A supervision control system for an ATM cell switching system counts the number of cells transmitted from a subscriber in a predetermined duration unit, attaches a sign to the cells when the counted value exceeds a predetermined value, and discards the cells to which the sign is attached when a buffer does not have enough capacity during a cell multiplexation.

Patent
   RE37435
Priority
Oct 19 1990
Filed
Feb 27 1997
Issued
Nov 06 2001
Expiry
Oct 19 2011
Assg.orig
Entity
Large
5
49
all paid
51. A supervision control method in which a cell having a header field with an identified virtual connection, is received from a source, comprising:
storing a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections; and
marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the stored bandwidth data for the received cell.
55. A supervision control apparatus in which a cell having a header field with an identified virtual connection, is received from a source, comprising a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the bandwidth data stored at an address of the memory corresponding to the identified virtual connection of the received cell.
59. A switching system which receives a cell including a header field with an identified virtual connection, comprising:
a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the bandwidth data stored at the address of the memory corresponding to the identified virtual connection of the received cell; and
a switch to direct the cell from said supervisor to the identified virtual connection.
68. A switching system, comprising:
an interface to receive a cell including a header field with an identified virtual connection;
a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the bandwidth data stored at an address of the memory corresponding to the identified virtual connection of the received cell; and
a switch to direct the cell from said supervisor to an output of the identified virtual connection.
62. A switching system which receives a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority, comprising:
a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the bandwidth data stored at the address of the memory corresponding to the identified virtual connection of the received cell; and
a switch to direct the cell from said supervisor to the identified virtual connection.
30. A supervision control method, comprising:
receiving a cell including a header field with an identified virtual connection;
storing a plurality of bandwidth data which are pre-assigned to a plurality of sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitoring a transmission rate on the identified virtual connection of a received cell;
comparing the transmission rate with the bandwidth data stored at the memory address corresponding to the identified virtual connection of the received cell; and
marking the received cell to indicate a higher cell loss priority when the monitored transmission rate of the received cell exceeds a rate corresponding to the bandwidth data.
33. A supervision control method, comprising:
receiving a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority;
storing a plurality of bandwidth data which are pre-assigned to a plurality of sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitoring a transmission rate on the identified virtual connection of a received cell;
comparing the transmission rate with the bandwidth data stored at the memory address corresponding to the identified virtual connection of the received cell; and
marking the bit to indicate a higher cell loss priority when the monitored transmission rate of the received cell exceeds a rate corresponding to the bandwidth data.
9. A supervision control method in which cells, each including a header field with an identified virtual connection, are received from a plurality of sources, comprising:
storing a plurality of bandwidth data which are pre-assigned to the sources of the cells and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitoring a transmission rate on the identified virtual connection of a received cell;
comparing the transmission rate with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
marking the received cell to indicate a higher cell loss priority when the monitored transmission rate of the received cell exceeds a rate corresponding to the bandwidth data.
36. A supervision control method in which cells, each including a header field with an identified virtual connection and a bit indicating a cell loss priority, are received, comprising:
storing a plurality of bandwidth data which are pre-assigned to sources of the cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitoring a transmission rate on the identified virtual connection of a received cell;
comparing the transmission rate with the bandwidth data stored at the memory address corresponding to the identified virtual connection of the received cell; and
marking the bit to indicate a higher cell loss priority when the monitored transmission rate of the received cell exceeds a rate corresponding to the bandwidth data.
65. A switching system located along an identified virtual connection, comprising:
an interface to receive a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority;
a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the bit to indicate a higher cell loss priority when the monitored transmission rate corresponding to the bandwidth data stored at an address of the memory corresponding to the identified virtual connection in the header field of the received cell; and
a switch, to direct the cell from said supervisor to an output of the identified virtual connection.
21. A supervision control apparatus, comprising:
a receiver to receive a cell including a header field with an identified virtual connection;
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
18. A supervision control apparatus, comprising:
a buffer memory to receive and store a cell including a header field with an identified virtual connection;
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
12. A supervision control apparatus in which cells, each including a header field with an identified virtual connection, are received from a plurality of sources, comprising:
a memory to store a plurality of bandwidth data which are pre-assigned to the sources of the cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
2. A supervision control method for an asynchronous transmission mode cell switching system comprising the steps of:
(a) counting cells having a particular virtual channel identifier and a particular virtual path identifier received from a subscriber in a predetermined unit by incrementing a count value stored in a memory region having an address uniquely accessed with said particular virtual channel identifier and said particular virtual path identifier;
(b) attaching a sign to the cells when the count value incremented in said step (a) exceeds a first predetermined value;
(c) discarding the excess cells over a second predetermined value when the count value incremented in said step (a) exceeds the second predetermined value; and
(d) discarding the excess cells over the first predetermined value, to which the sign is attached in said step (b), when a buffer does not have enough capacity to multiplex the cells.
15. A supervision control apparatus in which cells, each including a header field with an identified virtual connection, are received from a plurality of sources, comprising:
memory means for storing a plurality of bandwidth data which are pre-assigned to the sources of the cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitor means for monitoring a transmission rate on the identified virtual connection of a received cell;
comparing means for comparing the monitored transmission rate of said monitor means with the bandwidth data stored at an address of said memory means corresponding to the identified virtual connection of the received cell; and
mark means for marking the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
24. A supervision control apparatus, comprising:
a receiver to receive a cell including a header field with an identified virtual connection and a cell loss priority bit indicating a cell loss priority;
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the cell loss priority bit to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
6. A supervision control apparatus for a cell switching system comprising:
a cell counter including a memory to store a count value at an address uniquely accessed with a particular virtual channel identifier and a particular virtual path identifier, for counting cells having said particular virtual channel identifier and said particular virtual path identifier transmitted from a subscriber in a predetermined duration unit;
a judge circuit for attaching a sign to the cells when the count value incremented by said cell counter exceeds a first predetermined value;
a selector for discarding the excess cells over a second predetermined value when the count value incremented by said cell counter exceeds the second predetermined value; and
a multiplexer for discarding the excess cells over the first predetermined value, to which said sign is attached by said judge circuit, when a buffer does not have enough capacity to multiplex the cells.
27. A supervision control apparatus in which a cell including a header field with an identified virtual connection and a cell loss priority bit indicating a cell loss priority, is received from a source, comprising:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of the received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the cell loss priority bit to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
39. A switching system which receives a cell including a header field with an identified virtual connection, comprising:
a supervisor, including:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection specified by a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data; and
a switch to direct the cell from said supervisor to the identified virtual connection.
48. A switching system, comprising:
an interface to receive a cell including a header field with an identified virtual connection;
a supervisor, including:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data; and
a switch to direct the cell from said supervisor to an output of the identified virtual connection.
42. A switching system which receives a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority, comprising:
a supervisor, including:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the bit to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data; and
a switch to direct the cell from said supervisor to the identified virtual connection.
45. A switching system, comprising:
an interface to receive a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority;
a supervisor, including:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the bit to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data; and
a switch to direct the cell from said supervisor to an output of the identified virtual connection.
4. A supervision control apparatus for an asynchronous transmission mode cell switching system comprising:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, the bandwidth data being stored at addresses thereof, each address being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter including a memory to store a count value at an address uniquely accessed with one of the plurality of identified virtual connections formed by a particular virtual channel identifier and a particular virtual path identifier, for counting cells having said particular virtual channel identifier and said particular virtual path identifier transmitted from a subscriber in a predetermined duration unit by incrementing the count value;
a judge circuit for attaching a sign to the cells when the count value incremented by said cell counter exceeds a predetermined value; and
a multiplexer for discarding the cells to which the sign is attached when a buffer does not have enough capacity to multiplex the cells.
1. A supervision control method for an asynchronous transmission mode cell switching system comprising the steps of:
(a) storing a plurality of bandwidth data which are pre-assigned to a plurality of sources of cells, and are stored in memory regions at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
(a b) counting cells having one of the plurality of identified virtual connections formed by a particular virtual channel identifier and a particular virtual path identifier transmitted from a subscriber in a predetermined duration unit, by incrementing a count value stored in a one of the memory region regions having an address uniquely accessed with said particular virtual channel identifier and said particular virtual path identifier;
(b c) attaching a sign to the cells when the count value incremented in said step (a b) exceeds a predetermined value; and
(c d) discarding the cells to which said sign is attached when a buffer does not have enough capacity to multiplex the cells.
3. The supervision control method according to claim 2, wherein said step (b) attaches based on the first predetermined value as a number of peak cells in the predetermined duration unit; and
wherein said step (a) comprises the substep of designating the first and second predetermined values based on a designation received from the subscriber.
5. The supervision control apparatus according to claim 4, wherein said judge circuit comprises a selector to switch when said sign is attached to a cell.
7. The supervision control apparatus according to claim 6,
wherein said first predetermined value is a number of average cells in said predetermined duration unit and said second predetermined value is a number of peak cells in said predetermined duration unit; and
wherein said system further comprises a receiver for receiving a designation from the subscriber to designate the first and second predetermined values.
8. The supervision control apparatus for an asynchronous transmission mode cell switching system according to claim 6, wherein said selector outputs "0" upon discarding the cells.
10. A supervision control method according to claim 9, wherein said monitoring comprises counting a number of the received cells having the same identified virtual connection in a predetermined duration unit.
11. A supervision control method, according to claim 9, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
13. A supervision control apparatus according to claim 12, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
14. A supervision control apparatus according to claim 12, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
16. A supervision control apparatus according to claim 15, wherein said monitor means counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
17. A supervision control apparatus according to claim 15, further comprising discard means for discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
19. A supervision control apparatus according to claim 18, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
20. A supervision control apparatus according to claim 18, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when said buffer memory has less capacity than an operative capacity to store the received cell.
22. A supervision control apparatus according to claim 21, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
23. A supervision control apparatus according to claim 21, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
25. A supervision control apparatus according to claim 24, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
26. A supervision control apparatus according to claim 24, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
28. A supervision control apparatus according to claim 27, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
29. A supervision control apparatus according to claim 27, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
31. A supervision control method according to claim 30, wherein said monitoring step comprises counting a number of the received cells having the same identified virtual connection in a predetermined duration unit.
32. A supervision control method according to claim 30, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
34. A supervision control method according to claim 33, wherein said monitoring step comprises counting a number of the received cells having the same identified virtual connection in a predetermined duration unit.
35. A supervision control method according to claim 33, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
37. A supervision control method according to claim 36, wherein said monitoring comprises counting a number of the received cells having the same identified virtual connection in a predetermined duration unit.
38. A supervision control method according to claim 36, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
40. A switching system according to claim 39, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
41. A switching system according to claim 39, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
43. A switching system according to claim 42, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
44. A switching system according to claim 42, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
46. A switching system according to claim 45, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
47. A switching system according to claim 45, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
49. A switching system according to claim 48, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
50. A switching system according to claim 48, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
52. A supervision control method according to claim 51, wherein said marking comprises counting the number of the received cells having the same identified virtual connection in a predetermined duration unit.
53. A supervision control method according to claim 51, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
54. A supervision control method according to claim 51, wherein said marking comprises:
monitoring a transmission rate on the identified virtual connection specified by a received cell; and
comparing the transmission rate with the bandwidth data stored at the memory address corresponding to the specified identified virtual connection.
56. A supervision control apparatus according to claim 55, wherein said supervisor includes a cell counter to count a number of the received cells having the same identified virtual connection in a predetermined duration unit.
57. A supervision control apparatus according to claim 55, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
58. A supervision control apparatus according to claim 55, wherein said supervisor further includes:
a cell counter to monitor a transmission rate on the identified virtual connection specified by a received cell;
a comparator, coupled to said memory and said cell counter, to compare the monitored transmission rate of said cell counter with the bandwidth data stored in said memory at the address corresponding to the identified virtual connection in the header field of the received cell; and
a judge circuit, coupled to said comparator, to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
60. A switching system according to claim 59, wherein said supervisor includes a cell counter to count a number of received cells having the same identified virtual connection in a predetermined duration unit.
61. A switching system according to claim 59, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
63. A switching system according to claim 62, wherein said supervisor includes a cell counter to count a number of the received cells having the same identified virtual connection in a predetermined duration unit.
64. A switching system according to claim 62, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
66. A switching system according to claim 65, wherein said supervisor includes a cell counter to count a number of the received cells having the same identified virtual connection in a predetermined duration unit.
67. A switching system according to claim 65, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
69. A switching system according to claim 68, wherein said supervisor includes a cell counter to count a number of the received cells having the same identified virtual connection in a predetermined duration unit.
70. A switching system according to claim 68, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
71. A supervision control method, according to claim 1, wherein each of the cells is of fixed length.
72. A supervision control apparatus according to claim 4, wherein each of the cells is of fixed length.
73. A supervision control method, according to claim 9, wherein each of the cells is of fixed length.
74. A supervision control apparatus, according to claim 12, wherein each of the cells is of fixed length.
75. A supervision control apparatus, according to claim 15, wherein each of the cells is of fixed length.
76. A supervision control apparatus, according to claim 18, wherein each of the cells is of fixed length.
77. A supervision control apparatus, according to claim 21, wherein each of the cells is of fixed length.
78. A supervision control apparatus, according to claim 24, wherein each of the cells is of fixed length.
79. A supervision control apparatus, according to claim 27, wherein each of the cells is of fixed length.
80. A supervision control method, according to claim 30, wherein each of the cells is of fixed length.
81. A supervision control method, according to claim 33, wherein each of the cells is of fixed length.
82. A supervision control method, according to claim 36, wherein each of the cells is of fixed length.
83. A switching system, according to claim 39, wherein each of the cells is of fixed length.
84. A switching system, according to claim 42, wherein each of the cells is of fixed length.
85. A switching system, according to claim 45, wherein each of the cells is of fixed length.
86. A switching system, according to claim 48, wherein each of the cells is of fixed length.
87. A supervision control method, according to claim 51, wherein each of the cells is of fixed length.
88. A supervision control apparatus, according to claim 55, wherein each of the cells is of fixed length.
89. A switching system, according to claim 59, wherein each of the cells is of fixed length.
90. A switching system, according to claim 62, wherein each of the cells is of fixed length.
91. A switching system, according to claim 65, wherein each of the cells is of fixed length.
92. A switching system, according to claim 68, wherein each of the cells is of fixed length.
93. A supervision control method according to claim 9, wherein said storing comprises storing bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
94. A supervision control apparatus according to claim 12, wherein said memory stores bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
95. A supervision control apparatus according to claim 15, wherein said memory means stores bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
96. A supervision control method according to claim 51, wherein said storing comprises storing bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
97. A supervision control method, according to claim 55, wherein said memory stores bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
98. A switching system, according to claim 59, wherein said memory stores bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.

This application is a continuation of application Ser. No. 07/780,121, filed Oct. 19, 1991, now abandoned.

This invention pertains to a supervision control system for supervising the inflow of cells to an ATM switching system.

The ATM switching system switches cells having fifty-four (54) bytes split from various data, such as voice data, image data and other numerical data, and transmits in a multiplexed form the various data at different transmission speed. Of the fifty-four (54) bytes in a cell, forty-eight (48) bytes form an information field and six (6) bytes form a header part. Of the four (4) bytes, i.e. thirty-two (32) bits, in the header part excluding two (2) bytes forming a tag, twenty-eight (28) bits indicate a VPI/VCI (virtual path identifier/virtual channel identifier), two (2) bits indicate a PT (payload type), one (1) indicates a CLP (cell loss priority) and one (1) bit is for a RES (reserve).

A buffer in a multiplexer for these cells can experience an overflow when an unexpected number of cells flow in. Since overflowing cells are discarded, the communications quality is deteriorated. Although such a problem can be avoided by using a buffer having a larger capacity, a larger delay results, which is critical in transmitting voice data, image data, and so forth.

Therefore, a buffer is required in which the occurrence of an overflow and its effect are minimized.

FIG. 1 is a block diagram of an ATM switching system.

As shown in FIG. 1, a plurality of terminals (TE) 10 are connected through respective terminal adapters (TA) 9 to one of plural network terminators (NT) 8 in an ATM switching system.

The network terminators (NT) 8 are connected through respective interoffice trunks 6 to one (1) of plural broadband remote switching units (BRSU) 7.

The broadband remote switching units (BRSU) 7 are connected to one (1) of a plurality of central offices (CO) 5.

The interoffice trunks 6 interconnect the central offices (CO) 5. The interoffice trunks 6 and subscriber lines are high speed transmission paths, such as an optical transmission path e.g. comprising a SONET (Synchronous Optical Network), having bands of one hundred fifty-five mega-herts (155 MHz), six hundred twenty-two mega-herts (622 MHz) or higher.

FIG. 2 shows a cell configuration.

As described earlier, voice data, image data, numerical data, etc. from the terminals (TE) 10 are split into cells having fifty-four (54) bytes. Because one (1) word is defined to comprise two (2) bytes, a cell has twenty-seven (27) words. As shown in FIG. 2, of the fifty-four (54) bytes in a cell, forty-eight (48) bytes form an information field and six (6) bytes form a header part. Of the six (6) bytes, i.e. forty-eight (48) bits, in the header part, two (2) bytes, i.e. sixteen (16) bits, form a tag, twenty-eight (28) bits indicate a VPI/VCI (virtual path identifier/virtual channel identifier), two (2) bits indicate a PT (payload type), one (1) bit indicates a CLP (cell loss priority) and one (1) bit is for a RES (reserve).

The network terminators (NT) 8 send the cells to the broadband remote switching unit (BRSU) 7.

The terminal adapters (TA) 9 receive cells from corresponding terminals (TE) 10 through the network terminators (NT) 8 and send the decelled voice data, image data, numerical data, etc. to the terminals (TE) 10.

FIG. 3 is a block diagram of one (1) of the broadband remote switching units (BRSU) 7.

A multiplexer/demultiplexer (MDX) 12 multiplexes cells asynchronously inputted from subscribers through a buffer and transmitted over a plurality of subscriber line trunks 11, which are connected to respective subscriber lines. A concentrator switch (CSW) 13 switches the multiplexed cells. A multiplexer/demultiplexer (MDX) 14 demultiplexes the switched cells over to an appropriate one (for the predetermined central office) of a plurality of interoffice trunks 15, which form interoffice cell transmission paths.

The multiplexer/demultiplexer (MDX) 14 multiplexes cells asynchronously inputted from correspondent subscribers through a buffer and transmitted over the interoffice trunks 15. The concentrator switch (CSW) 13 switches the multiplexed cells. The multiplexer/demultiplexer (MDX) 12 demultiplexes the switched cells over to an appropriate one (for the predetermined subscriber) of a plurality of subscriber line trunks 11.

A local processor interface (LPIF) 16 connects a local processor (LPR) 17 with the concentrator switch (CSW) 13 and multiplexers/demultiplexers (MDXs) 12 and 14.

When a larger number of cells flow into the multiplexer/demultiplexer (MDX) 12, its buffer causes some cells to overflow. Therefore, a virtual path is set at a call-up by having a subscriber declare his cell transmission band and by judging whether or not the cells can be multiplexed in the declared band.

In this case, if this subscriber sends cells over the declared band, cells from other subscribers who share the same buffer with this subscriber are also discarded.

That is, if any subscriber sends cells over the declared band, a large ill-effect occurs such that cells from other subscribers are also discarded.

This invention pertains to a supervision control system for supervising the inflow of cells to an ATM switching system.

It aims at avoiding a congestion state caused by a cell inflow over a band declared by a subscriber.

It configures a supervision control apparatus for an ATM (Asynchronous Transmission Mode) cell switching system comprising a supervisor and a multiplexer. The supervisor further comprises a cell counter and a judge. The cell counter counts cells transmitted from a subscriber in a predetermined duration unit. The judge attaches a sign to the cells when the value counted by the cell counter exceeds a predetermined value. The multiplexer discards the cells to which the sign is attached when a buffer does not have enough capacity during a cell multiplexation.

FIG. 1 is a block diagram of an ATM switching system;

FIG. 2 shows a cell configuration;

FIG. 3 is a block diagram of one (1) of the broadband remote switching units (BRSU) 7;

FIG. 4 is a block diagram of this invention;

FIG. 5A is a block diagram of parts pertinent to a first embodiment of this invention;

FIG. 5B illustrates an example of cell discarding;

FIG. 6 is a block diagram of a subscriber line trunk pertinent to a second embodiment of this invention;

FIG. 7 is a block diagram of the supervisor and the selection control processor pertinent to the second embodiment of this invention; and

FIG. 8 illustrates the input interface of a multiplexer.

A supervision control system of this invention prioritizes discarding of cells overflowing from a buffer by attaching a high cell-loss-priority sign to cells flowing in over a band declared by a subscriber, thereby minimizing ill-effects to other subscribers.

FIG. 4 is a block diagram of this invention.

The supervision control apparatus for an ATM (Asynchronous Transmission Mode) cell switching system comprises a supervisor 23 and a multiplexer 24. A supervisor 23 further comprises a cell counter 21 and a judge 22. The cell counter 21 counts cells transmitted from a subscriber in a predetermined duration unit. The judge 22 attaches a sign to the cells when the value counted by the cell counter 21 exceeds a predetermined value. The multiplexer 24 discards the cells to which the sign is attached when a buffer does not have enough capacity during a cell multiplexation.

That is, the cell counter 21 in the supervisor 23 counts cells flowing in from a subscriber in a predetermined duration unit. The judge 22 in the supervisor 23 judges whether or not the cells are flowing in over the band declared by the subscriber and attaches a sign to a predetermined bit in the excess cells flowing in over the declared band. The multiplexer 24 multiplexes the cells having the sign for their transmission when its buffer has the capacity to handle them. However, the multiplexer 24 discards them with high priority, when neither the buffer in the multiplexer 24 itself nor the buffer in a concentrator switch, or in a demultiplexer, connected to the multiplexer 24 has a capacity to handle the cells, thereby ensuring the multiplexation and transmission of cells having no such sign inputted from other subscribers.

Alternatively, the judge 22 in the supervisor 23 can set a first judging threshold and a second judging threshold. The first judging threshold corresponds to a band declared by a subscriber. The second judging threshold is set higher than the first judging threshold. The judge 22 attaches a sign to the inflowing cells from a subscriber in excess of the first judging threshold, and discards the inflowing cells from the subscriber in excess of the second judging threshold.

That is, the judge 22 sets the first and second judging thresholds in correspondence with a band declared by a subscriber. The judge 22 attaches a sign to the excess inflowing cells over the first judging threshold by appropriately marking the CLP (cell loss priority) bit or the RES (reserve) bit of the cell, thereby prioritizing the discarding of such cells, when neither the buffer in the multiplexer 24 itself nor the buffer in a concentrator switch, or in a demultiplexer, connected to the multiplexer 24 has a capacity to handle the cells. The judge 22 always discards the inflowing cells in excess of the second judging threshold, because they are likely to cause an overflow in the buffer.

Embodiments of this invention are explained in further detail by referring to some of the attached drawings.

FIG. 5A is a block diagram of parts pertinent to a first embodiment of this invention.

Subscriber line terminators 31-1 through 31-m each paired with the corresponding one of interfacers 32-1 through 32-m are equivalent to subscriber line trunks connecting subscribers to the ATM cell switching system. A multiplexer 34 receives cells from subscribers by way of the subscriber line terminators 31-1 through 31-m and the interfacers 32-1 through 32-m. Supervisors 33-1 through 33-m respectively supervise cell inflows to the multiplexer 34 via the subscriber line terminators 31-1 through 31-m and the interfacers 32-1 through 32-m.

When a subscriber calls up, he declares the band to be occupied. A processor 37 reads from a cell its VCI (virtual channel identifier) for specifying the switchers and the subscriber and its VPI (virtual path identifier) for specifying the paths among the switchers, and notifies the supervisors 33-1 through 33-m of the VCI/VPI and the maximum number of cells, set in correspondence with the subscriber declared band, passing through in a predetermined duration unit.

The supervisors 31-1 through 33-m count the number of cells having particular VCIs/VPIs in the predetermined duration units, and attach a sign to the cells in excess of the maximum number of cells, set in correspondence with the subscriber declared band, passing through in a predetermined duration unit, for example, by marking the CLP (cell loss priority) bit in those cells.

FIG. 5B illustrates an example of cell discarding.

Alternatively, the supervisors 33-1 through 33-m can attach a sign to the cells in excess of the maximum number of cells, set in correspondence with the subscriber declared band, passing through in a predetermined duration unit, by marking the RES (reserve) bit in those cells, as shown in FIG. 5B.

The multiplexer 34 has a buffer. It multiplexes cells from subscribers and supplies the multiplexed cells to a concentrator switch 35. However, it multiplexes cells having the sign marked in their CLP bit or in their RES bit only when the buffer has enough capacity, and discards them with high priority when the buffer does not have enough capacity. This ensures the multiplexation of cells from subscribers transmitted within the declared bands.

Also, even when the buffer in the multiplexer 34 has enough capacity to handle the cells, the buffer at an input terminal or at an output terminal of a device connected in a later stage, such as the concentrator switch 35 and a demultiplexer on the receiving side, discards the cells, if it does not have enough capacity.

Also, the supervisors 33-1 through 33-m can attach a sign to the cells in excess of a first judging threshold equivalent to the maximum number of cells, set in correspondence with the subscriber declared band, passing through in a predetermined duration unit, by marking either the CLP bit or the RES bit in those cells. The multiplexer 34 prioritizes the discarding of those cells having the sign, when its buffer lacks enough capacity. Other devices connected in later stages discard cells similarly, when their respective buffers lack enough capacity. When the number of cells passing through in a predetermined duration unit further increases and reaches a second judging threshold, the multiplexer 34 can be made to perform a control such that the excess cells over the second judging threshold are discarded regardless of the available capacity of the buffer in the multiplexer 34. The local processor interface 36 notifies the local processor 37 of the results of processing by the supervisors 33-1 through 33-m.

FIG. 6 is a block diagram of a subscriber line trunk pertinent to a second embodiment of this invention.

A subscriber line 41 such as a SONET based optical transmission path transmits cells in light signals. A light-electricity (electro-optic/optoelectric) converter (EO/OE) 42 converts the cells in light signals to cells in electric signals and supplies the converted cells through a terminator 43 and an interfacer 44 to a selection control processor 46. A local processor 52 notifies a supervisor 45 through a local processor interface 51 of a VCI/VPI and first and second judging thresholds set correspondingly to a subscriber declared band. An alternative arrangement can be made such that the processor notifies the supervisor 45 of a subscriber declared band and the supervisor 45 sets first and second judging thresholds accordingly.

The supervisor 45 counts the number of cells having a particular VCI/VPI passing through the interfacer 44 in a predetermined duration unit for a comparison with the first and second judging thresholds. The supervisor 45 has the selection control processor 46 turn on e.g. the CLP bit in the header part of the cells exceeding the first judging threshold, so that discarding of those cells is prioritized when the buffer of a multiplexer 49, or the buffer of a device connected in a later stage, lacks enough capacity. Also, the supervisor 45 has the selection control processor 46 turn on e.g. the RES bit in the header part of the cells exceeding the second judging threshold, so that those cells are supplied to the multiplexer 49 as empty cells, thereby causing those cells to be discarded anyway regardless of the available capacity in the buffer of the multiplexer 49. This is because the multiplexer 49 does not send empty cells to a concentrator switch 50.

FIG. 7 is a block diagram of the supervisor 45 and the selection, control processor 46 pertinent to the second embodiment of this invention.

A buffer 55 delays cells in correspondence with the delays caused by respective supervisions.

A memory 56 counts the number of cells passing through in a predetermined duration unit.

Memories 57 and 58 respectively store first and second judging thresholds.

A memory 59 measures an elapse of the predetermined duration unit.

A memory 60 stores duration unit data.

When the supervisor 45 commences its operations, a processor CC instructs selectors 65, 66 and 69 to select their "b" side inputs and to output them to respective address terminals of memories 57, 58 and 60, which receive data from the processor CC as respective data inputs. The processor CC supplies to "b" side inputs of selectors 65, 66 and 69 an address by which memories 57, 58 and 60 are accessed. The processor CC accesses memories 57, 58 and 60 to have them respectively store the first judging threshold, the second judging threshold and the duration unit data.

When the supervisor 45 commences its operations, the processor CC also instructs selectors 67 and 68 to select their "a" side inputs and to output, so that memory 59 receives an address and data from the processor CC. Memory 59 stores as its initial data duration unit data similar to those stored in memory 60. The processor stores data to be stored in memories 57, 58, 59 and 60 at respective addresses corresponding to VPIs/VCIs.

When the supervisor 45 commences its operations, memory 60 is reset and its stored data are initialized to zero (0).

That is, the processor CC supplies the first and second judging thresholds set correspondingly to the subscriber declared band, the duration unit data indicating the supervision cycle and the addresses corresponding to the subscriber assigned VPIs/VCIs. Memory 57 stores the first judging threshold. Memory 58 stores the second judging threshold. Memory 60 stores the duration unit data. Although all the duration unit data can be set the same, they can be set in correspondence with the subscriber characteristics. This is because pass-through cells sent from a subscriber in a burst need to be counted over a comparatively long period of time, whereas those sent from another in a more or less constant speed can be counted over a relatively short period of time.

Meanwhile, when the supervisor 45 commences its operation, selectors 63, 65 and 66 select their "a" side inputs, so that the memories 56, 57 and 58 are accessed by using the VPIs/VCIs in the header part of cells as addresses. Selector 64 has memory 56 count the number of cells passing through by having an incrementer 70 increment the value by one (1) in an address region of memory 56 corresponding to the VPIs/VCIs.

Selector 68 has memory 59 store duration unit data stored in memory 60, each time the value stored in memory 59 becomes zero (0). A decrementer 71 decrements the value stored in memory 59 by one (1). When the value stored in memory 59 reaches zero (0), memory 56 clears its address regions corresponding to the VPIs/VCIs set in correspondence with the duration unit data. That is, memory 56 counts cells passing through in predetermined units in the address fields corresponding to their VPIs/VCIs. Then, memory 59 again stores duration unit data stored in memory 60, again.

A counter 72 generates respective addresses for managing duration units e.g. up to the maximum value of the VPIs/VCIs. Although this is not shown in the drawings, the counter 72 receives a clock signal, accesses memory 59, each time its own value is incremented by one (1), by using the incremented value as the address, and decrements the value stored in memory 59 by one (1). At this time, selector 67 selects its "b" side input and selector 68 selects its "c" side input.

A count cycle [from zero (0) to next zero (0)] in the counter 72 becomes the basis of the duration unit data stored in the memory 60. The values obtained by multiplying the count cycle by the duration unit data become duration units corresponding to the VPIs/VCIs.

When the value stored in memory 59 accessed by value of the counter 72 becomes zero (0), selector 68 switches its selection from "c" side input to "b" side input, thereby loading the duration unit data in memory 60, again.

The counting by the counter 72 enables the addresses corresponding to all the VPIs/VCIs to be specified, thereby realizing duration units to be managed.

Ordinarily, selectors 63, 65, and 66 select their "a" side inputs, access the corresponding address each time a cell passes through, and perform the following operations.

The count value of the cells passing through stored in memory 56 is supplied to the comparator 61 through the incrementer 70. The comparator 61 receives the first judging threshold stored in memory 57 and the second judging threshold stored in memory 58. When the number of cells passing through is less than the first and second thresholds, the comparator 61 does not control the selector 62 and cells passing through the buffer 55 also pass through selector 62 without any obstruction. Also, when the number of cells passing through is more than the first threshold but less than the second threshold, the excess cells over the first judging threshold are transmitted after selector 62 turns on the CLP bit in the header part of those cells. Finally, when the number of cells passing through is more than the second judging threshold, selector 62 converts the excess cells over the second judging threshold to empty cells, where all the bits are zero (0). The comparator 61 notifies the processor CC of the result of respective processings.

Because selector 62 supplies cells to the multiplexer for cell multiplexation, cells with the CLP bit on are discarded when the buffer lacks the capacity. Since cells from other subscribers are within their declared bands, even if a subscriber sends cells in excess of his declared band, ill-effects on other subscribers are minimized. When the numbers of cells from other subscribers are small, i.e. when the buffer has enough capacity, the multiplexer multiplexes even the cells with their CLP bit on.

Cells far exceeding the declared band are discarded, e.g. through an empty cell conversion, to avoid discarding of cells from other subscribers within their declared bands.

In the first and second embodiments of this invention, the supervisors 23, 33-1 through 33-m, and 45 output cells in which all the bits are zero (0) to multiplexers 24, 34 and 49, where these cells are actually discarded. However, this invention is not limited to such a configuration.

FIG. 8 illustrates the input interface of a multiplexer.

As shown in FIG. 8, the multiplexers 24, 34 and 49 can use an input interface such that a "Data Line" comprises sixteen (16) bits, a "Cell Frame" comprises one (1) bit, an "Enable" comprises one (1) bit and a "Parity" comprises one (1) bit. The "Data Line" is a signal line for transmitting the cell width. "Cell Frame" is a signal line specifying the head end of each cell by a pulse indicating a "Cell Slot". "Enable" is a signal line specifying the cells' effectiveness. "Parity" is a data error scanning line.

When the numbers of cells are more than the second threshold, the supervisors 23, 33-1 through 33-m and 45 turn off "Enable" without performing any data control. The multiplexers 23, 34 and 49 discard cells without multiplexing them when their "Enable" is off.

This invention is not limited to those embodiments, but instead can be applied in various derivative forms. For instance, it goes without saying that counting of the number of cells passing through by memory 56 can be substituted by counting by an ordinary counter.

Further, this invention can be applied also to any cell switching system, in addition to an ATM cell switching system.

As explained earlier, this invention causes an ATM switching system to have its cell counter 21 in its supervisor 23 to count the cells inputted from respective subscribers. When the judge 22 discovers that the number of cells inputted from a particular subscriber exceeds his declared band, the judge 22 attaches a sign to the excess cells to be sent to the multiplexer 24 e.g. by turning on their CLP bit. When its buffer has enough capacity, the multiplexer 24 ordinarily multiplexes the cells. However, when its buffer lacks it, the multiplexer 24 prioritizes the discarding of these cells. Thus, even if its buffer lacks enough capacity, the multiplexer 24 prioritizes the multiplexation of cells from other subscribers, as long as such cells are within their declared bands. Hence, this invention produces a distinct advantage of eliminating a possible ill-effect on others when a particular subscriber sends his cells beyond his declared band, while maintaining the best communication quality by avoiding unnecessary cell discarding.

Alternatively, this invention can be structured such that first and second judging thresholds are used for an even finer cell discarding control. That is, a sign is attached to excess cells over the first judging threshold e.g. by turning on the CLP bit, and excess cells over the second judging threshold are converted to empty cells and discarded. As a result, cells exceeding a declared band by a narrow margin can be multiplexed ordinarily depending on the availability of buffering capacity, while cells exceeding a declared band by a wide band are discarded to minimize the ill-effect on other subscribers.

Thus, this invention is effective in reduction of discarding cells within declared bands and in preventing a deterioration in communications quality by supervising cells flowing in an ATM cell switching system.

Kakuma, Satoshi, Murayama, Masami, Aso, Yasuhiro, Yoshimura, Shuji, Aihara, Naoki

Patent Priority Assignee Title
6574195, Apr 19 2000 SABLE NETWORKS, INC ; Electronics and Telecommunications Research Institute Micro-flow management
6968392, Jun 29 2000 Cisco Technology, Inc Method and apparatus providing improved statistics collection for high bandwidth interfaces supporting multiple connections
7558200, Sep 01 2005 Microsoft Technology Licensing, LLC Router congestion management
7719963, Mar 06 2001 PARITY NETWORKS LLC System for fabric packet control
8547843, Jan 20 2006 SAISEI NETWORKS, INC System, method, and computer program product for controlling output port utilization
Patent Priority Assignee Title
4769810, Dec 31 1986 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Packet switching system arranged for congestion control through bandwidth management
4769811, Dec 31 1986 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Packet switching system arranged for congestion control
4849968, Sep 06 1985 Washington University; WASHINGTON UNIVERSITY, A CORP OF MO Buffer management system
4896316, May 26 1987 L ETAT FRANCAIS, REPRESENTE PAR LE MINISTRE DES PTT CENTRE NATIONAL D ETUDES DES TELECOMMUNICATIONS CNET Method and system of control of flow of data packets
4918687, Sep 23 1987 INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, NY 10504, A CORP OF NY Digital packet switching networks
4942569, Feb 29 1988 Kabushiki Kaisha Toshiba Congestion control method for packet switching apparatus
4956839, Jul 22 1988 Hitachi, Ltd. ATM switching system
4964119, Apr 06 1988 Hitachi, Ltd. Method and system for packet exchange
4970720, Mar 17 1988 Kabushiki Kaisha Toshiba Packet communication exchange including dummy packet transmission
4984264, Feb 22 1989 Kabushiki Kaisha Toshiba Call admission control method and cell flow monitoring method in the same method
4993024, May 26 1987 L ETAT FRANCAIS, REPRESENTE PAR LE MINISTRE DES PTT CENTRE NATIONAL D ETUDES DES TELECOMMUNICATIONS 5CNET System and process for controlling the flow of either data packets or channel signals in an asynchronous time multiplexer
5007043, Feb 03 1989 KONINKLIJKE KPN N V Method for transmitting, via a plurality of asynchronously time-divided transmission channels, a flow of data cells, the state of a counter for each transmission channel being kept up to date in accordance with the number of data cells per unit of time
5007048, Sep 30 1987 U S PHILIPS CORPORATION Circuit arrangement for avoiding overload in a wideband switching system
5014260, Oct 28 1988 Telefonaktiebolaget L M Ericsson Method and apparatus for preventing transmission of data packets with a greater intensity than a predetermined value on any one of a number of channels on a common transmission link
5029164, Apr 13 1990 ENTERASYS NETWORKS, INC Congestion avoidance in high-speed network carrying bursty traffic
5038345, Oct 30 1989 AMP Incorporated Traffic pattern information for a local area network
5050163, Mar 16 1989 AT&T Bell Laboratories Method of ATD (asynchronous time division) switching of data packets and an arrangement for implementing this method
5062106, Mar 14 1989 KDDI Corporation ATM exchange system
5081620, Feb 17 1989 FRENCH STATE REPRESENTED BY THE MINISTER OF THE POST, TELECOMMUNICATIONS AND SPACE CENTRE NATIONAL D ETUDES Bit rate reservation in an asynchronous packet network
5084867, Sep 19 1990 Fujitsu Limited Routing method and routing system for switching system having a plurality of paths
5130985, Nov 25 1988 Hitachi, Ltd. Speech packet communication system and method
5132966, Mar 23 1989 Juniper Networks, Inc Call control with transmission priority in a packet communication network of an ATM type
5138607, Jun 20 1989 Alcatel Cit Method and device for evaluating the throughput of virtual circuits employing an asynchronous time-division multiplexed transmission channel
5140584, Mar 01 1989 Kabushiki Kaisha Toshiba Packet communication system and method of controlling same
5140588, Sep 29 1989 Siemens Aktiengesellschaft Circuit for calculating the quantity of message signals supplied to an ATM switching during virtual connections
5142653, Aug 08 1990 Siemens Aktiengesellschaft Method and circuit arrangement for determining the quality of virtual connections through an asynchronous transfer mode switching equipment
5166894, Feb 13 1990 Nippon Telegraph and Telephone Corp. Method and apparatus for cell loss rate estimation, call admission control, and buffer/link capacity designing in integrated network
5179557, Jul 04 1989 Kabushiki Kaisha Toshiba Data packet communication system in which data packet transmittal is prioritized with queues having respective assigned priorities and frequency weighted counting of queue wait time
5233606, Aug 02 1991 AT&T Bell Laboratories Arrangement for controlling shared-buffer-memory overflow in a multi-priority environment
5267232, Aug 31 1990 Kabushiki Kaisha Toshiba Method of controlling data transmission in ATM network with cell loss priority level
5280483, Aug 09 1990 Fujitsu Limited Traffic control system for asynchronous transfer mode exchange
5315591, Nov 23 1991 Cray Communications Limited Method and apparatus for controlling congestion in packet switching networks
5390176, Apr 10 1991 U.S. Philips Corporation Low delay or low loss switch for ATM
5392280, Apr 07 1994 Mitsubishi Electric Research Laboratories, Inc Data transmission system and scheduling protocol for connection-oriented packet or cell switching networks
5448567, Jul 27 1993 Juniper Networks, Inc Control architecture for ATM networks
5504744, Mar 09 1994 British Telecommunications public limited company Broadband switching network
5706288, Mar 27 1996 PMC-SIERRA LTD Available bit rate scheduler
5784358, Mar 09 1994 British Telecommunications public limited company Broadband switching network with automatic bandwidth allocation in response to data cell detection
5850385, Sep 24 1991 Kabushiki Kaisha Toshiba Cell loss rate sensitive routing and call admission control method
5867494, Nov 18 1996 Verizon Patent and Licensing Inc System, method and article of manufacture with integrated video conferencing billing in a communication system architecture
5956340, Aug 05 1997 Ramot University Authority for Applied Research and Industrial Space efficient fair queuing by stochastic Memory multiplexing
EP293314,
EP310173,
EP366635,
EP381275,
EP383660,
EP384758,
EP387958,
JP290834,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 27 1997Fujitsu Limited(assignment on the face of the patent)
Date Maintenance Fee Events
Aug 01 2002M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 23 2003ASPN: Payor Number Assigned.
Jul 23 2003RMPN: Payer Number De-assigned.
Aug 04 2006M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 06 20044 years fee payment window open
May 06 20056 months grace period start (w surcharge)
Nov 06 2005patent expiry (for year 4)
Nov 06 20072 years to revive unintentionally abandoned end. (for year 4)
Nov 06 20088 years fee payment window open
May 06 20096 months grace period start (w surcharge)
Nov 06 2009patent expiry (for year 8)
Nov 06 20112 years to revive unintentionally abandoned end. (for year 8)
Nov 06 201212 years fee payment window open
May 06 20136 months grace period start (w surcharge)
Nov 06 2013patent expiry (for year 12)
Nov 06 20152 years to revive unintentionally abandoned end. (for year 12)