A vehicle occupant restraint device control system for use in a vehicle to selectively control the operation of safety devices such as one or more airbags includes a seat position sensor device which detects the position of a seat relative to a selected component of the vehicle, and a controller which receives signals from the seat position sensor device. A controller device processes the signals from the seat position sensor device and determines whether to activate, deactivate or modify the deployment of one or more vehicle occupant restraint devices, such as airbags or seat belt pretensioners, depending upon the position of the vehicle seat relative to a selected component of the vehicle structure, such as the steering wheel or instrument panel.

Patent
   RE37466
Priority
Feb 21 1997
Filed
Feb 24 2000
Issued
Dec 11 2001
Expiry
Feb 21 2017
Assg.orig
Entity
Large
12
10
all paid
23. A vehicle occupant restraint device system comprising:
means for detecting a position of a vehicle seat relative to a component of a vehicle, said means generating a seat position indicator signal when the distance between the position of said vehicle seat and said vehicle component is in a predetermined range of values, wherein said detecting means comprises a magnetic actuator and at least one device which is responsive to a magnetic field.
17. A vehicle occupant restraint device system compromising:
a sensor assembly operable to detect position of a vehicle seat relative to a selected component of the vehicle, said sensor assembly generating a seat position indicator signal in response to the distance between said vehicle seat and said selected vehicle component is in a predetermined range of values; and
a controller operative to control the deployment of said occupant restraint device in response to said seat position indicator signal.
1. A vehicle occupant restraint device system comprising:
means for detecting a position of a vehicle seat relative to a component of a vehicle, said means being coupled to a vehicle occupant restraint device, said means generating a seat position indicator signal when the distance between the position of said vehicle seat and said vehicle component is in a predetermined range of values; and
means for controlling the operation of said vehicle occupant restraint device in response to said seat position indicator signal, said controlling means being coupled to said detecting means.
2. The vehicle occupant restraint device system of claim 1, wherein said detecting means further includes a first means coupled to the floor of a vehicle and at least one second means coupled to said vehicle seat, for providing said seat position indicator signal upon cooperation between the first means and said at least one second means.
3. The vehicle occupant restraint device system of claim 2, wherein said seat position indicator signal is generated when the distance between the first means and the at least one second means is greater than a first predetermined value.
4. The vehicle occupant restraint device system of claim 2 1, wherein said first means comprises a magnetic actuator.
5. The vehicle occupant restraint device system of claim 4, wherein said magnetic element comprises a magnetic strip of material.
6. The vehicle occupant restraint device system of claim 5, wherein said first means is coupled to the floor of said vehicle.
7. The vehicle occupant restraint device system of claim 2, wherein said first means is positioned along a path traversed by said at least one second means.
8. The vehicle occupant restraint device system of claim 2, wherein said at least one second means further comprises a first position indicator sensor.
9. The vehicle occupant restraint device system of claim 8, wherein said first position indicator sensor further comprises a first reed switch.
10. The vehicle occupant restraint device system of claim 9, wherein said first reed switch is coupled to said vehicle seat and is positioned along a path traversed by said vehicle seat.
11. The vehicle occupant restraint device system of claim 2, wherein said at least one second means further comprises a second position indicator sensor.
12. The vehicle occupant restraint device system of claim 8, wherein said second position sensor is located relative to said first position indicator sensor and is positioned along a path traversed by said vehicle seat.
13. The vehicle occupant restraint device system of claim 12, wherein said second position indicator sensor comprises a reed switch.
14. The vehicle occupant restraint device system of claim 9, wherein said reed switch further includes a conductive element response to a magnetic flux enclosed within a housing such that when said reed switch is in cooperative position relative to said first means, said conductive element provides said seat position indicator signal.
15. The vehicle occupant restraint device system of claim 11, wherein said second position indicator sensor generates a second seat position indicator signal based upon the distance between said vehicle seat and said vehicle component is in a second predetermined range of values.
16. The vehicle occupant restraint device system of claim 6, wherein said first means is located along the length of guide means, said guide means coupled to the floor of said vehicle.
18. The vehicle occupant restraint device system of claim 17, wherein said controlling means further comprises:
circuitry operative to generate a control signal in response to said seat position indicator signal; and
an assembly to deploy said occupant restraint device in response to the detection of a predetermined condition and said control signal.
19. The vehicle occupant restraint device system of claim 18 17, wherein said predetermined condition is the detection of deceleration of a vehicle.
20. The vehicle occupant restraint device system of claim 18, wherein said sensor assembly further includes a magnetic actuator, coupled to the floor of a vehicle and at least one device which is responsive to a magnetic field, coupled to said vehicle seat, said at least one device which is responsive to a magnetic field being operative to provide said seat position indicator signal upon cooperation between said magnetic actuator and said at least one device which is responsive to a magnetic field.
21. The vehicle occupant restraint device system of claim 20, wherein said set position indicator signal is generated when the distance between the magnetic actuator and said at least one device which is responsive to a magnetic field is greater than a first predetermined value.
22. The vehicle occupant restraint device system of claim 20, wherein said at least one device which is responsive to a magnetic field traverses the path traversed by said vehicle seat.
24. The vehicle occupant restraint device system of claim 23, wherein said at least one device which is responsive to a magnetic field is operative to provide said seat position indicator signal upon cooperation between said magnetic actuator and said device which is responsive to a magnetic field.
25. The vehicle occupant restraint device system of claim 23, wherein said at least one device which is responsive to a magnetic field traverses the path traversed by said vehicle seat.
26. The vehicle occupant restraint device system of claim 23, wherein said device which is responsive to a magnetic field comprises a reed switch.
27. The vehicle occupant restraint device system of claim 23, wherein said device which is responsive to a magnetic field comprises a GMR sensor.
28. The vehicle occupant restraint device system of claim 23, wherein said device which is responsive to a magnetic field comprises a Hall Effect sensor.

This is a Continuation-in-part of application Ser. No. 08/804,749 filed Feb. 21, 1997non ferro-magnetic metal. The elongated member is disposed in the slot of the U shaped member. The U shaped housing and the elongated member can move relative to one another in the direction indicated by arrow 101 in FIG. 7A with the elongated member interposed between the magnetic actuator 105 and the reed switch 100. As shown in FIG. 7A, the elongated member 132 is a two-step member, whereby the height along one zone of the elongated member is greater than along another zone of the elongated member.

When the U shaped housing 136 and elongated member 132 are disposed relative to one another at a location in a first zone of the length of the elongated member as shown in FIG. 7A, for example at section line 7B--7B, the situation presented in FIG. 7B arises. As shown in FIG. 7B the elongated member 132 interferes with the electromagnetic flux generated by magnetic actuator 105 so that no response is generated by the reed switch 100 and a first signal is sent to a controller. FIG. 7C is a section view taken along line 7C--7C showing the disposition of the magnetic actuator 105 and reed switch 100 in the U shaped housing 136. FIG. 7D shows a cross section of the U shaped housing 136 and elongated member 132 when they are disposed relative to one another in the zone of the elongated member which has a lesser height, such as the location indicated by section line 7D--7D. At this location, as shown in FIG. 7D the elongated member does not substantially interfere with the electromagnetic flux and the reed switch responds in the manner described above with respect to FIG. 6B to close a circuit with a controller (not shown) and send a second signal to the controller.

FIGS. 8A, 8B, 8C, 8D and 8E, present perspective and cross-sectional views of a vehicle seat position sensor device according to a second preferred embodiment of the present invention. The embodiment shown in FIGS. 8A to 8E is similar to that shown in FIGS. 7A to 7D with two notable exceptions. The U shaped housing 232 of this embodiment has two magnetic actuators 205A, 205B located in one leg of the housing and two reed switches 200A-200B located in the other leg of the housing. Furthermore, the elongated member 232 has three zones of varying heights along its length. The U shaped housing and the elongate member can move relative to one another in the direction indicated by arrow 201 in FIG. 8A and is interposed between the magnetic actuators 205A, 205B and the reed switches 200A, 200B. As shown in cross-section in FIG. 8B, when the U shaped housing and elongated member are located relative to one another in a first zone of the length of the elongate member, as shown at a section line 8B--8B, the reed switches are not responsive to the substantially blocked electromagnetic force so that a first signal is sent to the controller. FIG. 8C is similar to FIG. 7B and shows the relative locations of the various components in section along line 8C--8C of FIG. 8B.

As shown in cross-section in FIG. 8D, when the U shaped housing and elongate member are located relative to one another in a second zone of the length of the elongated member, as shown at section line 8D--8D, only one of the reed switches 200A is responsive to one of the magnetic actuators 205A, and a second signal is sent to the controller.

As shown in cross-section in FIG. 8E, when the U shaped housing and elongated member are located relative to one another in a third zone of the length of the elongated member, as shown at section line 8E--8E, each of the reed switches 200A, 200B is responsive to a magnetic actuator 205A, 205B and a third signal is sent to the controller.

FIGS. 9A, 9B and 9C present perspective and cross-sectional views of a vehicle seat position sensor device according to a third referred embodiment of the present invention. The embodiment shown in FIGS. 9A-9D is substantially like that shown in FIGS. 7A-7D with two notable exceptions. In this embodiment the height of the elongated member 332 is tapered in a continuous manner from a maximum height at a first end 350 of the elongated member to a minimum height at a second end 355 of the elongated member. A magnetic actuator 305 is situated in one leg of the U shaped housing and a GMR sensor 300 (also known in the art as a Giant Magnetoresistive Sensor) is situated in the other leg of the U shaped sensor. An operating characteristic of a GMR sensor is that the signal emitted by the GMR sensor varies with the degree of exposure to electromagnetic flux. The U shaped housing and the elongated member can move relative to one another in the direction indicated by arrow 302 in FIG. 9A and the elongated member is interposed between the legs of the U shaped member.

When the U shaped housing and the elongated member are disposed relative to one another at different locations along the length of the tapered elongated member, for example at locations indicated by section lines 9B--9B and 9D--9D of FIG. 9A, the degree of exposure of the GMR sensor 305 to the magnetic actuator 305 varies as shown in cross-section in FIGS. 9B and 9D, and the signal sent to the controller varies also. FIG. 9C is a section view taken along line 9C--9C of FIG. 9B showing the disposition of the magnetic actuator 305 and GMR sensor 300 in the U shaped housing 336.

FIG. 10 presents a perspective view, partially broken away, of a vehicle seat equipped with a seat position sensor device of FIGS. 7A, 7B and 7C in a first configuration. In the embodiment shown in FIG. 10 the elongated member 132 is connected to the vehicle floor. The U shaped housing 136 and associated magnetic actuator and reed switch is connected to the vehicle seat 12 such that the U shaped housing moves relative to the elongated member when the position of the seat relative to a selected vehicle components, such as the steering wheel or instrument panel, is changed.

FIG. 11 presents a perspective view, partially broken away, of a vehicle seat equipped with a seat position sensor device of FIGS. 7A, 7B and 7C in a second configuration. In the embodiment shown in FIG. 11 the elongated member 132 is connected to a first portion of the vehicle seat 12 such that the elongated member moves with the seat. However, in this embodiment the U shaped housing 136 and associated magnetic actuator and reed switch are connected to another portion of the seat such that the U shaped member remains stationary.

FIG. 12 presents a perspective view, partially broken away, of a vehicle seat equipped with a seat position sensor device of FIGS. 7A, 7B and 7C in a second configuration. In the embodiment shown in FIG. 12 the elongated member 13 is connected to a vehicle or seat component in a manner such that the elongated member remains stationary with the various heights of the elongated member in a vertical orientation. The U shaped housing 136 and associated magnetic actuator and reed switch are connected to the seat such that the U shaped member moves with the seat.

It will thus be seen that certain changes may be made in the above construction without departing from the scope of the invention, and it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Husby, Harald Snorre, Murray, Michael P., Allen, Gary S., Nakhla, Said Shafik, Roble, Craig Robert

Patent Priority Assignee Title
6561544, Jun 05 2002 Key Safety Systems, Inc Airbag deployment system with seat position sensors
6683544, Jun 13 2001 Alps Electric Co., Ltd Seat position sensor
6801662, Oct 10 2000 HRL Laboratories, LLC Sensor fusion architecture for vision-based occupant detection
6854782, Jan 03 2003 Lear Corporation Seat position sensing device for use in occupant restraint
6907795, Nov 09 2001 STONERIDGE CONTROL DEVICES, INC Seat position sensor
7009386, Jan 02 2002 STONERIDGE CONTROL DEVICES, INC Non-contact position sensor utilizing multiple sensor elements
7147261, Jul 18 2001 Intier Automotive Inc Seat track assembly for a motor vehicle having an integrated position sensor
7185916, Jan 14 2004 Lear Corporation Vehicle seat assembly having a field effect sensor for detecting seat position
7268704, Nov 30 2001 Robert Bosch GmbH Input device in a vehicle and method of occupant classification
7322605, Jul 09 2004 Intier Automotive Inc. Seat track assembly for a motor vehicle having an integrated position sensor
7555380, Apr 15 2005 Lear Corporation Non-contact seat position system
7834617, Jan 22 2008 Ford Global Technologies, LLC Magnetoresistive continuous seat track position sensor
Patent Priority Assignee Title
4625329, Jan 20 1984 Nippondenso Co., Ltd. Position analyzer for vehicle drivers
4811226, Sep 30 1980 Toyota Jidosha Kogyo Kabushiki Kaisha Optimum angle adjusting apparatus for vehicle equipments
5000505, Sep 09 1988 Mazda Motor Corporation Rotary device for front seats of a motor vehicle
5074583, Jul 29 1988 Mazda Motor Corporation Air bag system for automobile
5398185, Apr 18 1990 Nissan Motor Co., Ltd. Shock absorbing interior system for vehicle passengers
5413378, Dec 02 1993 TRW Vehicle Safety Systems Inc. Method and apparatus for controlling an actuatable restraining device in response to discrete control zones
5482314, Apr 12 1994 Robert Bosch Corporation Automotive occupant sensor system and method of operation by sensor fusion
5707110, Aug 04 1995 Ford Global Technologies, Inc Position marking arrangement
6053529, Dec 22 1997 Ford Global Technologies, Inc Occupant restraint system with seat position sensor
DE19522897,
////////////////////////////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 24 2000Breed Automotive Technology, Inc.(assignment on the face of the patent)
Dec 26 2000BREED AUTOMOTIVE TECHNOLOGY, INC CONGRESS FINANCIAL CORPORATION FLORIDA SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0114420646 pdf
Apr 25 2003BREED AUTOMOTIVE TECHNOLOGY, INC CITICORP USA, INC , AS TERM C LOAN COLLATERAL AGENT AND CITICORP USA, INC AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0144280283 pdf
Jul 25 2003Congress Financial CorporationBREED AUTOMOTIVE TECHNOLOGY, INC RELEASE OF SECURITY INTEREST IN TRADEMARKS0143130243 pdf
Jul 25 2003Congress Financial CorporationBREED AUTOMOTIVE TECHNOLOGY, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0188610497 pdf
Nov 12 2004BREED AUTOMOTIVE TECHNOLOGY, INC Key Safety Systems, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0153480722 pdf
Mar 08 2007KEY ASIAN HOLDINGS, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007Hamlin IncorporatedCITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007BREED AUTOMOTIVE TECHNOLOGY, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007AEGIS KEY CORP CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KSS ACQUISITION COMPANYCITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KSS HOLDINGS, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007Key Safety Systems, IncCITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY AUTOMOTIVE ACCESSORIES, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY AUTOMOTIVE OF FLORIDA, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY SAFETY SYSTEMS OF TEXAS, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY SAFETY SYSTEMS FOREIGN HOLDCO, LLCCITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY SAFETY RESTRAINT SYSTEMS, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY INTERNATIONAL MANUFACTURING DEVELOPMENT CORPORATIONCITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY AUTOMOTIVE WEST, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007HAMLIN ELECTRONICS LIMITED PARTNERSHIPCITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY ELECTRONICS OF NEVADA, INC CITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY CAYMAN GP LLCCITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Mar 08 2007KEY AUTOMOTIVE, LPCITICORP USA, INC SECURITY AGREEMENT0192970249 pdf
Dec 31 2012CITICORP USA, INC UBS AG, Stamford BranchASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS0295650125 pdf
Jul 08 2013CITICORP USA, INC BREED AUTOMOTIVE TECHNOLOGIES, INC RELEASE OF LIEN INTEREST IN PATENT COLLATERAL0308020787 pdf
Jul 17 2013UBS AG, Stamford BranchKey Safety Systems, IncRELEASE OF SECURITY INTEREST0313270676 pdf
Jul 17 2013UBS AG, Stamford BranchHamlin IncorporatedCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKey Safety Systems, IncCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY SAFETY SYSTEMS OF TEXAS, INC CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY SAFETY SYSTEMS FOREIGN HOLDCO, LLCCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY SAFETY RESTRAINT SYSTEMS, INC CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY INTERNATIONAL MANUFACTURING DEVELOPMENT CORPORATIONCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY ELECTRONICS OF NEVADA, INC CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY CAYMAN GP LLCCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY AUTOMOTIVE, LPCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKSS HOLDINGS, INC CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKSS ACQUISITION COMPANYCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchBREED AUTOMOTIVE TECHNOLOGY, INC CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY ASIAN HOLDINGS, INC CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Jul 17 2013UBS AG, Stamford BranchKEY AUTOMOTIVE ACCESSORIES, INC CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL AND THE RECEIVING PARTY NAMES PREVIOUSLY RECORDED ON REEL 031327 FRAME 676 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECOND LIEN INTEREST IN PATENT COLLATERAL SEE ALSO THE ATTACHED DECLARATION 0335210223 pdf
Aug 29 2014UBS AG, Stamford BranchKEY AUTOMOTIVE, LPRELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKey Safety Systems, IncRELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKSS HOLDINGS, INC RELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKSS ACQUISITION COMPANYRELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchBREED AUTOMOTIVE TECHNOLOGY, INC RELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKEY ELECTRONICS OF NEVADA, INC RELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchHamlin IncorporatedRELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKEY AUTOMOTIVE ACCESSORIES, INC RELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKEY AUTOMOTIVE WEST, INC RELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKEY CAYMAN GP LLCRELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014Key Safety Systems, IncUBS AG, Stamford BranchPATENT SECURITY AGREEMENT0336730524 pdf
Aug 29 2014UBS AG, Stamford BranchKEY SAFETY SYSTEMS OF TEXAS, INC RELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKEY SAFETY SYSTEMS FOREIGN HOLDCO, LLCRELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKEY SAFETY RESTRAINT SYSTEMS, INC RELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKEY INTERNATIONAL MANUFACTURING DEVELOPMENT CORPORATIONRELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Aug 29 2014UBS AG, Stamford BranchKEY ASIAN HOLDINGS, INC RELEASE OF INTEREST IN PATENT COLLATERAL0336660605 pdf
Apr 10 2018UBS AG, Stamford BranchKEY INTERNATIONAL MANUFACTURING DEVELOPMENT CORPORATIONRELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKey Safety Systems, IncRELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKEY CAYMAN GP LLCRELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKEY SAFETY SYSTEMS FOREIGN HOLDCO, LLCRELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKEY AUTOMOTIVE OF FLORIDA, LLCRELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKEY AUTOMOTIVE ACCESSORIES, INC RELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKEY ASIAN HOLDINGS, INC RELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchBREED AUTOMOTIVE TECHNOLOGY, INC RELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKSS ACQUISITION COMPANYRELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKSS HOLDINGS, INC RELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Apr 10 2018UBS AG, Stamford BranchKEY SAFETY RESTRAINT SYSTEMS, INC RELEASE OF INTEREST IN PATENTS- RELEASE OF REEL FRAME 033673 05240459330563 pdf
Date Maintenance Fee Events
Oct 21 2002M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 19 2006M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
May 23 2011REM: Maintenance Fee Reminder Mailed.
Jun 09 2011M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jun 09 2011M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.


Date Maintenance Schedule
Dec 11 20044 years fee payment window open
Jun 11 20056 months grace period start (w surcharge)
Dec 11 2005patent expiry (for year 4)
Dec 11 20072 years to revive unintentionally abandoned end. (for year 4)
Dec 11 20088 years fee payment window open
Jun 11 20096 months grace period start (w surcharge)
Dec 11 2009patent expiry (for year 8)
Dec 11 20112 years to revive unintentionally abandoned end. (for year 8)
Dec 11 201212 years fee payment window open
Jun 11 20136 months grace period start (w surcharge)
Dec 11 2013patent expiry (for year 12)
Dec 11 20152 years to revive unintentionally abandoned end. (for year 12)