A water and/or oil-impermeable sealing mat is provided in form of a bentonite non-woven fabric combination with the possibility of transmitting thrust from one batt layer to the other, i.e. on a slope thrust forces can be transmitted by the covering batt material through the layer of swellable clay into the supporting batt material. Such a sealing mat is a fiber-reinforced mineral seal permitting the transmission of thrust forces on slopes, without the risk of the layer of swellable clay itself becoming the preferred sliding plane. The sealing mat consists of a non-woven textile material as substrate layer, a layer of swellable clay, preferably sodium bentonite, and a cover layer consisting preferably also of a non-woven textile material, all three layers having been needled together in the conventional manner in a needle loom. When moistened, the clay swells and forms the water and/or oil-impermeable layer. The water and/or oil-impermeable sealing mat is used especially in hydraulic engineering and in waste disposel engineering.

Patent
   RE37295
Priority
Feb 13 1987
Filed
Dec 11 1995
Issued
Jul 24 2001
Expiry
Feb 12 2008
Assg.orig
Entity
Small
2
29
all paid
75. A method for producing an impermeable sealing mat comprising the steps:
applying a powdery bentonite on a substrate layer of a non-woven textile material;
distributing the powdery bentonite in the substrate layer by vibration;
applying a bentonite onto said substrate layer for forming a bentonite layer;
placing a cover layer onto the bentonite layer;
needling the substrate layer, the bentonite layer, and the cover layer on a needle loom.
82. A method for producing an impermeable sealing mat comprising the steps:
rolling an aqueous bentonite paste into a substrate layer of a non-woven textile material;
applying bentonite onto said substrate layer for forming a bentonite layer;
placing a cover layer onto the bentonite layer;
needling the substrate layer, the bentonite layer and the cover layer on a needle loom; and
drying the needled substrate layer, bentonite layer, and cover layer.
78. A method for producing an impermeable sealing mat comprising the steps:
impregnating the substrate layer of a non-woven textile material with an aqueous bentonite suspension;
applying a bentonite onto said substrate layer for forming a bentonite layer;
placing a cover layer onto the bentonite layer;
needling the substrate layer, the bentonite layer, and the cover layer on a needle loom; and
drying the needled substrate layer, bentonite layer, and cover layer.
86. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier consisting essentially of
a first layer being a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric;
a layer of swellable clay disposed adjacent to the first layer and having a thickness of more than about 10 millimeters;
a third layer of a non-woven textile material disposed adjacent to the layer of swellable clay, wherein the first layer, the layer of swellable clay and the third layer are bonded together by needling.
47. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier consisting essentially of
a first layer being a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric;
a layer of swellable clay disposed adjacent to the first layer and having a thickness of from about 0.5 millimeters to 10 millimeters;
a third layer of a non-woven textile material disposed adjacent to the layer of swellable clay, wherein the first layer, the layer of swellable clay and the third layer are bonded together by needling.
1. A water and/or oil-impermeable impermeable sealing mat for use as a water and/or oil barrier consisting essentially of, in that order, a substrate layer, a layer of swellable clay, and a cover layer, wherein
(a) at least one of the substrate and the cover layer consist of a non-woven textile material,
(b) all three layers are bonded together by needling,
(c) the swellable clay is at least partially embedded in a non-woven textile layer and
(d) the thickness of the swellable clay is less than or substantially equal to the thickness of the non-woven textile layer or layers as a whole.
59. An impermeable sealing mat furnishing a water barrier
consisting essentially of
a first layer comprising a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric;
a layer of swollen clay disposed adjacent to the first layer and formed of a layer of swellable clay turned impermeable by interaction with water;
a third layer comprising a non-woven textile material and disposed adjacent to the layer of swollen clay, wherein the first layer, the layer of swellable clay and the third layer are bonded together by needling prior to turning the swellable clay impermeable by interaction with water.
73. An impermeable sealing mat obtained by performing the steps:
applying a layer of swellable clay to a first layer comprising a non-woven textile material;
applying a third layer comprising a member selected from the group consisting of non-woven textile material, woven fabric, and knitted fabric to the layer of swellable clay such that the third layer is disposed adjacent to the layer of swellable clay;
bonding the first layer, the layer of swellable clay, and the third layer together by needling, thereby forming a sealing mat;
laying the sealing mat out at a site of use;
moistening the sealing mat and rendering the sealing mat impermeable to water.
85. A method for producing an impermeable sealing mat comprising the steps:
unwinding a roll of non-woven textile material off a reel;
guiding the unwound non-woven textile material to a needling loom for forming a substrate layer;
applying a weighed quantity of dry bentonite onto the substrate layer for forming a bentonite interlayer;
feeding a roll of non-woven textile material through a further reel to the bentonite interlayer for forming a cover layer;
passing the substrate layer, the bentonite interlayer, and the cover layer through a needle loom;
firmly needling the substrate layer, the bentonite interlayer, and the cover layer mechanically together.
61. A method for producing an impermeable sealing mat comprising the steps:
applying a layer of swellable clay to a first layer comprising a non-woven textile material;
applying a third layer comprising a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric to the layer of swellable clay such that the third layer is disposed adjacent to the layer of swellable clay;
bonding the first layer, the layer of swellable clay and the third layer together by needling thereby forming a sealing mat;
laying the sealing mat out at a site of use;
moistening the sealing mat and rendering the sealing mat impermeable to water.
74. An impermeable sealing mat obtained by performing the steps:
applying a layer of swellable clay, having a thickness of 0.5 mm to 10 mm, to a first layer comprising a member selected from the group consisting of non-woven textile material, woven fabric, and knitted fabric;
applying a third layer comprising a non-woven textile material to the layer of swellable clay such that the third layer is disposed adjacent to the layer of swellable clay;
bonding the first layer, the layer of swellable clay, and the third layer together by needling, thereby forming a sealing mat;
laying the sealing mat out at a site of use;
moistening the sealing mat and rendering the sealing mat impermeable to water.
87. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier consisting essentially of
a first layer being a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric;
a layer of swellable clay disposed adjacent to the first layer;
a third layer of a non-woven textile material disposed adjacent to the layer of swellable clay, wherein the sum of the thicknesses of the first layer, of the layer of swellable clay and of the third layer is limited such that the layers can pass together through a needle loom, and wherein the first layer, the layer of swellable clay and the third layer are bonded together by needling.
66. A method for producing an impermeable sealing mat comprising the steps:
applying a layer of swellable clay, having a thickness of 0.5 mm to 10 mm, to a first layer comprising a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric;
applying a third layer comprising a non-woven textile material to the layer of swellable clay such that the third layer is disposed adjacent to the layer of swellable clay;
bonding the first layer, the layer of swellable clay and the third layer together by needling thereby forming a sealing mat;
laying the sealing mat out at a site of use;
moistening the sealing mat and rendering the sealing mat impermeable to water.
88. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier consisting essentially of
a first layer being a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric;
a layer of swellable clay disposed adjacent to the first layer;
a third layer of a non-woven textile material disposed adjacent to the layer of swellable clay, wherein the first layer, the layer of swellable clay and the third layer are bonded together by needling and wherein the sum of the thicknesses of the first layer, of the layer of swellable clay and of the third layer is limited such that the layers needled together exhibit mechanical coherence.
53. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier consisting essentially of
a first layer being a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric:
a layer of swellable clay disposed adjacent to the first layer and having a thickness of from about 0.5 millimeters to 10 millimeters;
a third layer of a non-woven textile material disposed adjacent to the layer of swellable clay;
holding fibers furnished by needling and drawn through the layer of swellable clay for holding together the first layer, the layer of swellable clay, and the third layer and for preventing any lateral shifting of the swellable clay in a planar direction of the sealing mat.
89. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier consisting essentially of
a first layer being a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric;
a layer of swellable clay disposed adjacent to the first layer;
a third layer of a non-woven textile material disposed adjacent to the layer of swellable clay, wherein the first layer, the layer of swellable clay and the third layer are bonded together by needling and wherein the sum of the thicknesses of the first layer, of the layer of swellable clay and of the third layer is limited such that the layers needled together exhibit a flexibility to a degree that approaches the good pliability properties of mechanically consolidated non-woven textile materials.
33. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier consisting essentially of, in order, a substrate layer, a layer of swellable clay which has the property of swelling and gelatinizing upon contact with water, and a cover layer, wherein
(a) each of the substrate layer and of the cover layer is a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric with the proviso that at least one of the substrate and the cover layers consists of a non-woven textile material,
(b) the thickness of the swellable clay, in the dry state, is about 0.5 to 10 mm, and
(c) all three layers are bonded together by needling,
such that a strong mechanical coherence of said substrate layer, said cover layer and said clay is achieved by the needling which strong mechanical coherence furnishes a transmission of shear stresses from the cover layer to the substrate layer after swelling of the swellable clay.
14. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier comprising a substrate layer and a cover layer, each being a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric with the proviso that at least one of these layers is a non-woven textile material,
a swellable clay which has the property of swelling and gelatinizing upon contact with water, located between the substrate and cover layer, said swellable clay having a thickness of from about 0.5 millimeters to 10 millimeters and constituting a water impermeable barrier when it swells, upon being wetted, and the two layers, with the swellable clay therebetween, being connected by needling, such that a strong mechanical coherence of said substrate layer, said cover layer and said clay is achieved by the needling, which strong mechanical coherence provides a pressure counteracting a swelling pressure of said clay when said clay swells.
24. A sealing mat turning impermeable upon interaction with water and for furnishing a water barrier comprising
a) a substrate layer,
b) a cover layer,
c) an intermediate layer of a swellable clay which has a thickness of about 0.5 to 10 millimeters and has the property of swelling upon contact with water,
said substrate layer and cover layer being selected from the group consisting of a non-woven textile material, a woven fabric and a knitted fabric with the proviso that at least one of said substrate layer and said cover layer is comprised of a non-woven textile material,
said three layers being bonded together by needling to provide multiple individual holding fibers extending throughout the swellable clay layer and anchoring said substrate layer to said cover layer so that a strong mechanical coherence of said substrate layer, said cover layer and said clay is achieved by the needling which strong mechanical coherence provides a pressure counteracting a swelling pressure of said clay when said clay swells.
90. A hydrated sealing mat comprising
a first layer and a second layer, each layer being a member selected from the group consisting of non-woven textile material, woven fabric and knitted fabric with the proviso that at least one of these layers is a non-woven textile material,
a hydrated clay which is located between the first layer and the second layer, said hydrated clay acting as a water impermeable barrier and
the first layer and the second layer, with the hydrated clay therebetween, being connected by needling wherein needles, have caused at least some of the fibers of the at least one layer made of the non-woven textile material to pass through the hydrated clay and anchor to the other layer to draw the two layers towards each other with the hydrated clay in between and anchor to the other layer to draw the two layers towards each other with the hydrated clay enclosed therebetween, such that a strong mechanical coherence of said first layer, said second layer and said clay is achieved by the needling, which strong mechanical coherence provides a pressure counteracting a swelling pressure of said hydrated clay.
2. sealing mat according to claim 1, wherein the non-woven textile material or materials have an area weight of about 250 to about 1000 g/m2, a thickness of about 2 to about 8 mm, effective opening sizes between about 0.08 and about 1.5 mm, water permeabilities at a load of 2 kN/m2 between about 10-3 and about 10-2 m/s and are made of spinning fibers with a length of cut of about 60 to about 150 mm.
3. sealing mat according to claim 2 1, wherein one of the substrate and cover layer is a non-woven textile material and the other layer is a woven or knitted fabric, both of said substrate and cover layer consist of non-rotting synthetic resin fibers or filaments.
4. sealing mat according to claim 3, wherein the fibers and/or filaments consist of polyolefin or polyester.
5. sealing mat according to claim 4, wherein the polyolefin is polypropylene.
6. sealing mat according to claim 4, wherein the polyolefin is high density polyethylene (HDPE).
7. sealing mat according to claim 1, wherein the layer of swellable clay is uniform and has a thickness of about 0.5 to about 10 mm and the swellable clay is powdered or granular.
8. sealing mat according to claim 1, wherein the swellable clay is bentonite.
9. sealing mat according to claim 8, wherein the bentonite is an alkalimetal-activated bentonite.
10. sealing mat according to claim 9, wherein the alkalimetal-activated bentonite is a sodium-activated bentonite.
11. sealing mat according to claim 10, wherein the sodium-activated bentonite is powerded powdered and has such distribution of particle size that the major or predominant part of the particles have a size below 0.002 mm (2 microns).
12. sealing mat according to claim 11 10, wherein about 30 to about 50% of the employed bentonite is located in at least one of the substrate and/or the cover layer a portion of the employed bentonite is located in the or each non-woven layer.
13. sealing mat according to claim 1, wherein
(a) the substrate layer and the cover layer consist of non-woven textile materials,
(b) the non-woven textile materials have an area weight of about 250 to about 1000 g/m2, a thickness of about 2 to about 8 mm, effective opening sizes between about 0.08 and about 1.5 mm, water permeabilities at a load of 2 kN/m2 between about 10-3 m/s and are made of spinning fibers with a length of cut of about 60 to about 150 mm,
(c) the fibers of the non-woven textile materials consist of high density polyethylene, polypropylene or polyester,
(d) the swellable clay is a powdered sodium-activated bentonite and has such distribution of particle size that the major or predominant part of the particles have a size below 0.002 mm (2 microns).
(e) the thickness of the uniform bentonite layer is about, 0.5 to about 10 mm.
(f) about 30 to about 50% of the employed bentonite is located in the substrate layer and in the cover layer.
15. A sealing mat according to claim 14, wherein both the substrate layer and the cover layer are of a non-woven textile material.
16. A sealing mat according to claim 15, wherein both of said substrate and cover layers are made of non-rotting synthetic resin fibers or filaments.
17. A sealing mat according to claim 14, wherein one of the substrate and cover layer is non-woven textile material and the other layer is woven or knitted fabric.
18. A sealing mat according to claim 17, wherein both of said substrate and cover layers are made of non-rotting synthetic resin fibers or filaments.
19. A sealing mat according to claim 14, wherein the swellable clay is bentonite.
20. A sealing mat according to claim 19, wherein the swellable clay bentonite, when dry, is powdered or granular form.
21. A sealing mat according to claim 20, wherein between 30% to 50% of the bentonite powder or granules, in the dry state, is located within one of the substrate or cover layers.
22. A sealing mat according to claim 20, wherein the swellable clay is a powdered sodium-activated bentonite and has such distribution of particle size that the major part of the particles have a size below 0.002 millimeters.
23. A sealing mat according to claim 20, wherein the bentonite is a natural sodium bentonite.
25. A sealing mat according to claim 24, wherein both of the cover and substrate layers are of non-woven textile material.
26. A sealing mat according to claim 25, wherein both of said substrate and cover layers are made of non-rotting synthetic resin fibers or filaments.
27. A sealing mat according to claim 24, wherein one of the substrate and cover layers is a non-woven textile material and the other layer is woven or knitted fabric.
28. A sealing mat according to claim 27, wherein both of said substrate and cover layers are made of non-rotting synthetic resin fibers or filaments.
29. A sealing mat according to claim 24, wherein the swellable clay is bentonite which, when dry, is in powdered or granular form.
30. A sealing mat according to claim 29, wherein between 30% to 50% of the bentonite powder or granules, in the dry state, is located within one of the substrate or cover layers.
31. A sealing mat according to claim 29, wherein the non-woven textile materials have an area weight of about 250 g/m2 to about 1000 g/m2, a thickness of about 2 to 8 millimeters, and effective opening sizes between 0.08 and 1.5 millimeters, water permeabilities at a load of 2 kN/m2 between about 10-3 and about 10-2 m/sec and are made of spinning fibers with a length of from about 60 to 150 millimeters.
32. A sealing mat according to claim 29, wherein the bentonite is a sodium bentonite.
34. A sealing mat according to claim 33, wherein the swellable clay is at least partially embedded in the non-woven textile layer.
35. A sealing mat according to claim 33, wherein one of the substrate and cover layers is non-woven textile material and the other layer is a woven or knitted fabric, both of said substrate and cover layers consisting of non-rotting synthetic resin fibers or filaments.
36. A sealing mat according to claim 35, wherein the fibers and/or filaments consist of polyolefin or polyester.
37. A sealing mat according to claim 36, wherein the polyolefin is polypropylene.
38. A sealing mat according to claim 36, wherein the polyolefin is high density polyethylene (HDPE).
39. A sealing mat according to claim 36, wherein the layer of swellable clay is uniform and swellable clay is powdered or granular.
40. A sealing mat according to claim 33, wherein the swellable clay is bentonite.
41. A sealing mat according to claim 40, wherein the bentonite is an alkalimetal-activated bentonite.
42. A sealing mat according to claim 41, wherein the alkalimetal-activated bentonite is a sodium-activated bentonite.
43. A sealing mat according to claim 42, wherein the sodium-activated bentonite is powdered and such distribution of particle size that the major or predominant part of the particles have a size below 0.002 mm (2 microns).
44. A sealing mat according to claim 43, wherein about 30% to about 50% of the employed bentonite is located in at least one of the substrate and/or the cover layers.
45. A sealing mat according to claim 40, wherein the bentonite is a natural sodium bentonite.
46. A sealing mat according to claim 45, wherein about 30% to about 50% of the employed bentonite is located in the substrate layer and in the cover layer.
48. The sealing mat according to claim 47 wherein the swellable clay is at least partially embedded in the layer or layers of non-woven textile material.
49. The sealing mat according to claim 47 wherein the thickness of the swellable clay is less than or substantially equal to the thickness of the layer or layers of non-woven textile material as a whole.
50. The sealing mat according to claim 47, wherein the first layer is a layer of non-woven textile material pretreated with bentonite.
51. The sealing mat according to claim 47, wherein the first layer is a layer not pretreated with bentonite, and wherein the third layer is a layer not pretreated with bentonite.
52. The sealing mat according to claim 47 wherein the thickness of the non-woven textile materials is from about 2 to about 8 mm.
54. The sealing mat according to claim 53 wherein the swellable clay is at least partially embedded in a layer of non-woven textile material.
55. The sealing mat according to claim 53 wherein the thickness of the swellable clay is less than or substantially equal to the thickness of the layer or layers of non-woven textile material as a whole.
56. The sealing mat turning impermeable according to claim 53, wherein
the holding fibers remain substantially anchored over part of their length in the cover layer, whereas another part of the length of the same fibers is fixedly retained in the support layer.
57. The sealing mat according to claim 53, wherein the first layer is a layer of non-woven textile material pretreated with bentonite.
58. The sealing mat according to claim 53, wherein the first layer is a layer of non-woven textile material pretreated with bentonite, and wherein the third layer is a layer of non-woven textile material pretreated with bentonite.
60. The sealing mat according to claim 59 wherein the swollen clay is at least partially embedded in a layer of non-woven textile material.
62. The method according to claim 61 wherein the swellable clay is a powdery bentonite; further comprising distributing the powdery bentonite by vibration.
63. The method according to claim 61 further comprising at least partially embedding the swellable clay in a layer of non-woven textile material.
64. The method according to claim 61 further comprising maintaining the thickness of the swellable clay at a time prior to laying out to less than or to substantially equal to the thickness of the layer of non-woven textile material or to the layers of non-woven textile material as a whole.
65. The method according to claim 61 further comprising maintaining the thickness of the swellable clay at a time prior to laying out to less than about five times the thickness of the layer or layers of non-woven textile material as a whole.
67. The method according to claim 66 wherein the swellable clay is a bentonite.
68. The method according to claim 66 further comprising at least partially embedding the swellable clay in a layer of non-woven textile material.
69. The method according to claim 66 further comprising maintaining the thickness of the swellable clay at a time prior to laying out to less than or to substantially equal to the thickness of the layer of non-woven textile material or to the layers non-woven textile material as a whole.
70. The method according to claim 66 further comprising maintaining the thickness of the swellable clay at a time prior to laying out to less than about five times the thickness of the layer or layers of non-woven textile material as a whole.
71. The method according to claim 66, further comprising pretreating the first layer consisting of non-woven textile material with bentonite.
72. The method according to claim 66, further comprising pretreating the first layer consisting of non-woven textile material with bentonite; and
pretreating the third layer consisting of non-woven textile material with bentonite.
76. The method according to claim 75, wherein the cover layer is a layer consisting of a non-woven textile material.
77. The method according to claim 75, wherein the cover layer is a layer consisting of a non-woven textile material with included bentonite, obtained by applying powdery bentonite on the non-woven textile material and distributing the powdery bentonite in the non-woven textile material by vibration.
79. The method according to claim 78, wherein the cover layer is a layer consisting of a non-woven textile material with included bentonite, obtained by applying powdery bentonite on the non-woven textile material and distributing the powdery bentonite in the non-woven textile material by vibration.
80. The method for producing an impermeable sealing mat according to claim 79, further comprising the step:
drying the impregnated layers.
81. The method according to claim 78, wherein the cover layer is a layer consisting of a non-woven textile material.
83. The method according to claim 82, wherein the cover layer is a layer consisting of a non-woven textile material.
84. The method according to claim 82, wherein the cover layer is a layer consisting of a non-woven textile material with included bentonite, obtained by applying powdery bentonite on the non-woven textile material and distributing the powdery bentonite in the non-woven textile material by vibration.

finally a bentonite layer and a cover layer. After these sealing mats have been laid out and subsequently moistened, the substrate and cover layers are connected only via the swollen bentonite layer therebetween, which has the consistency of grease. Now if it is considered that the sealing mats must further be weighted down with a sand or soil filling and then with gravel or rocks not only on flat surfaces, but also on slopes, it is easily conceivable that such a filling on the swollen intermediate bentonite layer, which acts like a slide, slips off, which is often observed in practice.

Thus, in principle, the sealing mats described in the above-given U.S. patents--as already indicated--serve only to pack the bentonite in flat form, such that the cover layer disconnects from the substrate layer upon the swelling of the bentonite and a continuous bentonite layer takes shape.

However, in reality such a bentonite layer can be produced more simply and inexpensively in situ in the manner described in the U.S. Pat. No. 4,344,722. Said patent provides a method and a system for waterproofing a desired substrate and further contemplates a waterproof and chemical-resistant product. The method comprises providing a length of flexible moisture-permeable thin, synthetic sheet material having desired characteristics, placing in contact with the substrate to be waterproofed a layer of the material, covering the layer of material with a central layer of bentonite (Montmorillonite clay) and placing on top of the bentonite a third layer of the fabric. The flexible moisture-permeable thin, synthetic sheet material is typically a non-woven fabric.

Therefore, a primary object of the present invention is to provide a water and/or oil-impermeable sealing mat containing a swellable clay, preferably bentonite, said sealing mat being constructed such that in practical application on slopes it can transfer thrust forces caused by the sand and rock loads from the upper cover layer through the swollen intermediate bentonite layer directly onto the substrate layer. In other words, the water-impermeable sealing mat according to the invention should be securely bonded even after the swelling of the bentonite, to prevent the sand or gravel filling weighted down with gravel or rocks from sliding off.

Starting from this already inventive task, a further object of the present invention is to provide such a water and/or oil-impermeable sealing mat, which can be easily and economically manufactured and mass produced.

A still further object of the present invention is to provide a water and/or oil-impermeable sealing mat, which can be manufactured in varying thickness for different applications as a water barrier, which prevents the seepage of water and/or the leaching of contaminants from ponds, reservoirs, dams, municipal and industrial waste lagoons or the like.

These objects are realized according to the present invention by a water and/or oil-impermeable sealing mat which is produced by applying on the substrate layer the dry powdered or granular swellable clay, placing the cover layer thereon, wherein the substrate and the cover layer consist of non-woven textile material and the layer optionally not consisting of non-woven textile material consists of woven or knitted fabric, and passing the resulting triple layer material through a needle loom in order to needle the substrate layer and the cover layer together.

At this point it must be mentioned that it has long been known to needle granular or powdery materials between two non-woven textile materials. For example, as early as 1973, in the German laying-open specification 23 27 618, the applicant described a large-area, multi-layered drainage element for underground construction, with large surface dimensions, low weight and low construction height, wherein a granular material is needled in between two non-woven textile materials. The two non-woven textile materials were interconnected using known needling techniques. Corresponding forms, albeit for filtering purposes, are also described in the U.S. Pat. Nos. 4,424,248 and 4,250,172. For example, according to the method described in the U.S. Pat. No. 4,424,248, fibers, granulates or powders are needled in between two non-woven textile materials. In the manufacture of such drainage elements or filter elements, first of all, the granulate or powder layer is applied to the support layer and then the cover layer of fleece material, i.e. a layer of needle-punchable fibers, is applied to the granulate or powder layer. These needle-punchable fibers are engaged by downwardly directed barbs arranged laterally of the shaft of the needle which are used for instance during the fabrication of needle felt. The fibers which are thus engaged by the needle during needle punching are deflected in a direction perpendicular to the plane of the surface of the cover layer. This requires a certain strength and pliability of the fibers, and in the case of fibers an adequate staple length, in the case of endless filaments, for instance a deposition in the form of loose loops or coils, so that such loops can be downwardly drawn by the barbs without tearing the filaments.

As is known from the needle felting art a multiplicity of needles simultaneously carry out a needle puncturing operation and throughout a number of successive strokes, so that there results for instance a stitch density of 60 stitches per cm2 from the side of the cover or top layer into the support layer. The barbs of the needles, upon passage through the cover layer, tear along individual fibers or entire clusters of holding fibers and partially orient them to a point past the support layer. Upon retraction of the needle the holding fibers are stripped off of the barbs. The holding fibers then for the most part remain anchored over part of their length in the cover layer, whereas another part of the length of the same fibers is fixedly retained by the support layer. Owing to the multiplicity of needle stitches there are drawn-in such holding fibers at numerous locations distributed over the entire surface. Consequently, there are thus held together the support layer and the cover layer. On the other hand, the layer of grains or particles has drawn therethrough numerous fibers, so that the grains or particles are prevented from any lateral shifting in the plane of the surface of the article. The particles are embedded in a loosened form between the holding fibers. These holding fibers hold together the layers.

Although, as the above statements show, it has been known for years to needle granular or powdery materials between two layers of non-woven material, up to now no one has attempted to needle bentonite in for the purposes of the present invention. The reason for this can probably be found in the fact that, due to the enormous swelling capability of bentonite (on absorbing water, bentonite swells to 10 to 20 times its dry volume) it was assumed that the fibers projecting only into the substrate layer would not withstand the enormous swelling pressure thereby arising, i.e. that the fibers would be pulled back out of the substrate layer by the swelling bentonite. However, this would mean that the main object of the present invention could not be realized, according to which the substrate layer and the cover layer are to remain securely connected during and after the swelling of the swellable clay as well, in order on the one hand to build up a counterpressure to the swelling, guaranteeing a denser packing of the swollen clay particles, and on the other hand to guarantee the transmission of the thrust force from cover layer to substrate layer and not to impede this transmission in any way by the very low friction coefficients of the swollen clay.

Therefore, the invention is not based on the idea of introducing bentonite between two non-woven fabric sheets and thereafter needling the non-woven sheets one to the other only for the purpose of packing bentonite between two layers. Furthermore, the present invention is directed to a bentonite non-woven fabric combination with the possibility of transmitting thrust from one batt layer to the other, i.e. on a slope thrust forces can be transmitted by the covering batt material through the bentonite layer into the supporting batt material. The present invention relates to a fiber-reinforced mineral seal permitting the transmission of thrust forces on slopes, without the risk of the bentonite layer itself becoming the preferred sliding plane. Products used heretofore require particularly tenacious supporting inlays for use on slopes to direct the thrust forces above the bentonite layer toward the upper edge of the slope. There said products have to be secured in an anchoring ditch. In our invention this is not necessary, since thrust forces can be transmitted through by the fiber-reinforced seal, as mentioned before.

A further problem underlying the invention was to effect fiber interlocking by needling between supporting and covering layer in such a way that also after swelling of the bentonite the fiber coherence between cover layer and supporting layer remains intact for transmitting thrust. In this connection it is pointed out once more that, in swelling, bentonite increases its volume by 10 to 20 times. The thereby occurring swelling pressure let the expert presume that such swelling pressure would separate the fiber batts one from the other. However, this, surprisingly, is not so, and it can be said that the present invention has overcome a prejudice that had existed among those skilled in the art.

The present invention overcomes this prejudice and provides a water and/or oil-impermeable sealing mat for use as a water and/or oil barrier consisting substantially of a substrate layer, a layer of swellable clay, and a cover layer, wherein

(a) the substrate and/or the cover layer consist(s) of non-woven textile material, and the layer optionally not consisting of non-woven textile material consists of woven or knitted fabric,

(b) all three layers are bonded together by needling,

(c) the swellable clay is at least partially embedded in a non-woven textile layer and

(d) the thickness of the swellable clay is less than or at least not substantially greater than that of the non-woven textile layer(s) as a whole.

The non-woven textile materials have preferably an area weight of about 250 to about 1000 g/m2, a thickness of about 2 to about 8 mm, effective opening sizes between about 0.08 and about 1.5 mm, water permeabilities at a load of 2 kN/m2 between about 10-3 and about 10-2 m/s and are made of spinning fibers with a length of cut of about 60 to about 150 mm, preferably of about of 120 to about 150 mm.

About 30 to about 50% of the employed clay, especially if finely powdered bentonite is used, is located in the substrate and/or the cover layer.

For example, one of the sealing mats according to the present invention has the following characteristics:

1. Sheet thickness of the bentonite layer dry: about 2 mm after 3 hours storage in water: about 8 mm

TBL 2. Sheet thickness of the bentonite mat (mm) load dry after 3 hrs' storage in water 2 kN/m2 9.9 14.9 20 kN/m2 8.9 13.9

3. Also in wet (swelled state there still exists a very good bond between supporting batt material and covering batt material.

4. Preferably fibers of 120 mm to 150 mm length are employed.

5. The needle punching through the bentonite layer results in a fiber-reinforced bentonite mat which enables a transfer of shear stresses forces to the bentonite layer (from the top side of the bentonite mat to the bottom or the other way round). The shear stresses forces have been determined in a shearing test at a load of 200 kN/m2 with 120 nN/m2.

Preferably both the substrate layer and the cover layer consists of non-woven textile material. However, also a structure may be desirable in which the substrate layer consists of non-woven textile fabric and the cover layer consists of woven or knitted textile fabrik, or the cover layer constists of non-woven textile fabric and the substrate layer constists of woven or knitted fabric.

The non-woven textile fabrics employed preferably consists of high grade synthetic resin fibers, especially of polyethylene, polypropylene, polyester and polyacrylic and/or polyamide fibers. For use in waste disposal engineering non-woven textile materials made from high density polyethylene (HDPE) are especially preferred.

Such non-woven fabrics are absolutely resistant to rotting (resistant to all substances occuring in bodies of water and in soil) and thus warrant evidently an extremely long service life. Their extraordinarily high tear strength provides substantial resistance to mechanical wear. They are highly stable toward ultra-violet radiation and have a high specific gravity (significant advantage in case of underwater installation).

The non-woven textile materials employed according to the invention preferably have the mechanically consolidated structure of staple fiber batts. The crimped fibers are assembled to form a sheet structure with a maze of interstices. This ideally imitates the structure of the soil. The structure of the non-woven textile materials can be made coarser or finer, depending on the nature of the soil, so that optimum adaption to the type of soil at the site of use is warranted. The mechanical consolidation ensures a high friction coefficient between the soil and the non-woven textile material and the covering material. Instead of the non-woven textile fabrics consolidated mechanically by needling also non-woven textile fabrics can be employed which were consolidated mechanically by stitchbonding or by swirling, or which were chemically bonded.

The non-woven textile materials include, for example, materials listed in the following Tables 1 and 2.

TABLE 1
Type D 455 R D 615 R D 815 R
Fiber Raw Material 100% HDPE 100% HDPE 100% HDPE
Sheet Weight 450 600 800
(g/m2)
Thickness (mm) 4.3 4.4 4.7
at 2 kN/m2
Maximum Tensile 54/66 80/102 84/120
Strength DIN 53
857 (Strip Drawing
Test) (Length/
Width) (daN/10 cm)
Elongation at Break 230/193 247/198 300/200
DIN 53 857
(Length/Width) (%)
Deformation at In- 123 116 110
denter Piercing
Force DIN 54 307
(%)
Interstitial Width 0.13 0.09 0.08
Opening Sizes
(mm)
Water Permeabitity 7.7 · 10-3 4.6 · 10-3 4.5
· 10-3
(m/a) at 2 kN/m2
without Soil
Contact
Cone Dropping Test 15 9 8
(Piercing Test)
Hole Diameter
(mm)
Standard Width 4.40/100 4.40/50 4.40/50
(m)/Length (m)
TABLE 1
Type D 455 R D 615 R D 815 R
Fiber Raw Material 100% HDPE 100% HDPE 100% HDPE
Sheet Weight 450 600 800
(g/m2)
Thickness (mm) 4.3 4.4 4.7
at 2 kN/m2
Maximum Tensile 54/66 80/102 84/120
Strength DIN 53
857 (Strip Drawing
Test) (Length/
Width) (daN/10 cm)
Elongation at Break 230/193 247/198 300/200
DIN 53 857
(Length/Width) (%)
Deformation at In- 123 116 110
denter Piercing
Force DIN 54 307
(%)
Interstitial Width 0.13 0.09 0.08
Opening Sizes
(mm)
Water Permeabitity 7.7 · 10-3 4.6 · 10-3 4.5
· 10-3
(m/a) at 2 kN/m2
without Soil
Contact
Cone Dropping Test 15 9 8
(Piercing Test)
Hole Diameter
(mm)
Standard Width 4.40/100 4.40/50 4.40/50
(m)/Length (m)

The interlayer of swellable clay preferably consists of bentonites. Bentonites are clays having an appreciably to high content of smectite (montmorillonite) which decisively determines the properties (high swellability, good water absorption capacity, high plasticity). In order to obtain from an alkaline earth metal bentonite having low swellability in water a highly swellable active bentonite the alkaline earth metal ions of the bentonites are replaced by alkali metal ions, preferably sodium ions. Therefore, sodium bentonite exhibiting highly increased plasticity, viscosity, thixotropy and water absorption is preferred for use according to the present invention.

The bentonite can be present in powdered and/or granulated form. The powdered form is preferred. Particularly preferred is sodium-activated bentonite which has such distribution of particle size that the major or predominant part of the particles have a size below 0.002 mm (2 microns).

Such a preferred sodium-activated bentonite has for example the following distribution of particle size:

>60 μm: 1,5%

60-40 μm: 2%

40-20 μm: 1,5%

20-10 μm: 2%

10-2 μm: 6%

<2 μm: 87%

The layer of swellable clay is substantially uniform. Depending on the particular application, the thickness of the said clay layer preferably ranges from 0.5 to 10.0 mm. However, it may also be smaller or greater, which depends on the employed clay, inter alia, also on the circumstances whether or not the substrate and/or cover layer was pretreated with ultrafinely divided bentonites, as described above, or for which purpose the sealing mat shall be used.

A preferred embodiment according to the invention is such a sealing mat wherein

(a) the substrate layer and the cover layer consist of non-woven textile materials,

(b) the non-woven textile materials have an area weight of about 250 to about 1000 g/m2, a thickness of about 2 to about 8 mm, effective opening sizes between about 0.08 and about 1.5 mm, water permeabilities at a load of 2 kN/m2 between about 10-3 and about 10-2 m/s and are made of spinning fibers with a length of cut of about 60 to about 150 mm,

(c) the fibers of the non-woven textile materials consist of high density polyethylene, polypropylene or polyester,

(d) the swellable clay is a powdered sodium-activated bentonite and has such distribution of particle size that the major or predominant part of the particles have a size below 0.002 mm (2 microns).

(e) the thickness of the uniform bentonite layer is about 0.5 to about 10 mm,

(f) about 30 to about 50% of the employed bentonite is located in the substrate layer and in the cover layer.

The substrate layer can consist of two non-woven textile materials needled together, whereof the one non-woven material has very fine pores and the non-woven material associated with the bentonite layer has coarse pores. In this case the coarse-pored non-woven textile material (upper limit Dw =1.5 mm) can be filled up to 100% with bentonite.

The production of the sealing mat according to the invention is carried out such that first the interlayer of dry, swellable clay is applied onto the substrate layer and thereon the cover layer is placed, whereafter all three layers are needled in a needle loom.

Moreover, the sealing mats according to the invention can also be prepared by first applying, in the manufacture thereof, a powdery bentonite on the substrate layer and distributing it by vibration, and thereafter applying the bentonite. Instead of the distribution of the powdery bentonite by vibration into the substrate layer the substrate layer can also be first impregnated with an aqueous bentonite suspension, or an aqueous bentonite paste can be rolled onto the substrate layer, whereafter--optionally after previous drying--the bentonite layer is applied. If desired, the cover layer can be treated like the substrate layer in the manner described above before being placed on the interlayer.

Needling of the three layers on the needle loom provides the desired strong mechanical coherence of the three layers of the sealing mat according to the invention. In addition thereto, further essential advantages are thereby attained. Even without the previous pretreatment of substrate and/or cover layer described above, needling at the inner surface facing the bentonite interlayer and the zones of the non-woven textile materials disposed there-beneath effects intensive mixing of fibers and bentonite. Moreover, as the bentonite swells when moistened, the strong needling bond provides a pressure counteracting the swelling pressure which, in combination with the above described intensive mixing of fibers and bentonite, warrants water impermeability of the sealing mats of the invention. Furthermore, needling ensures flexibility of the scaling mats to a degree that comes close to the goodpliability good pliability properties of mechanically consolidated non-woven textile materials.

The needling treatment results further in a contiguous fiber bond between substrate and cover layers.

The substrate and the cover layer are in such a way bonded together by needling so that shifting, i.e. pushing force, e.g. on slopes, can be transmitted by the cover layer via the fiber composite to the substrate layer. Without this fiber composite extending all through the bentonite layer the bentonite layer--especially in swelled condition--forms a preferred sliding path on slopes. After swelling of the clay and increase of the sealing mat thickness the coherence between supporting and cover layers effected by needling remains intact (in order to warrant the transmission of thrust). The result of needle punching is a fiber-reinforced bentonite layer. Besides thrust reinforcement, the bentonite is locked in the fiber texture.

The impermeable sealing mats of the invention are used especially in hydraulic engineering and waste disposal engineering.

The present invention will now be explained with reference to FIGS. 1 and 2 and the following examples, without being restricted thereto.

FIG. 1 shows in cross section a part of the sealing mat 1 according to the invention;

FIG. 2 shows schematically a longitudinal section along the continuous production line resulting in the water impermeable sealing mat 1 according to the invention.

From a supply bin 6 the bentonite is applied as bentonite interlayer 3 onto the substrate layer 2 (non-woven textile material) wound off a supply reel, not shown. Thereafter the cover layer 4 (also a non-woven textile material) likewise wound off a supply reel, not shown, is placed on the bentonite interlayer 3. The thus obtained sheet structure composed of three layers is passed through a needle loom 7 in which all three layers are needled in a manner known per se. Depending on the thickness of the bentonite interlayer 3 the needled sheet structure representing the water impermeable sealing mat is wound on reels or is cut into the particular lengths desired for the contemplated use.

After having been laid out on large areas at the site of use the thus manufactured sealing mats can be fused together or sewn together along the abutting rims to allow also along the abutting edges the bentonite interlayer to merge and form a coherent water-impermeable interlayer upon swelling. Water-tight overlapping is also achieved by inserting between the overlapping regions a bentonite bead and then compressing said regions.

To make a sealing mat for hydraulic engineering a non-woven textile material 1004 R is used as supporting layer 2, and a non-woven textile material 201-3 is used as cover layer 4 with the characteristics listed hereafter:

TABLE 3
Type 1004 R 201-3
Fiber Raw Material PES/PP PES
Sheet Weight (g/m2) 814 225
Thickness (mm) at 2 kN/m2 6.6 2.8
Maximum Tensile Strength 149/341 95/140
DIN 53 857
(Strip Drawing Test)
Length/Width)
(daN/10 cm)
Elongation at Break 111/49 65/60
DIN 53 857
(Length/Width) (%)
Deformation at Indenter -- --
Piercing force
DIN 54 307 (%)
Interstitial Width (mm) 0.08 0.09
Water Permeability (m/s) 4.9 - 10-3 6.0 - 10-5
without Soil Contact
at 2 kN/m2
Cone Dropping Test -- 16
(Piercing Test)
Hole Diameter (mm)
Standard Width (m)/ 4.80 × 100 4.75 × 100
Length (m)

The non-woven material, Type 1004 R, is a hydraulic engineering mat that has been in use for years and proved to be serviceable. The production width is usually 4.80 m. It constitutes a composite material composed of two layers of non-woven textile fabric, namely a filter layer of polyester (PES; about 70% of the total weight) and a coarse fiber layer of polypropylene fibers (about 30%l of the total weight). The fibers are consolidated purely mechanically by needling. This two-layer composite non-woven material serving as substrate layer 2 has a sheet thickness greater than 6.0 mm.

The non-woven textile fabric 201-3 is a single-layer material made up of 100% polyester fibers. As will be seen from the preceding table, the sheet weigth is about 225 g/m2 and the sheet thickness is about 2.8 mm. The production width normally is also 4.80 m.

The bentonite interlayer 4 consists of an activated sodium bentonite applied in an amount of about 2500 g/m2, which corresponds to a layer thickness of about 1 to 2 mm.

The mat is manufactured in the following way:

A roll of non-woven textile material 1004 R is wound off a reel and is guided to a needling loom 7 as substrate layer 2. While the web is unwound a weighed quantity of dry bentonite having a particle size of a few millimeters is applied onto the substrate layer 2. At the same time a roll of non-woven textile material 201-3 is fed via a further reel to the bentonite interlayer 3 as cover layer 4. These three layers then pass through the needle loom 7 where they are mechanically firmly bonded together.

The needle loom 7 has one or more needle boards. Each needle board is provided with thousands of needles. The needle boards are moved rapidly up and down (up to about 1000 strokes per minute). The needless provided with barbs pierce the layers of non-woven fabric material 2, 4 and the bentonite interlayer 3, and the barbs take care that the individual fibers are interlaced to form a firm structure. Since the needling operation is not free of vibrations, a portion of the applied bentonite enters into the fiber batts, especially into the pores of the coarse fiber batt of the substrate layer 2 facing the bentonite interlayer 3.

The sealing mat obtained downstream of the needling loom 7 is wound on a reel and is transported to the site of use where it performs the function of a water impermeable sealing mat after having been laid out and moistened.

For the manufacture of a water impermeable sealing mat for use in waste disposal engineering the non-woven textile materials specified in Table 1 consisting of high density polyethylene fibers are used for the substrate 2 and for the cover layer 4. Substrate layer 2 and cover layer 4 may be the same or different.

In this example a sealing mat of the Type A is described for impermeable revetments on canals, reservoirs or dams with cover layers of rip-rap. The Type A sealing mat consists of a heavy carrier geotextile which is being produced according to the specifications of the Bundesanstalt fur Wasserbau (Federal Institute for Waterway Engineering) as a geotextile filter for soil type 4. Type A can be covered directly with heavy stones.

The properties of Type A sealing mat are as follows:

TBL substrate layer: double-layered non-woven texile material Terrafix 1004 R of PES/PP fibers Cover layer: single-layered non-woven textile material 300 g/m2 of PES fibers Intermediate layer: Bentonite B4 Area weight (g/m2): approx. 4100 Max. tensile strength (N/10 cm) longitudinal: >1600 transverse: >2500 Elongation at max. tensile strength (%) longitudinal: 60 transverse: 50 Thickness (mm) 10 kv value (m/s): approx. 5.5 × 10-10

In this example a sealing mat of the Type B is described for sealings in cultural landscaping (ponds, storage basins, roads in catching areas for potable water), pond linings, etc. with cover layers of sand or gravel ballast. The Type B sealing is provided with a lighter carrier material. The cover layer can only consist of fine grained soils such as sand and gravel or crushed stones.

The properties of Type B sealing mat are as follows:

TBL Substrate layer: single-layered non-woven texile material 300 g/m2 of PES fibers Cover layer: single-layered non-woven textile material 300 g/m2 of PES fibers Intermediate layer: Bentonite B4 Area weight (g/m2): approx. 3600 Max. tensile strength (N/10 cm) longitudinal: >1400 transverse: >2400 Elongation at max. tensile strength (%) longitudinal: 60 transverse: 50 Thickness (mm) 8 kv value (m/s): approx. 5.5 × 10-10

In this example a sealing mat of the Type C is described for protection for synthetic membranes against coarse drainage material (e.g. gravel 16/32 mm) in refuse dumps. The Type C sealing mat makes use of the known high chemical resistance of high density polyethylene (PEHD). Thus, Type C can also be used in refuse dumps or similar highly aggressive environments. Designed as a protection layer for synthetic linings, the Bentonite Impervious Mat with a permeability coefficient of kν approx. 10-10 m/s forms an additional impermeable water barrier which reduces possible leakages and protects the membrane against direct contact with encrusted drainage layers.

The properties of Type C sealing mat are as follows:

TBL Substrate layer: single-layered non-woven texile material 300 g/m2 of PEHD fibers Cover layer: single-layered non-woven textile material 450 g/m2 of PES fibers Intermediate layer: Bentonite B4 Area weight (g/m2): approx. 3600 Max. tensile strength (N/10 cm) longitudinal: >1400 transverse: >2400 Elongation at max. tensile strength (%) longitudinal: 60 transverse: 50 Thickness (mm) 8 kv value (m/s): approx. 5.5 × 10-10

Heerten, Georg, Johannssen, Karsten, Muller, Volkhard

Patent Priority Assignee Title
7128498, Apr 11 2001 The United States of America as represented by the Secretary of the Army Method of containing and at least partially remediating contaminants in soils, including sediments
7160183, Oct 31 2000 Jason Incorporated Buffing tools and methods of making
Patent Priority Assignee Title
1577450,
1799047,
2266638,
2277286,
2364621,
3186896,
3445322,
3561177,
3630762,
4048373, May 23 1974 American Colloid Company Water barrier panel
4070839, Sep 09 1976 American Colloid Company Moisture impervious panel
4139588, May 23 1974 AMCOL INTERNATIONAL CORPORATION, A DELAWARE CORPORATION Method of making a water barrier panel
4209568, Sep 18 1978 AMCOL INTERNATIONAL CORPORATION, A DELAWARE CORPORATION Bentonite-gelled oil waterproofing composition
4250172, Feb 09 1979 Needled fiber mat containing granular agent
4255067, Nov 02 1978 John C., Wright Disposal of liquid waste and recovery of metals therefrom
4279547, Sep 18 1978 AMCOL INTERNATIONAL CORPORATION, A DELAWARE CORPORATION Bentonite-gelled oil waterproofing composition
4344722, Jan 13 1981 AMCOL INTERNATIONAL CORPORATION, A DELAWARE CORPORATION Waterproofing barrier
4424248, Dec 24 1977 Breveteam S.A. Areal flat stratified body for treating gases or liquids, method for the manufacture thereof and use of such stratified body
4473477, Sep 30 1981 SOUTHERN CLAY PRODUCTS, INC Method of organic waste disposal
4495235, Jul 27 1981 Process for the preparation of fiber-reinforced flat bodies containing a hardenable binder
4501788, Feb 27 1981 CLAYMAX CORPORATION, AN ILLINOIS CORPORATION Waterproofing soil
4565468, Oct 24 1983 CRAWFORD, BETTY L Moisture impervient barrier and method for making same
4622260, Jul 27 1981 Mat shaped composite body
4656062, Nov 22 1982 AMCOL INTERNATIONAL CORPORATION, A DELAWARE CORPORATION Self-healing bentonite sheet material composite article
CA1247347,
DE2264258,
DE2327618,
DE3704503C2,
GB2151912A,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 11 1995Naue-Fasertechnik GmbH & Co. KG(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 20 2002M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Jul 24 20044 years fee payment window open
Jan 24 20056 months grace period start (w surcharge)
Jul 24 2005patent expiry (for year 4)
Jul 24 20072 years to revive unintentionally abandoned end. (for year 4)
Jul 24 20088 years fee payment window open
Jan 24 20096 months grace period start (w surcharge)
Jul 24 2009patent expiry (for year 8)
Jul 24 20112 years to revive unintentionally abandoned end. (for year 8)
Jul 24 201212 years fee payment window open
Jan 24 20136 months grace period start (w surcharge)
Jul 24 2013patent expiry (for year 12)
Jul 24 20152 years to revive unintentionally abandoned end. (for year 12)