | Kimberly-Clark Worldwide, Inc | Flexible retainer flange for gastrostomy tube and the method of installing it |
5364367, | Apr 30 1993 | TYCO HEALTHCARE GROUP AG; Covidien AG | Cannula anchor |
5366446, | Nov 17 1993 | Design Standards Corporation | Introducer assembly |
5370625, | Aug 15 1989 | United States Surgical Corporation | Trocar guide tube positioning device |
5375588, | Aug 17 1992 | Method and apparatus for use in endoscopic procedures | |
5380302, | Feb 10 1993 | Design Standards Corporation | Cannula fixation device with retaining ring having identations |
5391156, | Jun 30 1992 | Ethicon, Inc. | Flexible encoscopic surgical port |
5395343, | Oct 21 1993 | Anchoring device for medical tubing | |
5830231, | Mar 19 1997 | Handle and actuating mechanism for surgical instruments | |
729423, | |||
DE3042229, | |||
EP344907, | |||
EP350291, | |||
GB2019219, | |||
GB2057269, | |||
GB2065479, | |||
GB699253, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 30 1999 | United States Surgical Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 23 2001 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 24 2005 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 24 2009 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 16 2003 | 4 years fee payment window open |
Nov 16 2003 | 6 months grace period start (w surcharge) |
May 16 2004 | patent expiry (for year 4) |
May 16 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 16 2007 | 8 years fee payment window open |
Nov 16 2007 | 6 months grace period start (w surcharge) |
May 16 2008 | patent expiry (for year 8) |
May 16 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 16 2011 | 12 years fee payment window open |
Nov 16 2011 | 6 months grace period start (w surcharge) |
May 16 2012 | patent expiry (for year 12) |
May 16 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |