A booster comprising a plenty of microbubbles of a gas in a liquid, e.g. about 4×107 cells/ml of microbubbles of a gas having a diameter of 0.1 to 100 μm in a 3 to 5% human serum albumin solution, and a pharmaceutical liquid composition comprising the booster as set forth above and a medicament, which are useful for the therapy of various diseases together with exposure of ultrasonic, where the therapeutic effects of the medicament is enhanced by the application of ultrasound in the presence of the booster.
|
1. A booster composition for enhancing effects of ultrasound in the therapy of diseases, which comprises:
a liquid; a. a medicament; and b. microbubbles of a gas having a diameter of 0.1 to 100 μm, in a liquid wherein a majority of the medicament is present outside of the microbubbles.
4. A pharmaceutical liquid composition for the therapy of diseases with application of ultrasound, which comprises:
a liquid; a. microbubbles of a gas having a diameter of 0.1 to 100 μm; and b. a medicament selected from the group consisting of thrombolytic agents, hormones, antibiotics and antineoplastic agents, in a liquid wherein a majority of the medicament is present outside of the microbubbles.
2. The booster composition according to
3. The booster composition according to
5. The composition according to
6. The composition according to
7. The composition according to
hormones, antibiotics, and antineoplastic agents.8. The composition according to claim 4, wherein the medicament is selected from the group consisting of urokinase, tissue plasminogen activator, insulin, theophylline, and lidocaine. 9. A method for enhancing the therapeutic effects of a medicament, comprising: a. applying ultrasound to a pharmaceutical liquid composition according to claim 4 and b. administering said a pharmaceutical liquid composition comprising a liquid, a medicament, and microbubbles of a gas having a diameter of 0.1 to 100 μm, wherein a majority of the medicament is present outside of the microbubbles; and applying ultrasound to the pharmaceutical liquid composition. 10. The method according to claim 9, wherein the liquid composition comprises about 4×107 cells/ml of microbubbles of a gas having a diameter of 0.1 to 100 μm and a medicament in the liquid. . The method according to claim 10, wherein the liquid is a 3 to 5% human serum albumin solution. 12. The method according to claim 9, wherein the medicament is selected from the group consisting of urokinase, tissue plasminogen activator, insulin, theophylline, and lidocaine. 13. A method of dosing subjects with a pharmaceutical preparation by: a. applying ultrasound to a pharmaceutical liquid composition and b. administering said a pharmaceutical liquid composition comprising a liquid, microbubbles of a gas having a diameter of 0.1 to 100 μm, and a medicament in a liquid in the therapy of diseases wherein a majority of the medicament is present outside of the microbubbles; and applying ultrasound to the pharmaceutical liquid composition. 14. The method of dosing according to claim 13, wherein the microbubbles are formed from air or oxygen gas in the liquid. 15. The method of dosing according to claim 13, wherein the liquid is a 3 to 5% human serum albumin solution. 16. The method of dosing according to claim 13, wherein the medicament is selected from the group consisting of urokinase, tissue plasminogen activator, insulin, theophylline, and lidocaine. 17. A composition for enhancing the effects of ultrasound in the therapy of diseases when said ultrasound is administered in conjunction with a medicament, said composition comprising a liquid, a medicament, and microbubbles of a gas made of a shell having a diameter of 0.1 to 100 μm, wherein a majority of the medicament is present outside of the shell and is not incorporated in the shell. 18. A composition for enhancing the effects of ultrasound in the therapy of diseases which comprises a liquid, a medicament, and microbubbles of a gas made of a shell having a diameter of 0.1 to 100 μm, wherein at least a majority of the medicament is present outside of the shell. 9. A method for enhancing the therapeutic effects of ultrasound comprising: creating a mixture comprising a liquid, microbubbles of a gas having a diameter of 0.1 to 100 μm, and a medicament, wherein a majority of the medicament is present outside of the microbubbles; and applying ultrasound to the mixture. 20. The method of claim 19 wherein the mixture is administered in proximity to a diseased part. 21. The method of claim 19 wherein the mixture is injected into a blood vessel near a diseased part. 22. A method for enhancing the therapeutic effect of a medicament administered to a patient comprising: administering to the patient a liquid composition comprising microbubbles of a gas having a diameter of 0.1 to 100 μm; and applying ultrasound to the liquid composition and the medicament, wherein a majority of the medicament is present outside of the microbubbles. 23. The method of claim 22 wherein the mixture is injected into a blood vessel near a diseased part. 24. A method of enhancing the therapeutic effects of ultrasound of a medicament comprising: creating microbubbles of a gas having a diameter of 0.1 to 100 μm in a liquid containing the medicament, wherein a majority of the medicament is present outside of the microbubbles; and applying ultrasound to the microbubbles. 25. The method of claim 24 wherein the liquid is administered in the proximity of a diseased part. 26. The method of claim 24 wherein the liquid is injected in a blood vessel near the diseased part. |
This invention relates to a booster useful for enhancing the effects of ultrasound in the therapy of various diseases and a pharmaceutical liquid composition containing the booster and a medicament which shows enhanced diffusion and penetration of the medicament into the body by applying ultrasound. More particularly, it relates to a booster useful for therapy of various disease by applying ultrasound which comprises a plenty of microbubbles of a gas in a liquid, a pharmaceutical liquid composition comprising a plenty of microbubbles of a gas and a medicament in a liquid, and the use thereof in the therapy of various diseases while applying ultrasound.
It is known that various diseases are remedied by the aid of ultrasonic vibration. For example, it is described in Japanese Patent First Publication (Kokai) No. 115591/1977, etc. that percutaneous absorption of a medicament is enhanced by applying a ultrasonic vibration. Japanese Patent First Publication (Kokai) No. 180275/1990 discloses a drug-injecting device which is effective on the diffusion and penetration of the drug by applying a ultrasonic vibration in the step of injecting a drug into a human body via a catheter or a drug-injecting tube. U.S. Pat. Nos. 4,953,565 and 5,007,438 also disclose the technique of percutaneous absorption of medicaments by the aid of ultrasonic vibration. It is also reported that a tumor can be remedied by concentratedly applying ultrasound from outside the body.
In order to enhance the therapeutic effects with ultrasound, it is required to apply a higher energy of a ultrasonic vibration. However, too higher energy of a ultrasonic vibration causes disadvantageously burns or unnecessary heat at the portion other than the desired portion. On the other hand, when the energy of a ultrasonic vibration is lowered for eliminating such disadvantages, there is a problem of less effect of the ultrasound at the desired portion.
The present inventors have intensively studied on the enhancement of the effects of ultrasound with a lower energy of a ultrasonic vibration and have found that a booster comprising a plenty of microbubbles of a gas in a liquid is useful for the desired enhancement of the effects of ultrasound.
An object of the invention is to provide a booster useful for enhancing the effects of ultrasound which comprises a plenty of microbubbles of a gas in a liquid. Another object of the invention is to provide a pharmaceutical liquid composition containing the booster and a medicament which is useful for the therapy of various diseases together with the application of ultrasound. A further object of the invention is to provide a method for enhancing the effects by the application of ultrasound in the therapy of various diseases which comprises injecting the booster or the pharmaceutical liquid composition as set forth above into the portion to be remedied while applying ultrasound thereto. These and other objects and advantages of the invention will be apparent to those skilled in the art from the following description.
FIG. 1 shows a schematic view of one of the micro-bubbles contained in the booster of the invention.
FIG. 2 shows a schematic sectional view of one embodiment of a drug administration device used for injecting, pouring, applying or circulating the booster or the pharmaceutical liquid composition of the invention.
FIG. 3 shows a schematic sectional view of one embodiment of a drug administration device used for percutaneous injection of the booster or the pharmaceutical liquid composition of the invention.
FIG. 4 and FIG. 5 show graphs showing fibrinolysis by application of ultrasound with or without the booster of the invention.
The booster of the invention comprises a liquid containing a plenty of microbubbles of a gas having a diameter of 0.1 to 100 μm. The microbubbles are formed by entrapping microspheres of a gas into a liquid. The booster contains, for example, about 4×107 of the microbubbles per one milliliter of a liquid. The microbubbles are made of various gases such as air, oxygen gas, carbon dioxide gas, inert gases (e.g. xenon, krypton, argon, neon, helium, etc.), preferably air and oxygen gas. The liquid includes any liquid which can form microbubbles, for example, human serum albumin (e.g. 3 to 5% human serum albumin), a physiological saline solution, a 5% aqueous glucose solution, an aqueous indocyanine green solution, autoblood, an aqueous solution of maglumine diatriazoate (=renografin), and any other X-ray contrast medium.
The booster can be prepared by a known method, for example, by agitating the liquid as mentioned above while blowing a gas as mentioned above into the liquid, or alternatively exposing the liquid to ultrasound with a sonicator under a gaseous atmosphere, whereby a vibration is given to the liquid to form microbubbles of the gas.
The pharmaceutical liquid composition of the invention comprises a plenty of microbubbles of a gas and a medicament in a liquid. The microbubbles of a gas and liquid are the same as mentioned above. The medicament includes any known medicaments effective for the desired therapy which can be absorbed percutaneously, for example, anti-thrombosis agents (e.g. urakinase, tissue plasminogen activator, etc.), hormones (e.g. insulin, etc.), theophylline, lidocaine, antibiotics, antineoplastic agents which are sensitive to ultrasound (e.g. doxorubicin (=adriamycin), cytarabine (=Ara-C), etc.), and the like. The medicament can be contained in a therapeutically effective amount as usually used. The pharmaceutical liquid composition can be prepared by mixing a medicament with a booster comprising a plenty of microbubbles of a gas in a liquid. The mixing ratio may vary depending on the desired amount and kind of the medicament and the kind of the liquid, but is usually in a range of 1:100 to 100:1 by weight (a medicament/a booster).
According to the invention, the therapeutic effects by ultrasound is boosted by the presence of a booster of the invention. Particularly, when a pharmaceutical liquid composition containing the booster and a medicament is poured or injected into a body in parenteral routes, such as intravenously, percutaneously or intramuscularly, while applying thereto a ultrasonic vibration, the therapeutic effects of the medicament is significantly enhanced. When a ultrasound from a ultrasonic element is applied to the liquid containing the booster and medicament, cavitation occurs in the liquid composition, and the medicament is diffused and penetrated into the desired portion of the biobody by the aid of vibration induced by the cavitation. The cavitation occurs when the level of vibration energy overs a certain threshold value. When the ultrasound is applied to the liquid composition of the invention, the threshold value of the vibration energy lowers due to the presence of a plenty of microbubbles of a gas. That is, the microbubbles of a gas act as nucleus of cavitation and thereby the cavitation occurs more easily. Accordingly, according to the invention, the desired ultrasonic energy necessary for the desired diffusion and penetration of a medicament is achieved even by less energy of ultrasonic vibration energy.
The desired ultrasound is applied by conventional ultrasonic devices which can supply a ultrasonic signal of 20 KHz to several MHz.
With reference to the accompanying drawing, the invention is illustrated in more detail.
FIG. 1 shows a schematic view of one of the plenty of microbubbles of a gas contained in the booster of the invention, wherein the microbubble of a gas has a diameter of 0.1 to 100 μm and is composed of a shell of human serum albumin (1) and gas (2) entrapped within the microbubble. The microbubbles are contained in a liquid (3) such as 5% human serum albumin solution in an amount of, for example, above 4×107 cells/ml.
The booster is mixed with a medicament to give a pharmaceutical liquid composition. The pharmaceutical liquid composition is directly administered to the diseased part with an appropriate device, for example, with a drug administration device (4) as shown in FIG. 2. The drug administration device (4) comprises a base tube (5) to which the pharmaceutical liquid composition is supplied, and an end tube (6) which is to be inserted into the tissue of the biobody and through which the pharmaceutical liquid composition is poured or injected into the diseased part. The end tube (6) is provided with a ultrasonic element (7) (e.g. a cylindrical ceramic oscillator, etc.). The ultrasonic element (7) is supplied by a ultrasonic signal of 20 kHz to several MHz from a ultrasonic oscillation circuit (8) via a conductor (9a), connectors (10a) and (10b) provided on the side of the base tube (5), a part of the base tube (5) and a conductor (9b) provided within the end tube (6).
The application or injection of a medicament is carried out in the form of a pharmaceutical liquid composition which is prepared by previously mixing the medicament with the booster comprising a plenty of microbubbles of a gas in a liquid, wherein the medicament and the booster are mixed in a ratio of 1:100 to 100:1 by weight. The pharmaceutical liquid composition is poured into the base tube (5) from the supply opening (11) provided on the tip of the base tube (5), passes through a flow path (12) within the base tube (5) and a flow path (13) within the end tube (6) and then administered to the diseased part or the portion close thereto of the patient via a pouring opening (14) provided at the bottom of the end tube (6).
When the pharmaceutical liquid composition is administered into the diseased part or the portion close thereto through the pouring opening (14), a ultrasonic energy generated from a ultrasonic element (7) is given to the liquid composition, by which cavitation occurs owing to the ultrasonic energy. Microbubbles are formed at the occurrence of cavitation and when the microbubbles are decomposed, energy is generated, by which diffusion and penetration of the medicament is promoted. Since the pharmaceutical liquid composition contains a plenty of microbubbles of a gas, the microbubbles act as a nucleus for the cavitation, by which the cavitation occurs more easily, in other words, the threshold value of occurrence of cavitation lowers. Accordingly, it is possible to generate the cavitation with less energy than the case of using no booster.
When a ultrasonic vibration is applied to a liquid, if the liquid contains any material being able to become a nucleus, the cavitation occurs generally at a lower threshold value of energy, but it has been found that the cavitation occurs most easily where the liquid contains microbubbles of a gas having a diameter of 0.1 to 100 μm.
The drug administration device (4) as shown in FIG. 2 can be used, for example, for administering a pharmaceutical liquid composition into a blood vessel. For instance, in the treatment of coronary thrombosis, a pharmaceutical liquid composition comprising a booster of the invention and a urokinase is injected into the part of thrombosis or the close portion thereof with the drug administration device (4) where the tip of the end tube (6) is inserted into the portion close to the thrombosis with applying ultrasound, by which the thrombolytic effects of the medicament are significantly increased and further the blood flow is recovered within a shorter period of time in comparison with the administration of the medicament without the booster. The drug administation device (4) may also be used for the removing hematoma in bleeding of brain. For example, a pharmaceutical liquid composition comprising a booster of the invention and a thromolytic agent (e.g. urokinase) is administered to the portion of hematoma with the drug administration device (4) with applying ultrasound like the above, by which the hematoma is easily lysed.
In another embodiment of the invention, the pharmaceutical liquid composition can be administered percutaneously with a drug administration device (15) as shown in FIG. 3.
In the drug administration device (15) suitable for percutaneous administration of a medicament, a layer of a medicament (17) is provided below a ultrasonic element (16) (e.g. a disc shaped ceramic oscillator, etc.), under of which an adhesive layer (18) having a medicament permeability is laminated, whole of which is covered with a plastic cover (19). The ultrasonic element (16) is supplied by ultrasonic signal from a ultrasonic oscillation circuit provided outside via a connector (20) like in the drug administration device (4) as shown in FIG. 2.
In the device (15) of FIG. 3, a pharmaceutical liquid composition comprising a mixture of a booster and a medicament is contained in the layer of a medicament (17). When this device (15) is used, it is adhered onto the skin with facing the adhesive layer (18) to the skin, and then a ultrasonic signal is supplied to the ultrasonic element (16), by which a ultrasonic vibration from the ultrasonic element (16) is given to both of the medicament layer (17) and the skin and thereby the medicament contained in the medicament layer (17) is passed through the skin and is penetrated into the tissue to be treated. In this embodiment, since microbubbles of a gas are contained in the medicament layer (17), cavitation occurs easily within the medicament layer (17) by application of ultrasound, and hence even lower energy of the ultrasonic vibration is supplied from the ultrasonic element (16), the diffusion and penetration of the medicament can effectively be done to result in rapid absorption of the medicament.
The booster of the invention may also be used alone without mixing with a medicament in the therapy with ultrasound. For example, in the therapy of tumors by heating the diseased part of the tissue with ultrasound, that is, by concentratedly applying a ultrasonic vibration outside the biobody, a booster comprising a plenty of microbubbles of a gas in a liquid of the invention is previously injected into the blood vessel or to the portion close to the diseased part before application of ultrasound, by which the effect of heating with ultrasound is enhanced and thereby the therapeutic effects are significantly improved. In this embodiment, cavitation occurs also by the ultrasonic vibration more easily because of using a liquid containing microbubbles of a gas, and hence, even by less energy of the ultrasonic vibration suppled from the ultrasonic element, the ultrasonic energy sufficient to the therapy is obtained and thereby the undesirable burns and unnecessary heating at other portions can be avoided.
In the treatment of tumors, it is, of course, more effective to use it together with a chemotherapeutic agent suitable for the treatment of the tumors, by which the effects of the chemotherapeutic agent are more enhanced, where the diffusion and penetration of the medicament are improved owing to the booster.
The substance such as human serum albumin in the booster of the invention is easily metabolized within the biobody and excreted outside the biobody, and hence, it is not harmful to human body. Besides, the gas trapped within the microbubbles is extremely small and is easily dissolved in the blood fluid. Accordingly, the booster of the invention has no problem in the safety thereof.
The preparation of the booster and pharmaceutical liquid composition of the invention and effects thereof are illustrated by the following Examples and Experiment, but it should not be construed to be limited thereto.
Preparation of a Booster:
A 5% human serum albumin (8 ml) in a 10 ml-volume syringe is exposed to ultrasound with a sonicator (frequency, 20 KHz) by which vibration is given to the human serum albumin and a plenty of microbubbles of air are formed in the human serum albumin to give a booster comprising a human serum albumin containing a plenty of microbubbles of air.
Preparation of a Pharmaceutical Liquid Composition:
The 5% human serum albumin containing a plenty of microbubbles of air prepared in Example 1 is mixed with urokinase (concentration 1200 IU/ml) to give the desired pharmaceutical liquid composition.
PAC 1. Forming Artificial ThrombosisAn artificial thrombosis was formed by Chandler's method. A blood (1 ml) collected from healthy human (two persons) was entered into a flexibale tube (inside diameter 3 mm, length 265 mm) and thereto was added calcium chloride, and then the tube was made a loop like shape, which was rotated at 12 r.p.m. for 20 minutes to give an artificial thrombosis model.
A ceramic ultrasonic element (width 2 mm, length 5 mm, thickness 1 mm) was inserted into the tip of a cetheter (diameter 2 mm), and an oscillating element was connected to an oscillator provided outside with a fine connector passed through the catheter. A fine tube for pouring a test solution was provided at an opening opposite to the opening of the catheter end.
The artificial thrombosis prepared above was added to a test tube together with a blood, and the ultrasonic catheter was inserted into the test tube so that the end of the catheter was set close to the portion of the artificial thrombosis (at a distance of about 5 mm), and to the test tube a mixture of urokinase and a booster prepared in Example 1 was added at a rate of 1 ml per minute, wherein urokinase (concentration 1200 IU/ml) and the booster were mixed immediately before pouring at a mixing ratio of 1:1 by weight. The mixture was refluxed while keeping the volume of the test solution at a constant level by removing excess volume of the solution by suction. The ultrasound (170 KHz) was exposed to the mixture by a pulse method (exposed for 2 seconds and stopped for 4 seconds) for 2 minutes (total exposing time 40 seconds). After the exposure, the ultrasonic catheter was removed from the test tube, and the mixture was incubated at 37°C for 5 to 120 minutes, washed with a physiological saline solution several times and dried overnight. Thereafter, the dried mixture was weighed. As a control, the above was repeated by using only a physiological saline solution.
The rate of fibrinolysis was calculated by the following equation: ##EQU1##
The results are shown in the accompanying FIGS. 4 and 5 wherein there are shown in average of twice tests.
FIG. 4 shows the results in the thrombosis prepared by using blood collected from one person, wherein the symbol -- is the data obtained in the addition of urokinase alone without exposure of ultrasound, - ♦- is the data obtained in the addition of urokinase alone with exposure of ultrasound, and -▪- is the data obtained in the addition of a mixture of urokinase and the booster with exposure of ultrasound.
As is shown in FIG. 4, the time for achieving 20% fibrinolysis was 45 minutes by urokinase alone without exposure of ultrasound, 30 minutes by a combination of urokinase and exposure of ultrasound, and only 10 minutes by a combination of a mixture of urokinase and a booster and exposure of ultrasound. The fibrinolytic effects of urokinase (both the rate of fibrinolysis and the fibrinlytic time) were signigicantly enhanced by using a booster with application of ultrasound.
FIG. 5 shows the results in the thrombosis prepared by using blood collected from another person and with reduced energy of ultrasound by 15%, wherein the symbols are the same as in FIG. 4. As is shown in FIG. 5, the fibrinolytic effects were significantly enhanced by using a mixture of urokinase and the booster. That is, in case of using urokinase alone with exposure of ultrasound, the 50% fibrinolysis was achieved by the treatment for 60 minutes, but in case of using a mixture of urokinase and the booster with exposure of ultrasound, it reduced to one fourth, i.e. it was achieved by the treatment only for 15 minutes.
Tachibana, Katsuro, Tachibana, Shunro
Patent | Priority | Assignee | Title |
10016271, | Oct 19 2011 | FOUNDRY NEWCO XII, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10028827, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
10034750, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
10052204, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10111747, | May 20 2013 | TWELVE, INC | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
10220122, | Dec 22 2010 | Ulthera, Inc. | System for tissue dissection and aspiration |
10232196, | Apr 24 2006 | Boston Scientific Scimed, Inc | Ultrasound therapy system |
10238490, | Aug 21 2015 | Twelve, Inc. | Implant heart valve devices, mitral valve repair devices and associated systems and methods |
10258468, | Mar 01 2012 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
10265172, | Apr 29 2016 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
10271866, | Aug 07 2009 | Ulthera, Inc. | Modular systems for treating tissue |
10299917, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10299927, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10335278, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10350004, | Dec 09 2004 | Twelve, Inc. | Intravascular treatment catheters |
10433961, | Apr 18 2017 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
10485573, | Aug 07 2009 | Ulthera, Inc. | Handpieces for tissue treatment |
10517725, | Dec 23 2010 | Twelve, Inc. | System for mitral valve repair and replacement |
10531888, | Aug 07 2009 | Ulthera, Inc. | Methods for efficiently reducing the appearance of cellulite |
10548659, | Jan 07 2006 | ULTHERA, INC | High pressure pre-burst for improved fluid delivery |
10575950, | Apr 18 2017 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
10603066, | May 25 2010 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
10646338, | Jun 02 2017 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
10656025, | Jun 10 2015 | Boston Scientific Scimed, Inc | Ultrasound catheter |
10702378, | Apr 18 2017 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
10702380, | Oct 19 2011 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
10709591, | Jun 06 2017 | TWELVE, INC | Crimping device and method for loading stents and prosthetic heart valves |
10729541, | Jul 06 2017 | TWELVE, INC | Prosthetic heart valve devices and associated systems and methods |
10751173, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
10786352, | Jul 06 2017 | TWELVE, INC | Prosthetic heart valve devices and associated systems and methods |
10792151, | May 11 2017 | TWELVE, INC | Delivery systems for delivering prosthetic heart valve devices and associated methods |
10820996, | Aug 21 2015 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
10926074, | Dec 03 2001 | Boston Scientific Scimed, Inc | Catheter with multiple ultrasound radiating members |
10945835, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11033390, | Apr 29 2016 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
11058901, | Apr 24 2006 | Boston Scientific Scimed, Inc | Ultrasound therapy system |
11096708, | Aug 07 2009 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
11129714, | Mar 01 2012 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
11197758, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11202704, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11213618, | Dec 22 2010 | Ulthera, Inc. | System for tissue dissection and aspiration |
11224767, | Nov 26 2013 | SANUWAVE HEALTH, INC | Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing |
11234821, | May 20 2013 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
11272982, | Dec 09 2004 | Twelve, Inc. | Intravascular treatment catheters |
11331520, | Nov 26 2013 | SANUWAVE HEALTH, INC | Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing |
11337725, | Aug 07 2009 | Ulthera, Inc. | Handpieces for tissue treatment |
11389295, | Apr 18 2017 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
11464659, | Jun 06 2017 | Twelve, Inc. | Crimping device for loading stents and prosthetic heart valves |
11497603, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11523900, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
11559398, | Jun 02 2017 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
11571303, | Dec 23 2010 | Twelve, Inc. | System for mitral valve repair and replacement |
11576782, | Aug 21 2015 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
11617648, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11628063, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11654021, | Apr 18 2017 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
11672553, | Jun 22 2007 | EKOS CORPORATION | Method and apparatus for treatment of intracranial hemorrhages |
11712334, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
11737873, | Apr 18 2017 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
11740138, | Jun 10 2015 | Boston Scientific Scimed, Inc | Ultrasound catheter |
11786370, | May 11 2017 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
11826249, | Oct 19 2011 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
11877926, | Jul 06 2017 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
11925367, | Jan 08 2007 | Boston Scientific Scimed, Inc | Power parameters for ultrasonic catheter |
12064650, | Apr 24 2006 | EKOS CORPORATION | Ultrasound therapy system |
12109113, | Apr 29 2016 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
12161552, | Mar 01 2012 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
12178702, | Dec 23 2010 | Twelve, Inc. | System for mitral valve repair and replacement |
6478754, | Apr 23 2001 | SANUWAVE HEALTH, INC | Ultrasonic method and device for wound treatment |
6514221, | Jul 27 2000 | BRIGHAM & WOMEN S HOSPITAL, INC | Blood-brain barrier opening |
6533803, | Dec 22 2000 | SANUWAVE HEALTH, INC | Wound treatment method and device with combination of ultrasound and laser energy |
6569099, | Jan 12 2001 | SANUWAVE HEALTH, INC | Ultrasonic method and device for wound treatment |
6601581, | Nov 01 2000 | SANUWAVE HEALTH, INC | Method and device for ultrasound drug delivery |
6623444, | Mar 21 2001 | SANUWAVE HEALTH, INC | Ultrasonic catheter drug delivery method and device |
6663554, | Apr 23 2001 | SANUWAVE HEALTH, INC | Ultrasonic method and device for wound treatment |
6761729, | Dec 22 2000 | SANUWAVE HEALTH, INC | Wound treatment method and device with combination of ultrasound and laser energy |
6960173, | Jan 30 2001 | SANUWAVE HEALTH, INC | Ultrasound wound treatment method and device using standing waves |
6964647, | Oct 06 2000 | SANUWAVE HEALTH, INC | Nozzle for ultrasound wound treatment |
7141044, | Dec 11 2001 | Boston Scientific Scimed, Inc | Alternate site gene therapy |
7211248, | Jul 10 2001 | SONOGENE, LLC; SONOGENE LLC | Enhancement of transfection of DNA into the liver |
7267778, | Jul 04 1996 | SOLENIS TECHNOLOGIES, L P | Device and process for treating a liquid medium |
7404906, | Jul 08 2003 | SOLENIS TECHNOLOGIES, L P | Device and process for treating cutting fluids using ultrasound |
7431704, | Jun 07 2006 | Bacoustics, LLC | Apparatus and method for the treatment of tissue with ultrasound energy by direct contact |
7448859, | Nov 17 2004 | SOLENIS TECHNOLOGIES, L P | Devices and method for treating cooling fluids utilized in tire manufacturing |
7514009, | Jul 08 2003 | SOLENIS TECHNOLOGIES, L P | Devices and processes for use in ultrasound treatment |
7588547, | Sep 07 2005 | ULTHERA, INC | Methods and system for treating subcutaneous tissues |
7601128, | Sep 07 2005 | ULTHERA, INC | Apparatus for treating subcutaneous tissues |
7632413, | Nov 04 2002 | SOLENIS TECHNOLOGIES, L P | Process for treating a liquid medium using ultrasound |
7713218, | Jun 23 2005 | SANUWAVE HEALTH, INC | Removable applicator nozzle for ultrasound wound therapy device |
7717853, | Aug 15 2005 | PENUMBRA, INC | Methods and apparatus for intracranial ultrasound delivery |
7718073, | Jul 04 1996 | SOLENIS TECHNOLOGIES, L P | Device and process for treating a liquid medium |
7785277, | Jun 23 2005 | SANUWAVE HEALTH, INC | Removable applicator nozzle for ultrasound wound therapy device |
7785278, | Jun 07 2006 | Bacoustics, LLC | Apparatus and methods for debridement with ultrasound energy |
7803168, | Dec 09 2004 | TWELVE, INC | Aortic valve repair |
7878991, | Aug 25 2006 | Bacoustics, LLC | Portable ultrasound device for the treatment of wounds |
7914470, | Sep 25 2000 | SANUWAVE HEALTH, INC | Ultrasonic method and device for wound treatment |
7967763, | Sep 07 2005 | ULTHERA, INC | Method for treating subcutaneous tissues |
8097170, | Jul 04 1997 | SOLENIS TECHNOLOGIES, L P | Process for treating a liquid medium |
8235919, | Sep 25 2000 | SANUWAVE HEALTH, INC | Ultrasonic method and device for wound treatment |
8366620, | Jun 24 2005 | PENUMBRA, INC | Methods and apparatus for intracranial ultrasound delivery |
8366643, | Sep 07 2005 | ULTHERA, INC | System and method for treating subcutaneous tissues |
8491521, | Jan 04 2007 | SANUWAVE HEALTH, INC | Removable multi-channel applicator nozzle |
8562547, | Jun 07 2006 | Method for debriding wounds | |
8740835, | Feb 17 2010 | Boston Scientific Scimed, Inc | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
8894678, | Aug 07 2009 | Ulthera, Inc. | Cellulite treatment methods |
8900261, | Aug 07 2009 | Ulthera, Inc. | Tissue treatment system for reducing the appearance of cellulite |
8900262, | Aug 07 2009 | Ulthera, Inc. | Device for dissection of subcutaneous tissue |
8906054, | Aug 07 2009 | Ulthera, Inc. | Apparatus for reducing the appearance of cellulite |
8920452, | Aug 07 2009 | Ulthera, Inc. | Methods of tissue release to reduce the appearance of cellulite |
8979881, | Aug 07 2009 | Ulthera, Inc. | Methods and handpiece for use in tissue dissection |
9005229, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9011473, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9039722, | Dec 22 2010 | ULTHERA, INC | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
9044259, | Aug 07 2009 | Ulthera, Inc. | Methods for dissection of subcutaneous tissue |
9078688, | Aug 07 2009 | Ulthera, Inc. | Handpiece for use in tissue dissection |
9101745, | Mar 14 2013 | SONOTHERA, INC | Sonochemical induction of ABCA1 expression and compositions therefor |
9102553, | Jun 23 2004 | SOLENIS TECHNOLOGIES, L P | Devices and methods for treating fluids utilized in electrocoating processes with ultrasound |
9179928, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9192566, | Feb 17 2010 | Boston Scientific Scimed, Inc | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
9248317, | Dec 02 2005 | ULTHERA, INC | Devices and methods for selectively lysing cells |
9272124, | Dec 02 2005 | Ulthera, Inc. | Systems and devices for selective cell lysis and methods of using same |
9295552, | Oct 19 2011 | TWELVE, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
9358033, | May 25 2010 | ULTHERA, INC | Fluid-jet dissection system and method for reducing the appearance of cellulite |
9358064, | Aug 07 2009 | CABOCHON AESTHETICS, INC | Handpiece and methods for performing subcutaneous surgery |
9364246, | Aug 07 2009 | ULTHERA, INC | Dissection handpiece and method for reducing the appearance of cellulite |
9375223, | Oct 06 2009 | CARDIOPROLIFIC INC | Methods and devices for endovascular therapy |
9393328, | Mar 14 2013 | SONOTHERA, INC | Sonochemical induction of ABCA1 expression and compositions therefor |
9414852, | Dec 09 2004 | TWELVE, INC | Aortic valve repair |
9421098, | Dec 23 2010 | FOUNDRY NEWCO XII, INC | System for mitral valve repair and replacement |
9510849, | Aug 07 2009 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
9572662, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
9579196, | Jun 21 2011 | FOUNDRY NEWCO XII, INC | Prosthetic heart valve devices and associated systems and methods |
9579198, | Mar 01 2012 | TWELVE, INC | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
9585751, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
9757145, | Aug 07 2009 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
9763780, | Oct 19 2011 | FOUNDRY NEWCO XII, INC | Devices, systems and methods for heart valve replacement |
9770331, | Dec 23 2010 | Twelve, Inc. | System for mitral valve repair and replacement |
9901443, | Oct 19 2011 | FOUNDRY NEWCO XII, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
ER327, |
Patent | Priority | Assignee | Title |
2961382, | |||
4466442, | Oct 16 1981 | Schering Aktiengesellschaft | Carrier liquid solutions for the production of gas microbubbles, preparation thereof, and use thereof as contrast medium for ultrasonic diagnostics |
4657756, | Nov 17 1980 | Schering Aktiengesellschaft | Microbubble precursors and apparatus for their production and use |
4762915, | Jan 18 1985 | LIPSOME TECHNOLOGY, INC | Protein-liposome conjugates |
4774958, | Jan 27 1983 | SLF LIMITED PARTNERSHIP | Ultrasonic imaging agent and method of preparation |
4797285, | Dec 06 1985 | Yissum Research and Development Company of the Hebrew University of Jerusalem; Hadassah Medical Organization | Lipsome/anthraquinone drug composition and method |
4844882, | Dec 29 1987 | GE HEALTHCARE AS | Concentrated stabilized microbubble-type ultrasonic imaging agent |
4900540, | Jun 20 1983 | Trustees of the University of Massachusetts | Lipisomes containing gas for ultrasound detection |
4936281, | Apr 13 1989 | Everest Medical Corporation | Ultrasonically enhanced RF ablation catheter |
5040537, | Nov 24 1987 | Hitachi, Ltd. | Method and apparatus for the measurement and medical treatment using an ultrasonic wave |
5069664, | Jan 25 1990 | Boston Scientific Scimed, Inc | Intravascular ultrasonic angioplasty probe |
5088499, | Dec 22 1989 | LANTHEUS MEDICAL IMAGING, INC | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
5209720, | Dec 22 1989 | IMARX THERAPEUTICS, INC | Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes |
5215680, | Jul 10 1990 | Cavitation-Control Technology, Inc. | Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles |
5216130, | May 17 1990 | Albany Medical College | Complex for in-vivo target localization |
AU634470, | |||
EP224934A2, | |||
EP278074, | |||
EP278074A2, | |||
EP327490, | |||
GB1577551, | |||
JP2180275, | |||
JP52115591, | |||
WO8002365, | |||
WO8905159, | |||
WO8905160, | |||
WO9001971, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 22 1996 | TACHIBANA, SHUNRO | EKOS L L C | LICENSE AGREEMENT | 014892 | 0626 | |
Jan 22 1996 | TACHIBANA, KATSURO | EKOS L L C | LICENSE AGREEMENT | 014892 | 0626 | |
May 30 1996 | EKOS CORPORATION | (assignment on the face of the patent) | ||||
Nov 19 2001 | EKOS CORPORATION | EKOS CORPORATION | MERGER SEE DOCUMENT FOR DETAILS | 012495 | 0109 |
Date | Maintenance Fee Events |
Feb 20 2002 | M281: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Feb 20 2002 | M284: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Mar 05 2002 | LTOS: Pat Holder Claims Small Entity Status. |
Nov 15 2005 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Oct 31 2003 | 4 years fee payment window open |
May 01 2004 | 6 months grace period start (w surcharge) |
Oct 31 2004 | patent expiry (for year 4) |
Oct 31 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 31 2007 | 8 years fee payment window open |
May 01 2008 | 6 months grace period start (w surcharge) |
Oct 31 2008 | patent expiry (for year 8) |
Oct 31 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 31 2011 | 12 years fee payment window open |
May 01 2012 | 6 months grace period start (w surcharge) |
Oct 31 2012 | patent expiry (for year 12) |
Oct 31 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |