A refractive laser surgery process is disclosed for using compact, low-cost ophthalmic laser systems which have computer-controlled scanning with a non-contact delivery device for both photo-ablation and photo-coagulation in corneal reshaping. The basic laser systems may include flash-lamp and diode pumped UV solid state lasers (193-215 nm), compact excimer laser (193 nm), free-running Er:glass (1.54 microns), Ho:YAG (2.1 microns), Q-switched Er:YAG (2.94 microns), and tunable IR lasers, (750-1100) nm and (2.5-3.2) microns. The advantages of the non-contact, scanning device used in the process over other prior art lasers include being safer, reduced cost, more compact and more precise and with greater flexibility. The theory of beam overlap and of ablation rate and coagulation patterns is also disclosed for system parameters. Lasers are selected with energy of (0.01-10) mj, repetition rate of (1-10,000), pulse duration of 0.01 nanoseconds to a few hundreds of microseconds, and with spot size of (0.05-2) mm for use with refractive laser surgery.
|
0. 24. An ophthalmic surgery apparatus, comprising:
a basic laser having an output laser beam of a fundamental ultraviolet wavelength within a range of 193- #10# 220 nm exiting from an output window of said basic laser, and an energy level exiting from said output window of said basic laser of less than about 10 mj per pulse sufficient to remove from 0.05 to 0.5 microns of tissue per pulse; and a computer-controlled scanning device coupled to said basic laser to scan said pulsed output laser beam, through known positions of an optical device moved by galvanometric forces, to cause a significant overlap of adjacent ablation spots of predetermined generally fixed size on a single ablation layer of said corneal surface to achieve a smooth ablation of corneal tissue.
0. 68. A method for ablating tissue, comprising:
providing a basic laser having a pulsed output laser beam of a fundamental ultraviolet wavelength of 193 nm exiting from an output window of said basic laser, and a repetition rate of #10# 1 Hz to 1000 Hz; focusing said pulsed output laser beam onto said tissue to a predetermined generally fixed spot size; and scanning said pulsed output laser beam, through known positions of an optical device moved by galvanometric forces, into a substantially overlapping pattern of beam pulses on said tissue such that adjacent ablation spots on a single ablation layer of said tissue significantly overlap one another and remove from 0.05 to 0.5 microns of tissue per pulse, whereby a laser pulse is delivered which is low power at said tissue.
0. 54. A method of performing laser ablation on tissue, said method comprising:
providing a basic laser having a pulsed output laser beam of a fundamental ultraviolet wavelength within a range of 193- #10# 220 nm exiting from an output window of said basic laser, a repetition rate of 1 Hz to 1000 Hz, and an energy level exiting from said output window of said basic laser of no greater than 10 mj per pulse; providing a galvanometer scanner; and significantly overlapping adjacent ablation spots focused to a predetermined generally fixed spot size on a single ablation layer of said tissue by controlling said pulsed output beam with said galvanometer scanner to provide a substantially overlapping pattern of beam pulses on said tissue which remove from 0.05 to 0.5 microns of tissue per pulse.
0. 33. A method for performing ophthalmic surgery comprising:
providing a basic laser having a pulsed output laser beam of a fundamental ultraviolet wavelength within a range of 193- #10# 220 nm exiting from an output window of said basic laser, a repetition rate of 1 Hz to 1000 Hz, and an energy level exiting from said output window of said basic laser of no greater than 10 mj per pulse; focusing said pulsed laser beam onto corneal tissue to a predetermined generally fixed spot size; scanning said pulsed laser beam, through known positions of an optical device moved by galvanometric forces, in a substantially overlapping pattern on said corneal tissue such that adjacent ablation spots on a single ablation layer of said corneal tissue significantly overlap one another; and removing from 0.05 to 0.5 microns of corneal tissue per pulse.
0. 79. An ophthalmic surgery apparatus for performing corneal refractive surgery by reshaping a portion of a corneal surface, said apparatus comprising:
a basic laser having a pulsed output laser beam of a fundamental ultraviolet wavelength within a range of 193- #10# 220 nm exiting from an output window of said basic laser, and an energy level exiting from said output window of said basic laser of less than 10 mj per pulse sufficient to remove from 0.05 to 0.5 microns of tissue per pulse; and a computer-controlled scanning device coupled to said basic laser to scan said pulsed output laser beam, through known positions of an optical device moved by galvanometric forces, to cause a significant overlap of adjacent ablation spots of predetermined generally fixed size on a single ablation layer to achieve a smooth ablation of corneal tissue.
0. 86. A method for performing ophthalmic surgery, comprising:
providing a basic laser having a pulsed output laser beam of a fundamental ultraviolet wavelength within a range of 193- #10# 220 nm exiting from an output window of said basic laser, and an output energy level exiting from said output window of said basic laser of no greater than 10 mj/pulse sufficient to remove from 0.05 to 0.5 microns of corneal tissue per pulse; focusing said pulsing ultraviolet laser beam into a predetermined generally fixed spot size on corneal tissue; and scanning said pulsing laser beam, through known positions of an optical device moved by galvanometric forces, in a purposefully substantially overlapping pattern on said corneal tissue such that adjacent ablation spots in said overlapping pattern on a single ablation layer of said corneal tissue significantly overlap one another.
0. 80. A method of performing corneal refractive surgery by reshaping a portion of corneal surface, said method comprising:
providing and pulsing a basic laser having an output laser beam of a fundamental ultraviolet wavelength within a range of 193- #10# 220 nm exiting from an output window of said basic laser, a repetition rate of 1 to 1000 pulses per second, and an energy level exiting from said output window of said basic laser of no greater than 10 mj per pulse; focusing said output laser beam onto a corneal surface in a predetermined fixed spot size; scanning said output laser beam through known positions of an optical device moved by galvanometric forces; and substantially overlapping adjacent ones of a plurality of ultraviolet laser beam pulses over a single ablation layer on said corneal surface sufficient to ablate a depth of between 0.05 and 0.5 microns of corneal tissue per ultraviolet laser beam pulse.
0. 83. A method for performing corneal refractive surgery by reshaping a portion of corneal surface, comprising:
selecting a basic laser having a pulsed output laser beam of a fundamental ultraviolet wavelength within a range of 193- #10# 220 nm exiting from an output window of said basic laser, and an energy level exiting from said output window of said basic laser of less than 10 mj/pulse; selecting a scanning mechanism for scanning said pulsed output laser beam through known positions of an optical device moved by galvanometric forces; coupling said pulsed output laser beam to said scanning mechanism for focusing said pulsed output laser beam in a predetermined generally fixed spot size on said corneal surface; controlling said scanning mechanism to deliver said scanning pulsed output laser beam in a substantially overlapping pattern on said corneal surface such that adjacent ablation spots on a single ablation layer of said corneal tissue significantly overlap one another to at least one of photoablate and photocoagulate corneal tissue; and removing from 0.05 to 0.5 microns of corneal tissue per pulse, whereby a patient's vision is corrected by said reshaping of said portion of said corneal surface of said patient's eye.
1. A method of performing corneal refractive surgery by reshaping a portion of a corneal surface comprising the steps of:
selecting a laser having a pulsed output beam of predetermined ultraviolet wavelength and having an energy level less than of no greater than 10 mj/pulse; #10#
selecting a scanning mechanism for scanning said selected laser output beam, said scanning mechanism including a galvanometer scanning mechanism for controlling said laser beam into an overlapping pattern of adjacent pulses; coupling said laser beam to a scanning device for scanning said laser beam over a predetermined surface; focusing said scanning laser beam onto a corneal surface to a predetermined generally fixed spot size; aligning the center of the said scanning laser beam onto the corneal surface with a visible aiming beam; controlling the scanning mechanism to deliver the scanning laser beam in a predetermined overlapping pattern onto a plurality of positions on the corneal surface to photoablate or photocoagulate corneal tissue; and removing from 0.05 to 0.5 microns of corneal tissue per pulse overlapped to remove tissue to a desired depth, whereby a patient's vision is corrected by the reshaping of the corneal surface of the patient's eye using a low power laser.
2. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
3. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
4. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
5. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
6. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
7. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
8. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
9. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
10. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
11. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
12. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
13. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
14. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
15. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
16. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
17. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
18. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
19. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
20. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
21. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
22. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
23. A method of performing corneal refractive surgery by reshaping a portion of the corneal surface in accordance with
0. 25. The ophthalmic surgery apparatus according to
said pulses are overlapped in a range of 50 to #10# 80 percent.
0. 26. The ophthalmic surgery apparatus according to
said pulsed beam has a spot size on said corneal tissue of less than or equal to 2 mm. #10#
0. 27. The ophthalmic surgery apparatus according to a mirrored surface. #10#
0. 28. The ophthalmic surgery apparatus according to a repetition rate of said laser is synchronized with said scanning device. #10#
0. 29. The ophthalmic surgery apparatus according to
successive pulses of said pulsed beam are rotated through a linear-scan angle by said scanning device. #10#
0. 30. The ophthalmic surgery apparatus according to a motor. #10#
0. 31. The ophthalmic surgery apparatus according to a mirrored device. #10#
0. 32. The ophthalmic surgery apparatus according to a refractive device. #10#
0. 34. The method for performing ophthalmic surgery according to said substantially overlapping pattern is achieved using randomized scanning of said pulsed laser beam on said corneal tissue. #10#
0. 35. The method for performing ophthalmic surgery according to
said pulsed laser beam has a spot size on said corneal tissue of no greater than 1 mm. #10#
0. 36. The method for performing ophthalmic surgery according to
said pulsed laser beam has a spot size on said corneal tissue of no greater than 1 mm. #10#
0. 37. The method for performing ophthalmic surgery according to
pulses of said pulsed laser beam corresponding to adjacent ablation spots on said single ablation layer overlap one another by least 50 percent. #10#
0. 38. The method for performing ophthalmic surgery according to said pulsed laser beam is scanned synchronously with said pulses of said pulsed laser beam. #10#
0. 39. The method for performing ophthalmic surgery according to
an area of corneal tissue 0. #10# 2 to 0.5 microns deep is removed per pulse of said pulsed laser beam.
0. 40. The method for performing ophthalmic surgery according to said pulsed laser beam is scanned in circular patterns. #10#
0. 41. The method for performing ophthalmic surgery according to said pulsed laser beam is scanned in linear patterns. #10#
0. 42. The method for performing ophthalmic surgery according to said scanning moves said optical device using a motor. #10#
0. 43. The method for performing ophthalmic surgery according to rotational movement of said optical device. #10#
0. 44. The method for performing ophthalmic surgery according to a mirrored device. #10#
0. 45. The method for performing ophthalmic surgery according to a refractive device. #10#
0. 46. The method for performing ophthalmic surgery according to translational movement of said optical device. #10#
0. 47. The method for performing ophthalmic surgery comprising:
providing a basic laser having a pulsed output laser beam of a fundamental ultraviolet wavelength within a range of 193-220 nm exiting from an output window of said basic laser, a repetition rate of at least #10# 1 Hz to 1000 Hz, and an energy level exiting from said output window of said basic laser of 0.5 to 10 mj per pulse; focusing said pulsed output laser beam onto corneal tissue to a predetermined generally fixed spot size; scanning said pulsed laser beam, through known positions of an optical device moved by galvanometric forces, in a substantially overlapping pattern on said corneal tissue such that adjacent ablation spots on a single ablation layer of said corneal tissue significantly overlap one another; and removing from 0.05 to 0.5 microns of corneal tissue per pulse.
0. 48. The method for performing ophthalmic surgery according to
said pulsed laser beam has a spot size on said corneal tissue of no greater than 1 mm. #10#
0. 49. The method for performing ophthalmic surgery according to
pulses of said pulsed laser beam corresponding to adjacent ablation spots on said single ablation layer overlap one another by at least 50 percent. #10#
0. 50. The method for performing ophthalmic surgery according to
said pulsed laser beam is pulsed at a repetition rate of at least 50 Hz. #10#
0. 51. The method for performing ophthalmic surgery according to said pulsed laser beam is scanned synchronously with said pulses of said pulsed laser beam. #10#
0. 52. The method for performing ophthalmic surgery according to said pulsed laser beam is scanned in circular patterns. #10#
0. 53. The method for performing ophthalmic surgery according to said pulsed laser beam is scanned in linear patterns. #10#
0. 55. The method of performing laser ablation on tissue according to said substantially overlapping pattern is achieved by placing said ablation spots on said single ablation layer of said tissue in random order. #10#
0. 56. The method of performing laser ablation on tissue according to
said pulse delivered at said tissue has an energy of 10 mj per pulse or less. #10#
0. 57. The method of performing laser ablation on tissue according to
said ultraviolet wavelength is 193 nm. #10#
0. 58. The method of performing laser ablation on tissue according to
said pulsed output laser beam has an energy level exiting from said output window of said basic laser in a range of 0. #10# 05 to 10 mj per pulse.
0. 59. The method of performing laser ablation on tissue according to
said pulsed output beam has a spot size on said tissue of no greater than 1 mm. #10#
0. 60. The method of performing laser ablation on tissue according to
said pulsed output beam has a spot size on said tissue of no greater than 1 mm. #10#
0. 61. The method of performing laser ablation on tissue according to
pulses of said pulsed output beam corresponding to adjacent ablation spots on said single ablation layer overlap one another by at least 50 percent. #10#
0. 62. The method of performing laser ablation on tissue according to said pulsed output beam is scanned synchronously with said pulses of said pulsed output beam. #10#
0. 63. The method of performing laser ablation on tissue according to
an area of corneal tissue in a range of 0. #10# 2 to 0.5 microns deep is removed per pulse of said pulsed output beam.
0. 64. The method of performing laser ablation on tissue according to said pulsed output beam is scanned in circular patterns. #10#
0. 65. The method of performing laser ablation on tissue according to said pulsed output beam is scanned in linear patterns. #10#
0. 66. The method of performing laser ablation on tissue according to said pulsed output beam is scanned in concentric circles. #10#
0. 67. The method of performing laser ablation on tissue according to said concentric circles have increasing diameters. #10#
0. 69. The method for ablating tissue according to
an area of tissue 0. #10# 2 to 0.5 microns deep is removed per pulse of said pulsed laser beam.
0. 70. The method for ablating tissue according to said substantially overlapping pattern of beam pulses has an orientation which is achieved using a randomized scanning of said pulsed output beam on said tissue. #10#
0. 71. The method for ablating tissue according to
said pulsed output laser beam has an energy level exiting from said output window of said basic layer of no greater than 10 mj per pulse. #10#
0. 72. The method for ablating tissue according to
said scanning overlaps adjacent beam pulses corresponding to adjacent ablation spots on said single ablation layer by at least 50 percent. #10#
0. 73. The method for ablating tissue according to said basic layer is an excimer layer. #10#
0. 74. The method for ablating tissue according to said scanning moves said optical device using a motor. #10#
0. 75. The method for ablating tissue according to rotational movement of said optical device. #10#
0. 76. The method for ablating tissue according to a mirrored device. #10#
0. 77. The method for ablating tissue according to a refractive device. #10#
0. 78. The method for ablating tissue according to translational movement of said optical device. #10#
0. 81. The method of performing corneal refractive surgery by reshaping a portion of a corneal surface according to selecting a scanner to scan said overlapping plurality of laser beam pulses, said scanner deflecting said laser beam pulses a predetermined angle. #10#
0. 82. The method of performing corneal refractive surgery by reshaping a portion of a corneal surface according to said optical device includes a mirrored surface. #10#
0. 84. The method for performing corneal refractive surgery according to a mirrored surface. #10#
0. 85. The method for performing corneal refractive surgery according to aligning a center of said scanning laser beam onto said corneal surface with a visible aiming beam. #10#
0. 87. The method of performing ophthalmic surgery according to
said pulsing ultraviolet laser beam is pulsed at a repetition of 1 to #10# 1000 Hz.
0. 88. The method of performing ophthalmic surgery according to
said pulsing ultraviolet laser beam is sufficient to ablate a depth in a range of 0. #10# 2 and 0.5 microns of corneal tissue per pulse.
0. 89. The method for performing ophthalmic surgery according to
said substantially overlapping pattern is achieved using a randomized scanning of said pulsed laser beam on said corneal tissue. #10#
0. 90. The method of performing ophthalmic surgery according to
pulses of said ultraviolet laser beam corresponding to adjacent ablation spots on said single ablation layer overlap one another by at least 50 percent. #10#
0. 91. The method of performing ophthalmic surgery according to
pulses of said ultraviolet laser beam corresponding to adjacent ablation spots on said single ablation layer overlap one another in a range of 50 to #10# 80 percent.
|
This application is a continuation-in-part application of Ser. No. 07/985,617, filed Dec. 3, 1992 now abandoned.
1. Field of the Invention
The present invention relates to laser ophthalmic surgery using a compact, low-cost, low-power laser system with a computer-controlled, non-contact process and corneal topography to perform corneal reshaping using either surface ablation or thermal coagulation.
2. Prior Art
Various lasers have been used for ophthalmic applications including the treatments of glaucoma, cataract and refractive surgery. For non-refractive treatments (glaucoma and cataract), suitable laser wavelengths are in the ranges of visible to near infrared. They include: Nd:YAG (1064 nm), doubled-YAG (532 nm), argon (488, 514 nm), krypton (568, 647 nm), semiconductor lasers (630-690 nm and 780-860 nm) and tunable dye lasers (577-630 nm). For refractive surgeries (or corneal reshaping), ultraviolet (UV) lasers (excimer at 193 nm and fifth-harmonic of Nd:YAG at 213 nm) have been used for large area surface corneal ablation in a process called photorefractive keratectomy (PRK). Corneal reshaping may also be performed by laser thermal coagulation currently conducted with Ho:YAG lasers using a fiber-coupled, contact-type process. However, the existing ophthalmic lasers as above described have one or more of the following limitations and disadvantages: high cost due to the high-power requirement in UV lasers for photorefractive keratectomy; large size and weight; high maintenance cost and gas cost (for excimer laser), and high fiber-cost for contact-type laser coagulation.
In light of the above, it is an object of the present invention to provide ophthalmic laser systems which offer the advantages of: low-cost, reduced size and weight, reliability, easy-operation and reduced maintenance. Another object of this invention is to provide a computer-controlled scanning device which enables use of a low-cost, low-energy laser for photorefractive keratectomy currently performed only by high-power UV lasers.
It is yet another object of the present invention to provide a refractive laser system which is compact, portable and insensitive to environmental conditions (such as vibration and temperature). This portable system may also be used for a mobile clinical center where the laser is transported by a van. It is yet another objective of the present invention to provide a non-contact process for corneal reshaping using laser thermal coagulation, where predetermined corneal correction patterns are conducted for both spherical and astigmatic changes of the corneal optical power.
The prior U.S. Pat. No. 4,784,135 to Blum, et al. and assigned to IBM teaches the first use of far ultraviolet irradiation of a biological layer to cause ablative photodecomposition. This patent teaches that using a laser beam housing a wavelength of 193 nm and an energy level of much greater than 10 mJ/cm2/pulse can be used to photoablate corneal tissue without the build up of excess heat. The present invention on the other hand uses a process that allows the use of energy levels of less than 10 mJ/pulse in a process that still allows photoablation.
There are several prior art U.S. Patents relating to refractive surgery, or photorefractive keratectomy. A UV solid-state fifth-harmonic of Nd:YAG (or Nd:YLF) laser at 213 nm (or 210 nm), is disclosed in U.S. Pat. No. 5,144,630 by the inventor, J. T. Lin. U.S. Pat. No. 4,784,135 suggests the use of a UV laser with wavelengths less than 200 nm, in particular Argon Fluoride (ArF) laser at 193 nm, for non-thermal photoablation process in organic tissue. Devices for beam delivery and methods of corneal reshaping are disclosed in U.S. Pat. No. 4,838,266 using energy attenuator, and U.S. Pat. No. 5,019,074 using an erodible mask. Techniques for corneal reshaping by varying the size of the exposed region by iris or rotating disk are discussed in Marshall et al, "Photoablative Reprofiling of the Cornea Using an Excimer Laser: Photorefractive Keratectomy" Vol. 1, Lasers in Ophthalmology, pp. 21-48 (1986). Tangential corneal surface ablation using ArF excimer laser or harmonics of Nd:YAG laser (at 532 and 266 nm) is disclosed in U.S. Pat. No. 5,102,409.
This prior art however requires high UV energy of (100-300 mJ) per pulse from the laser cavity or (30-40) mJ per pulse delivered onto the corneal surface, where large area corneal ablation using a beam spot size of about (4-6) mm which gives an energy density of (120-200) mJ/cm2. Moreover, the prior art Argon Fluoride excimer lasers operate at a repetition rate of (5-15) Hz and also limit the practical use of the tangential ablation concept which takes at least (5-10) minutes for a -5 diopter corneal correction in a 5-mm optical zone. The high energy requirement of the currently used Argon Fluoride excimer laser suffers the problems of: high-cost (in system, erodible mask and gas cost), high-maintenance cost, large size/weight and system are sensitive to environmental conditions (such as temperature and moisture).
The prior L'Esperance patent, U.S. Pat. No. 4,665,913, disclosed the method of a scanning laser for corneal reshaping. The proposed concept of this prior art, however, had never been demonstrated to be practical or to achieve the desired clinical requirement of smooth ablation of the corneal surface. This prior art is not practically useful and had not ever been demonstrated to be real because of the conditions in the art. A high-power laser of (100-200 mJ) is required in the prior art in order to obtain a useful beam with a substantially square spot size of 0.5×0.5 mm (see prior art, Col. 3, line 65 and Col. 4, lines 1-14) due to the low efficiency of obtaining such a beam, and which further requires a substantially uniform density (see Col. 13, line 30 and Col. 15, line 25). To achieve myopic correction, for example, the prior art (Col. 13, lines 61-66 and Col. 15 lines 60-65) proposes a smooth laser density increase with increasing scanning radius under the condition that a substantially uniform density of the scanning beam is required for a substantially uniform scan area (Col. 15, lines 20-28 of L'Esperance). Furthermore, L'Esperance teaches (Col. 4, lines 40-50) that a depth of 0.35 mm in an area of 6 mm diameter might be achieved in about 15 seconds when a beam spot of 0.5×0.5 mm is used and each pulse ablated 14 microns. The prior art proposes the method of having individual square beams (0.5×0.5 mm) scan to the fashion of exact matching of the square boundaries to cover the area of 6 mm, where the overlap among these individual beams should be avoided, otherwise excessive ablation near the boundaries of each 0.5×0.5 mm spot causes ridges. This is also part of the reason that the prior art requires a substantially square section of the individual beam with a substantially uniform density.
The L'Esperance U.S. Pat. No. 4,665,913 requires a complex apparatus to select a section of the beam which is substantially uniform in density within a substantially square spot "dot". The overall efficiency would be less than 10% from the output of the laser window to the corneal surface and requires, where a high power (at least 100 mJ) excimer laser than will be required than the Blum, et al. patent. It is almost impossible to match exactly the boundary of each square beam to achieve a substantially uniform scanned area even if each individual beam is perfectly uniform and square in shape and the smooth increase of the radius of scanned areas to obtain, for example, a myopic correction profile, would still be almost impossible to achieve for an overall smooth corneal surface. The successive sweep of the scan areas would always leave ridges between these sweeps. It should also be noticed that in L'Esperance's patent (Col. 18, lines 10-28) uses overlaps between each of the scanned areas to obtain the desired ablation profiles of myopic (or other) corrections. However, the ridges between each of the successive ablated areas are very difficult to avoid if within each scanned area the ablated profiles are not substantially uniform. In fact, one should expect a very rough surface on these ablated areas in addition to the regular ridges between each overlapped zones. One of the problems found in these teachings is that each required individual ablated area be substantially uniform and in a round or square shape, which is very difficult to achieve even if a perfectly uniform, square portion of a fundamental beam is produced using a complex apparatus for beam reshaping and having the high initial power.
It is not clear that L'Esperance has found a suitable scanning method or an effective method of selecting a perfect beam (with uniform density and well-defined shape) which would overcome the above-described difficulties and make the proposed teaching become practical in cost and design for any clinical uses. In fact, L'Esperance's scanning method has also been challenged by another prior art of Muller, U.S. Pat. No. 4,856,513, where the difficulties and problems of L'Esperance's teachings are discussed (see Col. 2, lines 1-40 of Muller's patent).
It is therefore a further object of the present invention to provide a method and apparatus for corneal reshaping by using software-driven new scanning patterns which do not require substantially uniform density or a specific spot shape. Contrary to L'Esperance's teachings, which suggest that there should be a perfect boundary match among each square beams and that excessive overlap should be avoided, the present invention proposes that a large portion (50%-80%) of overlap among the individual beams is necessary in order to achieve uniform ablated areas and a smooth profile without ridges. Furthermore, a low-power UV laser (0.1-2 mJ on corneal surface) at its bare-beam (having typically a 3-lop profile) without any beam reshaping is sufficient to achieve a smooth ablation surface based on the method proposed in the present invention, where computer-controlled beam overlap and orientation are employed. In addition to the surface quality problems, it is also impossible for L'Esperance to achieve any meaningful clinical results using his proposed techniques based on the present low-energy laser of (2-4) mJ from the output laser window and (0.1-2) mJ on corneal surface.
Therefore, another object of the present invention is to provide a new method of beam scanning which combines beam overlap and orientation for a random beam density distribution on the ablated corneal surface such that the individual beam profiles are not critical, where the focused beam (spot size of 0.1-1.2 mm) uses very low energy (0.1-2 mJ) and at its bare-profile is delivered onto the corneal surface in an averaged fashion. Uniform, near flat-top ablated areas of (1-9 mm in diameter) can be performed by the nonuniform starting-beam, but only when a set of specific predetermined overlap and orientation parameters are used. Portions of the theoretical background was published by the inventor, J. T. Lin, in SPIE Pro. vol 1644, Ophthalmic Technologies II (1991), p.p. 266-275.
One of the essential feature of the present invention for the photorefractive keratectomy process is to use a scanning device in a laser system which has high repetition rates, 50 to 50,000 Hz, but requires less energy, ranging between 0.05-10 mJ per pulse, or about 10 to 100 times less than that of the prior art. This new concept enables one to make the refractive lasers at a lower cost, smaller size and with less weight (by a factor of 5-10) than that of prior art lasers. Furthermore, these compact lasers of the present invention are portable and suitable for mobile clinical uses. To achieve beam uniformity and fast refractive surgery (30 to 60 seconds), a mathematical model of the beam overlap and ablation speed is also disclosed in the present invention.
For the laser thermo-keratoplasty (LTK) process, the prior art uses fiber-coupled contact-type procedure which involves the following drawbacks: (i) slow processing speed (typically a few minutes to perform eight-spot coagulation) which causes the non-uniform collagen shrinkage zone; (ii) circular coagulation zone which limits the procedure only for spherical type correction such as hyperopia; and (iii) the contact fiber-tip must be replaced in each procedure.
In the present invention, a computer-controlled scanning device is able to perform the laser thermokeratoplasty procedure under a non-contact mode and conduct the procedure many times faster than that of the prior contact-procedure and without cost for a fiber-tip replacement. Furthermore the coagulation patterns can be computer predetermined for specific applications in both spherical and astigmatic corrections. The flexible scanning patterns will also offer uniform and predictable collagen shrinkage.
For ophthalmic applications, it is another objective of the present invention to include but not limited to photorefractive keratectomy, laser thermokeratoplasty, epikeratoplasty, intrastroma photokeratectomy (IPK), phototherapeutic keratectomy (PTK), and laser-assisted keratomileusis (LAK).
The preferred embodiments of the basic ophthalmic surgery method uses a laser system for the ophthalmic surgery process, including: (1) a diode-pumped solid-state lasers of Nd:YAG or Nd:YLF which is frequency-converted by non-linear crystals of KTP (potassium titanyl phosphate), LBO (lithium triborate), KNbO3 (potassium niobate) and BBO (beta barium borate) into the fifth-harmonic at wavelength of 213 nm or 210 nm with energy of 0.01 to 5.0 mJ; (2) a compact, low-cost, low-power (energy of 1 to 10 mJ per pulse) argon fluoride excimer laser at 193 nm; (3) a frequency-converted Alexandite or Li:SAF or diode, lasers at (193-220) nm; (4) a compact, low-cost, Q-switched Er:YAG laser at 2.94 microns; (5) a free-running Ho:YAG (at 2.1 microns) or Er:glass (at 1.54 microns) or diode laser (1.9-2.5 microns); (6) ultrashort pulse IR laser (750-1100 nm) and (7) mid-IR (2.5-3.2 microns) laser generated from optical parametric oscillation.
According to one aspect of the present invention, the above-described basic lasers includes UV-lasers (193-215 nm) and IR-laser (1.5-3.2 microns) which are focused into a spot size of (0.05-2) mm in diameter, where laser energy per pulse of (0.01-10) mJ is sufficient to achieve the photo-ablation threshold (PAT) energy density of 50 to 600 mJ/cm2 depending upon the laser parameters (wavelengths and pulse duration) and tissue properties (absorption and scattering). The prior art excimer laser uses large beam spot ablation (4-6 mm) and require much higher laser energy (100-300 mJ) than the low-power lasers presented in this invention. In the present invention, a scanning, non-contact device is used to control the low-power laser for corneal diopter change, whereas diaphragms or masks are used in the high-power, high-cost excimer lasers, and contact, fiber-tip is used in the photo-coagulation procedure.
In another aspect of the present invention, a mathematical model is presented according to the optimal beam overlap for beam uniformity and fast procedure and scanning patterns for refractive corrections of myopia, hyperopia and astigmatism. For high-repetition lasers (50 to 5,000 Hz as proposed herein), refractive procedures may be completed in 20 to 60 seconds (depending on the diopter corrections) in the present invention, where scanning speed is only limited by the laser repetition rates.
A three-dimensional translation device (in X, Y and Z) is integrated into the above laser systems, where the laser heads are compact and light-weight and can be steered to the corneal center by the translation stages. The prior art high-powered excimer laser systems are stationary and require a motorized chair for corneal concentration. Beam steering and scanning is very difficult for these high-power, heavyweight excimer lasers.
In yet another aspect of the present invention, a free-running Ho:YAG (at 2.1 microns) or Er:glass (at 1.54 microns) or diode (1.9-3.2 microns) laser delivers a beam by a fiber waveguide and coupled to a scanning device for non-contact procedure for laser thermokeratoplasty (LTK), where optimal scanning patterns for corneal coagulation are performed for both spherical and astigmatic corrections.
In yet another aspect of the present invention, the above-described laser system provides an effective, low-cost tool for procedures of synthetic epikeratoplasty (SEK), where the artificial lens is sculpted with the laser to optimize lens curvature without causing problems of corneal haze and corrective regression. Real corneal tissues may also be sculpted and implanted by the above-described laser systems, a procedure known as laser myopic keratomileusis (MKM). Furthermore the UV and IR lasers disclosed in the present invention provide an effective tool for phototherapeutic keratectomy (PTK) which is currently conducted by high-power excimer lasers and the procedure conducted by diamond-knife called radial keratotomy (RK). This procedure conducted by UV or IR lasers is called laser radial keratotomy (LRK). The fundamental beam at 1064 or 1053 nm wavelength of the present invention may also be used for the intrastroma photorefractive keratectomy (IPK), where the laser beam is focused into the intrastroma area of the corneal and collagen tissue are disrupted.
The ophthalmic applications of the laser systems described in the present invention should include photorefractive keratectomy, phototherapeutic keratectomy, laser thermokeratoplasty, intrastroma photokeratectomy, synthetic epikeratoplasty, and laser radial keratotomy.
The theoretical background of the present invention with regards to the beam overlap and ablation rate in photorefractive keratectomy, intrastroma photokeratectomy, synthetic epikeratoplasty, phototherapeutic keratectomy and myopic keratomileusis procedures described in the present invention is as follows.
Given a laser energy per pulse of m (in mJ), an intensity of I (in mJ/cm2) may be achieved by focusing the beam into an area of A, where I=E/A. For corneal tissue ablation to occur requires the laser intensity (I) to be above the photoablation threshold (PAT), (60-120) mJ/cm2 for UV-laser (193-215 nm) and (200-600) mJ/cm2 for IR-laser (2.5-3.2 microns). Therefore it is always possible to tightly focus a laser beam and achieve the PAT value even for a low-energy laser (0.1-5) mJ. The drawback of using a low-energy, small-spot laser for large area ablation is that the operation time will be longer than that of a large-spot but high-power laser. However, time of operation may be shortened by using a high-repetition-rate laser (higher than 50 Hz). Small-spot, low-energy lasers for large area surface ablation would becomes practical only when a scanning device is used in a high-repetition-rate laser and only when uniform beam profile can be assured by the appropriate beam overlap. These two important issues are addressed in the present invention.
The overall operation rate (R) for a given diopter correction (D) is limited by the laser scanning rate (R1) which is in turn limited by the laser repetition rate. In addition, R is also proportional to the tissue ablation rate (RT) which is proportion to the laser intensity I (or energy density) at a given energy E.
The diopter change (D) in the case of myopia is related to the correction zone diameter (W) and the center ablation thickness (h0) and the ablation profile h(x) (at corneal position x) by:
In a scanning system as disclosed in the present invention, the number of ablation layers (M1) (without beam overlap) required for D-diopter correction is therefore related to the ablation thickness per pulse (T1), D, and W by
To include the overlap factor (F), F=2 for a 50% beam overlap scan and F=5 for 80% overlap, the required effective number of overlapped ablation layers is M1/F.
For a given ablation zone of W and laser focused spot area of A, one requires an effective single-layer scanning time (TS) of FW2/A.
The total operation time(T) needed for h0 center ablation or D-diopter correction becomes
Equation 4 gives us the scaling-law for operation time required (T), the laser energy (E), diopter change (D) and the ablation zone diameter (W). For a given laser energy per pulse of E, the overall operation rate (1/T) is independent to the laser intensity (I) and beam spot size (A). By increasing the laser average-power (P), defined by laser energy/pulse X repetition rate, more total energy may be delivered to the cornea per unit time. The average-power (P) is the key factor which actually determine the overall operation rate (or time) required to achieve the diopter change. By realizing that the scanning rate (1/TS) is proportional and synchronized to the laser repetition rate (RP), we are able to re-express Equation (4) as
It is important to note that given an average-power of P, the laser intensity must be above the photo-ablation threshold(PAT) by either beam focusing or increase the laser energy.
Based upon the above-described theory, some important features are: (i) CW lasers (either UV or IR) with low intensity normally can not cause photo-ablation since the energy density is lower than the PAT value; (ii) Lasers (UV or IR) at Q-switched or mode-locked mode and with pulse-duration shorter than 100 nanosecond will normally achieve the intensity above the PAT even at low-energy level of 0.05-5 mJ. In particular, picosecond lasers at high repetition rate is desirable where energy in the microjoule range would be sufficient. Moreover, the Q-switched short pulse lasers have smaller thermal damage than that of free-running lasers. The cost-effective refractive lasers are those which have high repetition rate (50 Hz and up) but operated at low-energy (0.05-5 mJ) and short pulse duration (0.001-20 nanoseconds). The preferred embodiments disclosed in the present invention as discussed in
Referring to
The laser systems described herein have been demonstrated using photorefractive keratectomy procedure with a diopter corrections up to -6 in PMMA plasty and -12 in corneal tissues. In the case of PMMA, we have also measured the diopters by a lensmeter with well-defined readings in the ranges of -1 to -12 diopters. This data provides the evidence of predictable diopter corrections using the laser systems of the present invention. Furthermore, minimal tissue thermal damage of 0.3-1.0 microns were measured by TEM (transmission electron microscopy). In measurements, a multi-zone (MZ) approach for high-diopter corrections (8-12) was used, where the center zone is 3 mm and the correction power decreases when the zone increases from 4 mm to 6 mm. This multi-zone approach reduces the overall ablation thickness and hence reduces the haze effect.
Still referring to
The basic laser also includes a mid-IR (2.5-3.2 microns) laser generated from optical parametric oscillation (OPO) using a near-IR laser (such as Nd:YAG or Nd:YLF, flash-lamp or diode-pumped) as the pumping sources and KTP or BBO as the frequency conversion crystals. The OPO laser has advantages over the Q-switched Er:YAG laser, including higher repetition rate (10-5,000 Hz) and shorter pulse width (1-40 n.s.). These advantages provide faster surgical procedure and reduced thermal damage on the ablated corneal tissue. Typical energy per pulse of the OPO laser is (0.1-10) mJ. Greater detail on OPO was published by the inventor in Optical Communications, vol. 75, p. 315 (1990).
Still referring to
The low-power laser systems described in the present invention can perform the procedures normally required in high-power lasers because a scanning device is used to assure the uniform corneal ablation by beam overlap and the ablation threshold is achievable by small spot size.
Referring to
In
Still referring to
The appropriate parameters relating to
Referring to
Still referring to
Still referring to
It is important to note that a uniform individual beam profile and energy stability of the laser, under the present scanning device, are not critical in achieving an overall uniform ablation zone whereas they are very critical for prior art systems using expanding iris devices. Given the ablation rate per overlapped circle, the overall diopter correction may be achieved by the appropriate increment in diameters of the expanding circles. Greater details of beam scanning and overlapping will be further discussed in connection with
Referring to
Referring to
Greater detail of the features of the present invention regarding beam overlap, scanning and orientation in order to achieve uniform ablation profiles to meet the clinical requirements of corneal reshaping are demonstrated as follows. The actually measured PMMA profiles were generated from the Microsensor (made by TENCOR INSTRUMENTS, INC.) using our ArF laser (the Compak-200 Mini-Excimer system, made by LaserSight, Inc.) having laser parameters of: (2-4 mJ) energy at the output window, operated at (50-200) Hz, with the beam focused onto the corneal surface at a spot size of about (0.2-1.2) mm, with energy per pulse of (0.5-1.5) mJ, tunable by a coated MgF window.
Referring to
Referring to
In addition to the overlap function, I have been able to further improve the beam uniformity by the beam orientation method as follows. As shown in
Referring to
The method disclosed in the present invention combines beam scanning, overlapping and pattern rotation (randomization) provides a powerful yet simple technique for optimal results of laser refractive surgery which involves both clinical aspects (ablation diopter, ablation optical zone, smoothness, patient centration and operation speed) and engineering aspects (beam profile, uniformity, stability, energy, spot size and delivery systems).
It is worth emphasizing that the concept of achieving a smooth ablation surface by using the randomly rotated scanning pattern as disclosed in the present invention would not be demonstrated if the microsensor were not used to measure the PMMA profiles. I have performed hundreds of PMMA profile analyses at various laser parameters together with the theoretical model presented in equations (1)-(5) are the key factors behind the present process. Furthermore, the refractive correction profile, governed by equation (1) would be very difficult to justify after the scanning method is applied to the target (PMMA and corneal tissue) if the microsensor is not available to the user. The PMMA data presented in the present invention have also been employed on corneas, where hundreds of patient's have been treated by the Compak-200, Mini-Excimer with predictable power corrections and smooth tissue ablation. Clinical results are to be presented in optthalmology conferences.
While the invention has been shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes and variations in form and detail may be made therein without departing from the spirit, scope and teaching to the invention. Accordingly, the method and apparatus, the ophthalmic applications herein disclosed are to be considered merely as illustrative and the invention is to be limited only as set forth in the claims.
Patent | Priority | Assignee | Title |
10034795, | Mar 13 2007 | AMO Development, LLC | Intraocular lens |
10130510, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
10179071, | Sep 19 2005 | IRIDEX Corporation | System and method for generating treatment patterns |
10195017, | Mar 13 2007 | AMO Development, LLC | Method for creating incision to improve intraocular lens placement |
10206817, | Feb 28 2014 | EXCEL-LENS, INC | Laser assisted cataract surgery |
10231872, | Feb 28 2014 | EXCEL-LENS, INC | Laser assisted cataract surgery |
10327951, | Feb 28 2014 | EXCEL-LENS, INC. | Laser assisted cataract surgery |
10376356, | Mar 13 2007 | AMO Development, LLC | Method and apparatus for creating ocular surgical and relaxing incisions |
10405970, | Mar 13 2007 | AMO Development, LLC | Method and apparatus for creating ocular surgical and relaxing incisions |
10456297, | Sep 09 2014 | AMO Development, LLC | Systems and methods for synchronized three-dimensional laser incisions |
10548715, | Mar 13 2007 | AMO Development, LLC | Apparatus for creating incisions to improve intraocular lens placement |
10548716, | Mar 13 2007 | AMO Development, LLC | Method for creating incision to improve intraocular lens placement |
10561531, | Feb 28 2014 | EXCEL-LENS, INC. | Laser assisted cataract surgery |
10639140, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
10709548, | Mar 13 2007 | AMO Development, LLC | Method and apparatus for creating ocular surgical and relaxing incisions |
10729496, | Nov 21 2017 | CUTERA, INC | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
10729538, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
10736733, | Mar 13 2007 | AMO Development, LLC | Intraocular lens |
10744036, | Sep 19 2005 | IRIDEX Corporation | System and method for generating treatment patterns |
10786390, | Jun 24 2015 | Alcon Inc | Apparatus for eye laser surgery and method for performing a transepithelial photorefractive keratectomy |
10828149, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
10874553, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
10925720, | Mar 13 2007 | AMO Development, LLC | Method and apparatus for creating ocular surgical and relaxing incisions |
11026860, | Jun 28 2004 | IRIDEX Corporation | Method and device for optical ophthalmic therapy |
11033431, | Sep 09 2014 | AMO Development, LLC | Systems and methods for synchronized three-dimensional laser incisions |
11253317, | Mar 20 2017 | PRECISE LIGHT SURGICAL, INC | Soft tissue selective ablation surgical systems |
11364147, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
11389237, | Nov 21 2017 | Cutera, Inc. | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
11400308, | Nov 21 2017 | Cutera, Inc. | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
11612478, | Mar 13 2007 | AMO Development, LLC | Apparatus for creating incisions to improve intraocular lens placement |
11654015, | Mar 13 2007 | AMO Development, LLC | Intraocular lens |
11701221, | Mar 13 2007 | AMO Development, LLC | Intraocular lens |
11759310, | Mar 13 2007 | AMO Development, LLC | Method for creating incision to improve intraocular lens placement |
11826245, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
11839536, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
11886088, | Sep 14 2011 | View Operating Corporation | Portable defect mitigators for electrochromic windows |
11931243, | Mar 13 2007 | AMO Development, LLC | Method and apparatus for creating ocular surgical and relaxing incisions |
11998486, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
12053417, | Sep 09 2014 | AMO Development, LLC | Systems and methods for synchronized three-dimensional laser incisions |
12102565, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
12102840, | Nov 21 2017 | Cutera, Inc. | Dermatological laser treatment systems and methods using optical parametric oscillator |
6497701, | Apr 30 1999 | AMO Manufacturing USA, LLC | Method and system for ablating surfaces with partially overlapping craters having consistent curvature |
6547393, | Mar 10 1999 | Interactive corrective eye surgery system with topography and laser system interface | |
6716210, | Dec 03 1992 | General Electric Capital Corporation | Refractive surgical laser apparatus and method |
6952435, | Feb 11 2002 | Speckle free laser probe beam | |
7886747, | May 08 2000 | I OPTIMA LTD | Non-penetrating filtration surgery |
8029501, | Dec 30 2004 | LIGHT MATTER INTERACTION INC | Laser selective cutting by impulsive heat deposition in the IR wavelength range for direct-drive ablation |
8186357, | Jan 23 2004 | Ziemer Ophthalmic Systems AG | Control device for a surgical laser |
8303577, | Jul 23 2003 | Carl Zeiss Meditec AG | Method device and system for determining a system parameter of a laser beam treatment system |
8343142, | Nov 17 2005 | Alcon Inc | Assembly and method for performing surgical laser treatments of the eye |
8394084, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
8403921, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
8409182, | Sep 28 2007 | EXCEL-LENS, INC | Laser-assisted thermal separation of tissue |
8425497, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
8500724, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
8518026, | Mar 13 2007 | AMO Development, LLC | Apparatus for creating incisions to improve intraocular lens placement |
8568393, | Mar 13 2007 | IRIDEX Corporation | Computer guided patterned laser trabeculoplasty |
8657810, | Mar 13 2007 | AMO Development, LLC | Method for creating incisions to improve intraocular lens placement |
8690862, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
8709001, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
8881735, | Nov 18 2008 | PRECISE LIGHT SURGICAL, INC | Flash vaporization surgical systems and method |
8968375, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
9072589, | Nov 17 2005 | Alcon Inc | Assembly and method for performing surgical laser treatments of the eye |
9095415, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
9101448, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
9107732, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
9119703, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
9119704, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
9125725, | Jan 10 2005 | AMO Development, LLC | Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
9168175, | Sep 04 2008 | PRESBIBIO, LLC | Method for laser cutting a corneal pocket |
9233023, | Mar 13 2007 | AMO Development, LLC | Method and apparatus for creating ocular surgical and relaxing incisions |
9233024, | Mar 13 2007 | AMO Development, LLC | Method and apparatus for creating ocular surgical and relaxing incisions |
9271870, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
9301876, | May 16 2011 | Alcon Inc | System and process for surgical treatment of an eye as well as process for calibrating a system of such a type |
9351877, | Sep 28 2007 | EOS Holdings, LLC | Laser-assisted thermal separation of tissue |
9364317, | Mar 13 2007 | AMO Development, LLC | Method for creating incisions to improve intraocular lens placement |
9402715, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
9474648, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
9474649, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
9480601, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
9526608, | Mar 13 2007 | AMO Development, LLC | Apparatus for creating incisions to improve intraocular lens placement |
9579235, | Sep 28 2007 | EXCEL-LENS, INC. | Laser-assisted thermal separation of tissue |
9622819, | Apr 22 2010 | PRECISE LIGHT SURGICAL, INC | Flash vaporization surgical systems |
9662198, | Mar 13 2007 | AMO Development, LLC | Method for creating incisions to improve intraocular lens placement |
9681985, | Dec 01 2005 | IRIDEX Corporation | System and method for minimally traumatic ophthalmic photomedicine |
9693903, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
9693904, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
9693905, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
9750640, | Jan 10 2005 | AMO Development, LLC | Apparatus for patterned plasma-mediated laser ophthalmic surgery |
9782253, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
9795472, | Mar 13 2007 | AMO Development, LLC | Method for creating incision to improve intraocular lens placement |
9820848, | Mar 13 2007 | AMO Development, LLC | Method for creating incision to improve intraocular lens placement |
9820886, | Feb 28 2014 | EXCEL-LENS, INC | Laser assisted cataract surgery |
9844410, | Nov 18 2008 | PRECISE LIGHT SURGICAL, INC. | Flash vaporization surgical systems |
9872797, | Sep 28 2007 | EXCEL-LENS, INC. | Laser-assisted thermal separation of tissue |
9968439, | Mar 13 2007 | AMO Development, LLC | Method for patterned plasma-mediated modification of the crystalline lens |
RE40420, | Aug 26 1999 | Carl Zeiss Meditec AG | Method and device for treating opaqueness and/or hardening of a closed eye |
Patent | Priority | Assignee | Title |
2480737, | |||
3074407, | |||
3476112, | |||
3697889, | |||
3743965, | |||
3848104, | |||
3938058, | Mar 26 1973 | Hitachi, Ltd. | Tunable laser |
3982541, | Jul 29 1974 | Eye surgical instrument | |
3983507, | Jan 06 1975 | Research Corporation | Tunable laser systems and method |
4169663, | Feb 27 1978 | TOKYO OPTICAL CO , LTD , A JAPANESE COMPANY | Eye attention monitor |
4180751, | Sep 08 1978 | GTE Government Systems Corporation | Mode-locked optical parametric oscillator apparatus |
4349907, | Apr 23 1980 | The United Stated of America as represented by the Department of Energy | Broadly tunable picosecond IR source |
4386428, | Oct 14 1980 | Sanders Associates, Inc. | Tripled Nd:YAG Pumped Tm3+ laser oscillator |
4423728, | Feb 26 1982 | Cam-guided trephine | |
4461294, | Jan 20 1982 | HERVILLE CORPORATION, A CORP OF NY | Apparatus and process for recurving the cornea of an eye |
4477159, | Nov 06 1980 | Nidek Co., Ltd. | Photocoagulator |
4520816, | Jan 12 1983 | Method and apparatus for delivering laser energy for ophthalmic use | |
4526171, | Jan 15 1980 | Cornea incision device | |
4538608, | Mar 23 1984 | Method and apparatus for removing cataractous lens tissue by laser radiation | |
4546773, | Jan 23 1981 | Accutome, Inc. | Apparatus to measure conical thickness |
4573467, | May 13 1983 | The United States of America as represented by the Department of Health | Optical coupling device for biomicroscope |
4580559, | Jul 24 1984 | Indirect ophthalmoscopic photocoagulation delivery system for retinal surgery | |
4598714, | Feb 22 1983 | Accutome, Inc. | Apparatus for measuring the thickness of corneas |
4619259, | May 09 1980 | Ophthalmic surgery tool | |
4633866, | Nov 23 1981 | Ophthalmic laser surgical method | |
4653495, | Jan 13 1984 | Kabushiki Kaisha Toshiba | Laser medical apparatus |
4662370, | Sep 13 1984 | HOFFMANN, FRIEDRICH | Apparatus for performing lamellar refractive corneal surgery |
4665913, | Nov 17 1983 | Visx, Incorporated | Method for ophthalmological surgery |
4669466, | Jan 16 1985 | Visx, Incorporated | Method and apparatus for analysis and correction of abnormal refractive errors of the eye |
4688570, | Mar 09 1981 | The Regents of the University of California | Ophthalmologic surgical instrument |
4718418, | Nov 17 1983 | Visx, Incorporated | Apparatus for ophthalmological surgery |
4720189, | Jan 07 1986 | Northern Telecom Limited | Eye-position sensor |
4721379, | Jan 16 1985 | Visx, Incorporated | Apparatus for analysis and correction of abnormal refractive errors of the eye |
4729372, | Nov 17 1983 | Visx, Incorporated | Apparatus for performing ophthalmic laser surgery |
4729373, | Dec 18 1986 | Laser-powered surgical device with a vibrating crystalline tip | |
4732148, | Nov 17 1983 | Visx, Incorporated | Method for performing ophthalmic laser surgery |
4764930, | Jan 27 1988 | AMO Development, LLC | Multiwavelength laser source |
4770172, | Nov 17 1983 | Visx, Incorporated | Method of laser-sculpture of the optically used portion of the cornea |
4773414, | Nov 17 1983 | Visx, Incorporated | Method of laser-sculpture of the optically used portion of the cornea |
4784135, | Dec 09 1982 | General Electric Capital Corporation | Far ultraviolet surgical and dental procedures |
4798204, | Nov 17 1983 | Visx, Incorporated | Method of laser-sculpture of the optically used portion of the cornea |
4807623, | May 30 1986 | David M., Lieberman | Device for simultaneously forming two incisions along a path on an eye |
4838266, | Sep 08 1986 | Lens shaping device using a laser attenuator | |
4838679, | Jun 14 1984 | LASER DIAGNOSTIC TECHNOLOGIES, INC | Apparatus for, and method of, examining eyes |
4840175, | Jul 29 1985 | Chiron Vision Corporation | Method for modifying corneal curvature |
4848340, | Feb 10 1988 | AMO Development, LLC | Eyetracker and method of use |
4856513, | Mar 09 1987 | Summit Technology, Inc. | Laser reprofiling systems and methods |
4862886, | May 08 1985 | SUMMIT TECHNOLOGY, INC , A MASSACHUSETTS CORP | Laser angioplasty |
4896015, | Jul 29 1988 | REFRACTIVE LASER RESEARCH AND DEVELOPMENT, INC | Laser delivery system |
4901718, | Feb 02 1988 | AMO Development, LLC | 3-Dimensional laser beam guidance system |
4903695, | Nov 30 1988 | AMO Manufacturing USA, LLC | Method and apparatus for performing a keratomileusis or the like operation |
4907586, | Mar 31 1988 | AMO Development, LLC | Method for reshaping the eye |
4911711, | Dec 05 1986 | AMO Manufacturing USA, LLC | Sculpture apparatus for correcting curvature of the cornea |
4925523, | Oct 28 1988 | General Electric Capital Corporation | Enhancement of ultraviolet laser ablation and etching organic solids |
4941093, | Sep 12 1985 | SUMMIT TECHNOLOGY INC , 150 COOLIDGE AVENUE, WATERTOWN, MASSACHUSETTS 02172 A CORP OF MA; SUMMIT TECHNOLOGY, INC | Surface erosion using lasers |
4968130, | Oct 28 1987 | KABUSHIKI KAISHA TOPCON, 1-GO 75-BAN HASUNUMA-CHO, ITABASHI-KU, TOKYO-TO | Laser beam scanning type ophthalmological instrument |
4975918, | Jun 07 1989 | Maxwell Laboratories, Inc. | Tunable laser |
4993826, | Nov 25 1987 | AMO Manufacturing USA, LLC | Topography measuring apparatus |
4994058, | Mar 19 1986 | Summit Technology, Inc. | Surface shaping using lasers |
5019074, | Mar 09 1987 | Summit Technology, Inc.; SUMMIT TECHNOLOGY, INC | Laser reprofiling system employing an erodable mask |
5052004, | Jan 23 1990 | GENERAL ELECTRIC COMPANY, P L C , THE | Tunable lasers |
5063942, | Dec 14 1989 | CORNEAL CONTOURING DEVELOPMENT, L L C | Method for surgically re-profiling the cornea |
5065046, | Nov 28 1990 | CONTINUUM ELECTRO-OPTICS, INC | Method and apparatus for parametric generation of midinfrared light in KNbO3 |
5074859, | Apr 01 1988 | Beam delivery system for corneal surgery | |
5102409, | Apr 22 1988 | BMB Patent Holding Corporation | Method and apparatus for modification of corneal refractive properties |
5108388, | Dec 15 1983 | AMO Manufacturing USA, LLC | Laser surgery method |
5108412, | May 14 1990 | Jorg H., Krumeich | Suction ring for surgical operations on the human eye |
5133726, | Feb 14 1990 | Automatic corneal shaper | |
5144630, | Jul 29 1991 | General Electric Capital Corporation | Multiwavelength solid state laser using frequency conversion techniques |
5152759, | Jun 07 1989 | UNIVERSITY OF MIAMI, SCHOOL OF MEDICINE, DEPT OF OPTHALMOLOGY, P O BOX 016880, 1638 N W 10TH AVE , MIAMI, FLORIDA 33101, A CORP OF NOT FOR PROFIT CORP OF FLORIDA | Noncontact laser microsurgical apparatus |
5163934, | Aug 05 1987 | AMO Manufacturing USA, LLC | Photorefractive keratectomy |
5163936, | Jan 22 1991 | RELIANT TECHNOLOGIES, INC | Endoscopic mirror laser beam delivery system and method for controlling alignment |
5182759, | May 16 1990 | Cisco Technology, Inc | Apparatus and method for pumping of a weakly absorbing lasant material |
5188631, | Nov 17 1983 | AMO Manufacturing USA, LLC | Method for opthalmological surgery |
5196006, | Apr 25 1989 | Summit Technology, Inc. | Method and apparatus for excision endpoint control |
5207668, | Nov 17 1983 | AMO Manufacturing USA, LLC | Method for opthalmological surgery |
5217452, | May 18 1992 | General Electric Capital Corporation | Transscleral laser treatment of subretinal neovascularization |
5219343, | Nov 17 1983 | AMO Manufacturing USA, LLC | Apparatus for performing ophthalmogolical surgery |
5219344, | Jun 09 1988 | AMO Manufacturing USA, LLC | Methods and apparatus for laser sculpture of the cornea |
5222960, | Oct 05 1990 | Cracking and rotating cataract for removal from eye | |
5226903, | Jan 30 1991 | Nidek Co., Ltd. | Apparatus for ophthalmic operation using photocoagulation by a laser beam |
5250062, | Dec 20 1990 | Instrument for surgically correcting astigmatism | |
5257988, | Jul 19 1991 | L'Esperance Medical Technologies, Inc.; L ESPERANCE MEDICAL TECHNOLOGIES, INC , A CORP OF DE | Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment |
5263950, | Jul 24 1991 | L'Esperance Medical Technologies, Inc.; L ESPERANCE MEDICAL TECHNOLOGIES, INC | Phaco-extractor for fragmenting cataractous-lens situs of fragmentation |
5284477, | Jun 25 1987 | International Business Machines Corporation | Device for correcting the shape of an object by laser treatment |
5288292, | Dec 04 1992 | Micro Precision Instrument Company | Keratome with miniature differential micrometer |
5290301, | Oct 09 1991 | Cam guided corneal trephine | |
5312320, | Nov 17 1983 | AMO Manufacturing USA, LLC | Apparatus for performing ophthalmological surgery |
5324281, | Mar 09 1987 | Summit Technology, Inc. | Laser reprofiling system employing a photodecomposable mask |
5334190, | Oct 16 1990 | Summit Technology, Inc. | Laser thermokeratoplasty methods and apparatus |
5336217, | Apr 24 1986 | Institut National de la Sante et de la Recherche Medicale (INSEPM) | Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias |
5345534, | Mar 29 1993 | Texas Instruments Incorporated | Semiconductor wafer heater with infrared lamp module with light blocking means |
5349590, | Apr 10 1992 | PLS Liquidating LLC | Medical laser apparatus for delivering high power infrared light |
5350374, | Mar 18 1993 | Topography feedback control system for photoablation | |
5353262, | Mar 12 1993 | General Electric Company | Optical transducer and method of use |
5360424, | Jun 04 1993 | Summit Technology, Inc. | Tracking system for laser surgery |
5363388, | Oct 18 1991 | Cedars-Sinai Medical Center | Continuously tunable solid state ultraviolet coherent light source |
5364388, | Apr 01 1988 | Beam delivery system for corneal surgery | |
5370641, | May 22 1992 | General Electric Capital Corporation | Laser trabeculodissection |
5395356, | Jun 04 1993 | SUMMIT TECHNOLOGY, INC | Correction of presbyopia by photorefractive keratectomy |
5395362, | Jan 14 1992 | Summit Technology | Methods and apparatus for distributing laser radiation |
5405355, | Sep 10 1993 | Vitrophage, Inc. | Method of radial keratotomy employing a vibrating cutting blade |
5411501, | Jun 04 1993 | SUMMIT TECHNOLOGY, INC | Laser reprofiling system for correction of astigmatisms |
5423801, | Jun 02 1986 | Summit Technology, Inc. | Laser corneal surgery |
5425727, | Apr 01 1988 | Beam delivery system and method for corneal surgery | |
5425729, | Oct 18 1985 | ESC MEDICAL SYSTEMS, INC | Laser coagulation system |
5437658, | Oct 07 1992 | Summit Technology, Incorporated | Method and system for laser thermokeratoplasty of the cornea |
5441511, | Apr 12 1990 | Keratotome for performing arcuate incisions | |
5442487, | Apr 12 1990 | Nidek Co., Ltd. | Ophthalmic photocoagulating apparatus using a laser diode and a lens system for the apparatus |
5445633, | Nov 07 1992 | Nidek Co., Ltd. | Ablation apparatus for ablating a cornea by laser beam |
5461212, | Jun 04 1993 | SUMMIT TECHNOLOGY, INC | Astigmatic laser ablation of surfaces |
5470329, | Aug 31 1992 | Nidek Co., Ltd. | Operation apparatus for correcting ametropia with laser beam |
5474548, | Jul 14 1993 | AMO Manufacturing USA, LLC | Method of establishing a unique machine independent reference frame for the eye |
5480396, | Dec 09 1994 | VISION CORRECTION TECHNOLOGIES, INC | Laser beam ophthalmological surgery method and apparatus |
5505723, | Feb 10 1994 | SUMMIT TECHNOLOGY, INC | Photo-refractive keratectomy |
5507741, | Nov 17 1983 | AMO Manufacturing USA, LLC | Ophthalmic method for laser surgery of the cornea |
5507799, | Dec 28 1990 | Nidek Co., Ltd. | Ablation apparatus for ablating an object by laser beam |
5520679, | Dec 03 1992 | General Electric Capital Corporation | Ophthalmic surgery method using non-contact scanning laser |
5549597, | May 07 1993 | AMO Manufacturing USA, LLC | In situ astigmatism axis alignment |
5556395, | May 07 1993 | AMO Manufacturing USA, LLC | Method and system for laser treatment of refractive error using an offset image of a rotatable mask |
5582752, | Dec 17 1993 | LUMENIS, LTD | Method and apparatus for applying laser beams to a working surface, particularly for ablating tissue |
5599340, | Dec 09 1994 | VISION CORRECTION TECHNOLOGIES, INC | Laser beam ophthalmological surgery method and apparatus |
5613965, | Dec 08 1994 | SUMMIT TECHNOLOGY, INC | Corneal reprofiling using an annular beam of ablative radiation |
5624436, | Jan 29 1993 | Nidek Co., Ltd. | Laser beam and ablating apparatus and related method |
5634920, | Oct 01 1992 | Technolas GmbH Ophthalmologische Systeme | Method and apparatus for removing epithelium from the surface of the eye |
5637109, | Feb 14 1992 | Nidek Co., Ltd. | Apparatus for operation on a cornea using laser-beam |
5646791, | Jan 04 1995 | AMO Manufacturing USA, LLC | Method and apparatus for temporal and spatial beam integration |
5651784, | Jun 04 1993 | Summit Technology, Inc. | Rotatable aperture apparatus and methods for selective photoablation of surfaces |
5683379, | Sep 30 1993 | Technolas GmbH Ophthalmologische Systeme | Apparatus for modifying the surface of the eye through large beam laser polishing and method of controlling the apparatus |
5684562, | Dec 12 1994 | Nidek Company, Ltd. | Ophthalmic apparatus |
5711792, | Nov 30 1993 | Borden Chemical UK Limited | Foundry binder |
5713892, | Aug 16 1991 | AMO Manufacturing USA, LLC | Method and apparatus for combined cylindrical and spherical eye corrections |
5735843, | Dec 15 1983 | AMO Manufacturing USA, LLC | Laser surgery apparatus and method |
5782822, | Oct 27 1995 | AMO Manufacturing USA, LLC | Method and apparatus for removing corneal tissue with infrared laser radiation |
5849006, | Apr 25 1994 | ALCON UNIVERSAL LTD | Laser sculpting method and system |
5865830, | Jun 07 1989 | Noncontact laser microsurgical apparatus | |
CA1243732, | |||
EP151869, | |||
EP207648, | |||
EP296982, | |||
EP368512, | |||
EP418890, | |||
EP602756, | |||
WO9501287, | |||
WO8700139, | |||
WO9209625, | |||
WO9300327, | |||
WO9402007, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 27 1998 | LaserSight Technologies, Inc. | (assignment on the face of the patent) | / | |||
Mar 12 2001 | LST LASER, S A | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
Mar 12 2001 | L S EXPORT, LTD | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
Mar 12 2001 | MRF, INC | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
Mar 12 2001 | PHOTOMED ACQUISITION, INC | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
Mar 12 2001 | LASERSIGHT PATENTS, INC | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
Mar 12 2001 | LASERSIGHT CENTERS INCORPORATED | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
Mar 12 2001 | LASERSIGHT TECHNOLOGIES, INC | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
Mar 12 2001 | LASERSIGHT INCORPORATED | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
Mar 12 2001 | LASERSIGHT EUROPE GMBH | HELLER HEALTHCARE FINANCE, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 012802 | /0276 | |
May 06 2004 | GE HFS HOLDINGS, INC , FORMERLY HELLER HEALTHCARE FINANCE, INC | General Electric Capital Corporation | ASSIGNMENT OF SECURITY AGREEMENT | 014646 | /0908 |
Date | Maintenance Fee Events |
Apr 13 2004 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 13 2004 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Dec 03 2007 | REM: Maintenance Fee Reminder Mailed. |
May 23 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 08 2005 | 4 years fee payment window open |
Jul 08 2005 | 6 months grace period start (w surcharge) |
Jan 08 2006 | patent expiry (for year 4) |
Jan 08 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 08 2009 | 8 years fee payment window open |
Jul 08 2009 | 6 months grace period start (w surcharge) |
Jan 08 2010 | patent expiry (for year 8) |
Jan 08 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 08 2013 | 12 years fee payment window open |
Jul 08 2013 | 6 months grace period start (w surcharge) |
Jan 08 2014 | patent expiry (for year 12) |
Jan 08 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |