A power converter with a self synchronized synchronous rectifier includes one or two drive windings to provide positive drive to the control electrodes of the controlled switches (FETs) of a self synchronized synchronous rectifier. The polarities of these windings am selected so that the switched devices are driven appropriately to rectify the periodic signal output of the secondary winding of the power transformer of the converter. In some arrangements one or two drive windings are included as extra windings in the power transformer and connected to provide the proper polarity drive signals. The turn ratios of the drive windings to the other windings are selected to provide the proper gate drive signal levels. In an alternative arrangement a separate drive transformer may be provided to supply the gate drive signals.

Patent
   RE37510
Priority
May 25 1995
Filed
Dec 17 1998
Issued
Jan 15 2002
Expiry
May 25 2015
Assg.orig
Entity
Large
17
39
all paid
0. 41. A method of operating a power converter having an input output, comprising:
providing a power transformer having primary and secondary windings;
impressing an input voltage across the primary winding with a power switch coupled to the input;
alternately energizing first and second synchronous rectifier switches with a separate drive winding wound on the power transformer and coupled between the first and second synchronous rectifier switches.
0. 65. A method of operating a power converter having an input and output, comprising:
providing a power transformer having primary and secondary winding;
coupling an auxiliary transformer to the power transformer;
impressing an input voltage across the primary winding with a power switch coupled to the input;
alternately energizing first and second synchronous rectifier switches with a separate drive winding wound on the auxiliary transformer and coupled between the first and second synchronous rectifier switches.
0. 29. A power converter having an input and output, comprising:
a power transformer having, primary and secondary windings;
a power switch coupled to the input and configured to impress an input voltage across the primary winding;
a synchronous rectifier coupled to the secondary winding and including first and second synchronous rectifier switches; and
a separate drive winding wound on the power transformer and coupled between the first and second synchronous rectifier switches, the separate drive winding configured to alternately energize the first and second synchronous rectifier switches.
0. 53. A power converter having an input and output, comprising:
a power transformer having primary and secondary windings;
an auxiliary transformer coupled to the power transformer;
a power switch, coupled to the input that impresses an input voltage across the primary winding;
a synchronous rectifier coupled to the secondary winding and including first and second synchronous rectifier switches; and
a separate drive winding wound on the auxiliary transformer and coupled between the first and second synchronous rectifier switches, the separate drive winding configured to alternately energize the first and second synchronous rectifier switches.
2. A dc to dc power converter, comprising:
a power transformer having a primary winding and a secondary winding;
a primary circuit for connecting an input dc voltage to the primary winding and including, a power switch and a clamping circuit for sustaining a voltage in the secondary winding during non-conduction of the power switch;
a secondary circuit for coupling energy transfer from the secondary winding to an output and including, a low pass output filter connected to the output and a synchronous rectifier connecting the secondary winding to the low pass output filter; and
the synchronous rectifier including;
first and second synchronous rectifier switches each controlled by a signal applied to an included control electrode, first and second voltage limit switch devices connected to limit a voltage of drive signals applied to the first and second synchronous rectifier switches and an a separate drive winding connected to alternatively energize the first and second synchronous rectifier switches.
26. A dc to dc power converter, comprising:
a power transformer having a primary winding and a secondary winding;
a primary circuit for connecting an input dc voltage to the primary winding and including, a power switch;
a secondary circuit for coupling energy transfer from the secondary winding to an output and including, a low pass output filter connected to the output and a synchronous rectifier connecting the secondary winding to the low pass output filter, and
the synchronous rectifier including;
first and second synchronous rectifier switches each controlled by a signal applied to an included control electrode, first and second voltage limit switch devices connected to limit a voltage of drive signals applied to the first and second synchronous rectifier switches;
first and second diodes connected to limit a positive voltage applied to the gate electrodes of the first and second synchronous rectifier switches; and
a separate drive winding connected to alternatively energize the first and second synchronous rectifier switches.
3. A dc to dc power converter, comprising:
a power transformer having a primary winding and a secondary winding;
a primary circuit for connecting an input dc voltage to the primary winding and including, a power switch and a circuit that reverses the polarity of the secondary voltage during a portion of the period of non-conduction of the power switch sufficient to ensure the reset of the transformer magnetic core;
a secondary circuit for coupling energy transfer from the secondary winding to an output and including, a low pass output filter connected to the output and a synchronous rectifier connecting the secondary winding to the low pass output filter;
the synchronous rectifier including;
first and second synchronous rectifier switches each controlled by a signal applied to an included control electrode, first and second voltage limit switch devices connected to limit a voltage of drive signals applied to the first and second synchronous rectifier switches and a separate drive winding connected to alternately energize the first and second synchronous rectifier switches.
28. A dc to dc power converter comprising:
a power transformer having a primary winding and a secondary winding;
a primary circuit for connecting an input dc voltage to the primary winding and including, a power switch;
a secondary circuit for coupling energy transfer from the secondary winding to an output and including, a low pass output filter connected to the output and a synchronous rectifier connecting the secondary winding to the low pass output filter,
the secondary winding having at least a first and second tap to define first and second drive portions of the secondary winding; and
the synchronous rectifier including:
first and second synchronous rectifier switches, each controlled by a signal applied to an included control electrode, first and second positive and negative voltage limit switch devices connected to limit a positive and negative voltage, respectively, of drive signals applied to the first and second synchronous rectifier switches, and the first drive portion of the secondary winding connected to periodically energize the first synchronous rectifier and the second drive portion of the secondary winding connected to periodically energize the second synchronous rectifier.
27. A dc to dc power converter comprising:
a power transformer having a primary winding and a secondary winding;
a primary circuit for connecting an input dc voltage to the primary winding and including, a power switch;
a secondary circuit for coupling energy transfer from the secondary winding to an output and including, a low pass output filter connected to the output and a synchronous rectifier connecting the secondary winding to the low pass output filter;
the secondary winding having a tap to define a drive portion of the secondary winding; and
the synchronous rectifier including:
first and second synchronous rectifier switches each controlled by a signal applied to an included control electrode, first and second voltage-limit positive and negative voltage limit switch devices connected to limit a positive and negative voltage, respectively, of drive signals applied to the first and second synchronous rectifier switches and the drive portion of the secondary winding connected to periodically energize at least one of the first and second synchronous rectifier switches, and another one of the first and second synchronous rectifiers being connected to be energized by an output of the secondary winding.
25. A dc to dc power converter comprising:
a power transformer having a primary winding and a secondary winding;
a primary circuit for connecting an input dc voltage to the primary winding and including, a power switch and a clamping circuit for sustaining a voltage in the secondary winding during non-conduction of the power switch;
a secondary circuit for coupling energy transfer from the secondary winding to an output and including, a low pass output filter connected to the output and a synchronous rectifier connecting the secondary winding to the low pass output filter,
the secondary winding having at least a first and second tap to define first and second drive portions of the secondary winding; and
the synchronous rectifier including:
first and second synchronous rectifier switches, each controlled by a signal applied to an included control electrode, first and second positive and negative voltage limit switch devices connected to limit a positive and negative voltage, respectively, of drive signals applied to the first and second synchronous rectifier switches, and the first drive portion of the secondary winding connected to periodically energize the first synchronous rectifier and the second drive portion of the secondary winding connected to periodically energize the second synchronous rectifier.
24. A dc to dc power converter comprising:
a power transformer having a primary winding and a secondary winding;
a primary circuit for connecting an input dc voltage to the primary winding and including, a power switch and a clamping circuit for sustaining a voltage in the secondary winding during non-conduction of the power switch;
a secondary circuit for coupling energy transfer from the secondary winding to an output and including, a low pass output filter connected to the output and a synchronous rectifier connecting the secondary winding to the low pass output filter;
the secondary winding having a tap to define a drive portion of the secondary winding; and
the synchronous rectifier including:
first and second synchronous rectifier switches each controlled by a signal applied to an included control electrode, first and second voltage-limit positive and negative voltage limit switch devices connected to limit a positive and negative voltage, respectively, of drive signals applied to the first and second synchronous rectifier switches and the drive portion of the secondary winding connected to periodically energize at least one of the first and second synchronous rectifier switches, and another one of the first and second synchronous rectifiers being connected to be energized by an output of the secondary winding.
1. A dc to dc power converter comprising:
a power transformer having a primary winding and a secondary winding;
a primary circuit for connecting an input dc voltage to the primary winding and including a power switch periodically biased conducting for connecting the input dc voltage to the primary winding and drawing power from the input dc voltage during its conduction and a clamping circuit connected to the primary winding and including energy storage means for sustaining a voltage across the primary winding during an interval when the power switch is biased non-conducting;
a separate drive winding magnetically coupled to receive energy from a primary side of the dc to dc power converter;
a secondary circuit connected to receive electrical energy from the secondary winding and for coupling the energy to an output;
the secondary circuit including;
a low pass output filter connected to the output and a synchronous rectifier circuit connecting the secondary winding to the low pass output filter;
wherein the synchronous rectifier circuit comprises:
first and second synchronous rectifier switches each controlled by a signal applied to an included control electrode of the switch;
first and second voltage limiting switches connected in series with the included control electrodes of the first and second synchronous rectifier switches such that the voltage limiting switches limit the amount of voltage supplied from the drive winding to the included control electrodes of the first and second synchronous rectifier switches;
means for establishing a dc potential on gate electrodes of the first and second gate switches; and
the drive winding being connected to power path electrodes of the first and second gate switches and connected to alternatively energize the included gates of the first and second synchronous rectifier switches through the first and second gate switches.
4. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the primary and secondary circuits being magnetically coupled and including power circuitry to operate as a forward converter; and the drive winding being wound on the power transformer.
5. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the primary and secondary circuits being magnetically coupled and including power circuitry to operate as a flyback converter;
and the drive winding being wound on the power transformer.
6. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the power transformer includes a tapped secondary winding; and
the drive winding is wound on a core of the power transformer.
7. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the primary and secondary circuits being magnetically coupled and including power circuitry to operate as a forward converter;
a second transformer magnetically coupling the primary circuit and the secondary circuit and
the drive winding being wound on the second transformer.
8. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the primary and secondary circuits being magnetically coupled and including power circuitry to operate as a flyback converter;
a second transformer magnetically coupling the primary circuit and the secondary circuit and
the drive winding being wound on the second transformer.
9. A dc to dc power converter as claimed in claim 1, 2, or 3 comprising:
the power transformer includes a tapped secondary winding; and
a second transformer Magnetically coupling the primary circuit and the secondary circuit and the drive winding being wound on the second transformer.
10. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
a second drive transformer is included for accepting the drive winding and is connected in a circuit in parallel with the power switch; and
the primary and secondary circuits being magnetically coupled and including power circuitry to operate as a forward converter.
11. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
a second drive transformer is included for accepting the drive winding and is connected in parallel with the power switch; and
the primary and secondary circuits being magnetically coupled and including power circuitry to operate as a flyback converter.
12. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the low pass output filter including a filter inductor in series with the output and the power transformer having a tapped secondary winding connected to the low pass output filter; and
a second transformer including a primary winding connected in parallel with the power switch and the secondary winding connected to drive the first and second voltage limit switches, exclusively electromagnetically coupled to the primary winding.
13. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
a second drive transformer is included for accepting the drive winding and is connected in a circuit connected in parallel with the power transformer; and
the primary and secondary circuits being magnetically coupled and including power circuitry to operate as a forward converter.
14. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
a second drive transformer is included for accepting the drive winding and is connected in a circuit connected in parallel with the power transformer; and
the primary and secondary circuits being magnetically coupled and including power circuitry to operate as a flyback converter.
15. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
a second drive transformer is included for accepting the drive winding and is connected in a circuit connected in parallel with the power transformer; and
the power transformer includes a tapped secondary winding.
16. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the primary and secondary circuits being magnetically coupled, and
further including circuitry to operate as a forward converter.
17. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the primary and secondary circuits being magnetically coupled, and
including circuitry to operate as a flyback converter.
18. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the power transformer having a tapped secondary winding connected to the low pass output filter.
19. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
the drive winding being wound on the power transformer.
20. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
a second transformer including a primary winding connected in parallel with the power switch and the drive winding connected to drive the first and second voltage-limit voltage limit switches, and the drive winding exclusively electromagnetically coupled to the second transformer.
21. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
a second transformer having a primary winding connected in parallel with the power switch and a drive winding connected to drive the first and second voltage-limit voltage limit switches.
22. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
a second transformer having a primary winding connected in parallel with the primary winding of the power transformer and a drive winding connected to drive the first and second voltage-limit voltage limit switches.
23. A dc to dc power converter as claimed in claim 1, 2 or 3 comprising:
at least one of the rectifier switches being a diode.
0. 30. The power converter as claimed in claim 29 further comprising a low pass filter coupled between the secondary winding and the output.
0. 31. The power converter as claimed in claim 29 further comprising first and second voltage limit switches that limit a voltage level of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 32. The power converter as claimed in claim 29 further comprising a voltage source that supplies a bias voltage to first and second voltage limit switches coupled to the first and second synchronous rectifier switches, respectively.
0. 33. The power converter as claimed in claim 29 further comprising a clamp circuit coupled to the power transformer.
0. 34. The power converter as claimed in claim 29 wherein the secondary winding has a center tap.
0. 35. The power converter as claimed in claim 29 wherein at least one of the first and second synchronous rectifier switches is a diode.
0. 36. The power converter as claimed in claim 29 further comprising first and second diodes that limit a voltage of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 37. The power converter as claimed in claim 29 further comprising first and second voltage limit switches and a voltage source that limit a negative voltage of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 38. The power converter as claimed in claim 29 further comprising a regulation control circuit and a drive circuit coupled between the output and the power switch.
0. 39. The power converter as claimed in claim 29 wherein the separate drive winding is directly coupled to the first and second synchronous rectifier switches.
0. 40. The power converter as claimed in claim 29 wherein the power converter is selected from the up consisting of:
a forward power converter,
a flyback power converter,
a buck power converter, and
a power converter with a tapped secondary winding.
0. 42. The method as claimed in claim 41 further comprising filtering an output voltage of the power converter.
0. 43. The method as claimed in claim 41 further comprising limiting a voltage level of a signal applied to the first and second synchronous rectifier switches.
0. 44. The method as claimed in claim 41 further comprising supplying a bias voltage to first and second voltage limit switches coupled to the first and second synchronous rectifier switches respectively.
0. 45. The method as claimed in claim 41 further comprising clamping a voltage level across the power transformer.
0. 46. The method as claimed in claim 41 further comprising forming a center in the secondary winding.
0. 47. The method as claimed in claim 41 wherein at least one of the first and second synchronous rectifier switches is a diode.
0. 48. The method as claimed in claim 41 further comprising limiting a positive voltage of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 49. The method as claimed in claim 41 further comprising limiting a negative voltage of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 50. The method as claimed in claim 41 further comprising regulating an output voltage of the power converter.
0. 51. The method as claimed in claim 41 wherein the separate drive winding is directly coupled to the first and second synchronous rectifier switches.
0. 52. The method as claimed in claim 41 wherein the power converter is selected from the group consisting of:
a forward power converter,
a flyback power converter,
a buck power converter, and
a power converter with a tapped secondary winding.
0. 54. The power converter as claimed in claim 53 further comprising a low pass filter coupled between the secondary winding and the output.
0. 55. The power converter as claimed in claim 53 further comprising first and second voltage limit switches that limit a voltage level of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 56. The power converter as claimed in claim 53 further comprising a voltage source that supplies a bias voltage to first and second voltage limit switches coupled to the first and second synchronous rectifier switches, respectively.
0. 57. The power converter as claimed in claim 53 further comprising a clamp circuit coupled to the power transformer.
0. 58. The power converter as claimed in claim 53 wherein the secondary winding has a center tap.
0. 59. The power converter as claimed in claim 53 wherein at least one of the first and second synchronous rectifier switches is a diode.
0. 60. The power converter as claimed in claim 53 further comprising first and second diodes that limit a voltage of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 61. The power converter as claimed in claim 53 further comprising first and second voltage limit switches and a voltage source that limit a negative voltage of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 62. The power converter as claimed in claim 53 further comprising a regulation control circuit and a drive circuit coupled between the output and the power switch.
0. 63. The power converter as claimed in claim 53 wherein the separate drive winding is directly coupled to the first and second synchronous rectifier switches.
0. 64. The power converter as claimed in claim 53 wherein the power converter is selected from the a group consisting of:
a forward power converter,
a flyback power converter,
a buck power converter, and
a power converter with a tapped secondary winding.
0. 66. The method as claimed in claim 65 further comprising filtering an output voltage of the power converter.
0. 67. The method as claimed in claim 65 further comprising limiting a voltage level of a signal applied to the first and second synchronous rectifier switches.
0. 68. The method as claimed in claim 65 further comprising supplying a bias voltage to first and second voltage limit switches coupled to the first and second synchronous rectifier switches, respectively.
0. 69. The method as claimed in claim 65 further comprising clamping a voltage level across the power transformer.
0. 70. The method as claimed in claim 65 further comprising forming a center tap in the secondary winding.
0. 71. The method as claimed in claim 65 wherein at least one of the first and second synchronous rectifier switches is a diode.
0. 72. The method as claimed in claim 65 further comprising limiting a positive voltage of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 73. The method as claimed in claim 65 further comprising limiting a negative voltage of a signal applied to the first and second synchronous rectifier switches, respectively.
0. 74. The method as claimed in claim 65 further comprising regulating an output voltage of the power converter.
0. 75. The method as claimed in claim 65 wherein the separate drive winding is directly coupled to the first and second synchronous rectifier switches.
0. 76. The method as claimed in claim 65 wherein the power converter is selected from the group consisting of:
a forward power converter,
a flyback power converter,
a buck power converter, and
a power converter with a tapped secondary winding.

This invention relates to synchronous rectification and to a power converter employing synchronous rectification. It is particularly concerned with a self synchronized rectifier combined with a converter.

A converter is a power processing circuit, that may have an input-output transformer isolation, that operates to convert an input voltage waveform with a DC component into an output DC voltage waveform. The presence of an isolation transformer requires the use of a rectifier circuit in the converter output circuit to perform the waveform conversion. The traditional rectifier uses rectifying diodes that conduct the load current only when forward biased in response to the input waveform. In some rectifiers (i.e. synchronous rectifiers) the diodes are replaced by controlled switches that are periodically biased into conduction and nonconduction in synchronism with the periodic waveform to be rectified. In self-synchronized synchronous rectifiers the biasing of the synchronous switches is supplied directly from a secondary winding of a transformer without requiring a separate drive to activate the synchronous switches.

Self-synchronized synchronous rectifiers come in many forms, all designed to meet specified operating constraints. The challenge, in each instance, is to devise synchronous rectifier circuitry that is efficient (i.e. has low power dissipation) in performing the rectification process. The specific circuit topology of the synchronous rectifier is dependent in large part on the converter type being used and its operating characteristics (i.e. hard switched rs. soft switched). Application of self synchronized synchronous rectifiers to hard switched buck derived converter topologies, for example, is limited by a variable transformer reset voltage that often causes the voltage across the transformer windings to be essentially zero during a portion of each switching cycle. During this time, the synchronous rectifier switch that should be conducting is operating in a dissipative or cut-off mode causing a serious shortfall in efficiency. An example of a circuit that eliminates the problem of zero voltage across the transformer is provided in the U.S. Pat. No. 5,303,138 which discloses an improved forward converter combined with a self synchronized synchronous rectifier. In this circuit the reset voltage is clamped and maintained over the non conducting interval of the main power switch and hence causes the rectifier to operate over the entire non conducting interval. In this arrangement the gate drive signal is directly dependent upon the voltage of the secondary winding which in turn is dependent upon the input voltage and load. In practice the voltages of the secondary winding may vary over a substantial range and there is the possibility of insufficient drive voltage for a rectifier that is conducting, causing it to operate in either a dissipative mode or a cut-off mode. This deficiency is quite likely for converters that deliver low output voltages.

In a circuit disclosed by L. Hubler et al (APEC 94 page 645, entitled "Design of a High Efficiency Power Converter For a Satellite Solid-State Power Amplifier"), the problem of insufficient drive voltage is overcome by including separate windings on the power transformer to drive the synchronous rectifier switches. However, when the turns of the drive windings are set high enough to ensure adequate drive voltage for all operating conditions of input voltage and load, excessive drive voltage is typically generated at some operating condition. This causes excessive power dissipation or failure of the synchronous rectifier switch.

In another U.S. Pat. No. 5,274,543 voltage limiting (gate drive) switches are disclosed as a means for limiting dissipation in the drive circuit for the synchronous rectifiers.

A power converter with a self-synchronized rectifier that includes one or two drive windings that do not carry load current but instead drive the control electrode(s) of one or both controlled rectifier switches (FETs). The drive winding(s) are connected in such a way that the switched devices rectify the periodic voltage waveform present at the secondary winding of the power transformer of the converter, with the turns of the drive winding(s) selected to provide sufficient drive signal levels under all operating conditions of input voltage and load. Additional switches may be connected in series with the control electrodes of the rectifier switches to limit the applied voltage. This drive circuit ensures that the drive voltage is always large enough to bias the proper synchronous-rectifier switch conducting, but not so large that it damages the switch or dissipates excessive power.

In one arrangement of the drive circuit, an extra winding is included in the power transformer, and each of its leads is connected to the control electrode of one synchronous-rectifier switch. In another arrangement, a separate drive transformer is provided to supply the gate drive signals. In either of these arrangements, there may be voltage-limiting switches connected between the drive winding and the control electrode of each synchronous-rectifier switch.

In a third arrangement, one or two extra windings are included in die power transformer and for each one, one lead is connected to the secondary winding and the other is connected to a voltage-limiting switch, of a series connection of two voltage limiting switches which is connected to the control electrode of a synchronous-rectifier switch.

FIG. 1 is a schematic of a clamped forward converter with a drive for a self synchronized synchronous rectifier;

FIG. 2 is a graph of waveforms to assist in describing the operation of the converter of FIG. 1;

FIG. 3 through 14 are schematics of other versions of a self synchronized synchronous rectifier, embodying the principles of the invention;

FIG. 15 is a clamped forward converter with an alternate drive for a self-synchronized synchronous rectifier; and

FIG. 16 is a generalized circuit diagram embodying the principles introduced in FIG. 15.

A power converter, such as shown in FIG. 1, includes a main FET power switch 101 connected to and periodically switched to enable an input DC voltage to be applied to the primary winding 112 of the power transformer 102. An auxiliary switch 103 and a capacitor 107 connected in series and placed in shunt connection with the power switch 101 operates to clamp the voltage level across the primary and secondary windings during non conducting intervals of the power switch 101. This assures that a voltage exists at the transformer windings over the entire time of non-conduction of the main power switch to assure drive for synchronous rectifier devices connected in the secondary circuit. The secondary winding 111 is connected to two rectifier switches 105 and 106 which are controllably switched to rectify the periodic waveform supplied to the rectifier by the secondary winding 111. A low pass filter including inductor 104 acts on the rectified waveform to supply the output voltage Vout, A regulation control 121 senses the output voltage Vout, via lead 127, and controls the duty cycle of the main power switch 101 and auxiliary switch 103, via the drive circuit 122.

The power transformer 102 includes a third or auxiliary winding 110 having a winding polarity so that its voltage is utilized to appropriately drive the FET synchronous rectifier switches 105 and 106. Drive to the FET synchronous rectifier switches 105 and 106 is applied through the drain-source path of the gate drive FET devices 109 and 108 respectively. The drive level is determined by the turn ratio of the auxiliary winding 110 with respect to the primary winding 112, selected to assure that there is sufficient drive for the gates of synchronous rectifier switches 105 and 106 over the entire operating cycle and permitted range of input voltage Vin. The FET devices 108 and 109 limit the voltage applied to the gates of the synchronous rectifier switches 105 and 106 to reduce dissipative losses and to reduce the possibility of voltage overstress of the switches 105 and 106. A voltage source Vb is used to supply a bias voltage to the FET devices 108 and 109.

The operation of the converter may be readily understood through the following description and by reference to the voltage waveforms shown in the FIG. 2. At the initial t=t0 start time the power switch 101 is non-conducting and the auxiliary switch 103 is conducting with substantially zero impedance in its main conductive path. Switch 103 is then turned off, and before time t=t1 switch 101 is turned on, causing the input voltage Vin to be fully impressed across the primary winding 111 of transformer 102. The voltages v111 across winding 111 and v110 across winding 110 (dotted ends are positive with respect to undotted ends) are determined by the respective turn ratios. Typically more turns am included in winding 110 to boost the synchronous-rectifier drive voltage above that available at winding 111. As the voltage v110 increases, current flows out of the dotted terminal of the winding 110 through the switch 108 to the gate capacitance of the rectifying switch 106 causing the gate-source voltage vgs106 of switch 106 to increase. This voltage continues to increase until the gate-source voltage of the switch 108 falls below the sustaining threshold and the switch 108 becomes non-conducting at time t=t1 Non-conductance of switch 108 clamps the voltage at the gate of switch 106 to a value determined by the difference between the DC bias voltage Vb connected to the gate of switch 108 and the threshold voltage of the switch 109.

Current now has stopped flowing into the gate of switch 106, supplied by the secondary winding 110. The same current flowed out of the gate of switch 105 and impressed a negative voltage vgs105 across the gate to source junction of switch 105, causing it to turn off to a non-conducting state. The load current now flows through switch 106, secondary winding 111 and output inductor 104.

Between times t=t2 and t=t3, the switches 101 and 103 change state, after which switch 101 is non-conducting and switch 103 is conducting. For a short period during this interval, the drain-source channel of neither switch 105 or 106 is conducting and the output inductor current is conducted through the body diodes comprising a part of the switch of these devices. A negative voltage Vin minus Vc107 is impressed across the primary winding 111 of transformer 102 causing the voltage across the secondary winding 111 and auxiliary winding 110 to reverse.

Initially, at the start of this interval, switch 108 is non-conducting and switch 109 is conducting. The negative voltage V110 across winding 110 causes the gate to source capacitance of switch 106 to discharge through the body diode of switch 108. The gate to source capacitance of switch 105 is charged and the enabled switch 105 and output inductor 104 carry the load current. At time t=ta, the steady-state operating cycle that began at t=t0, repeats itself.

Circuit resonances are produced by the switching in the circuit due to the interaction between parasitic capacitances and inductances of the circuit. These resonances cause tinging in the drain-to-source voltage waveforms of switches 105 and 106 and as shown by the waveforms of FIG. 2 as they change conductive states. Coupling of these tinging voltages, through the parasitic drain-to-gate capacitances of switches 105 and 106 could cause them to inappropriately conduct, however the bias circuit arrangement described herein causes negating voltages to be clamped across the gate to source terminals of switches 105 and 106 when they are normally non-conducting. Hence temporary voltage increases can not inadvertently turn on these devices and cause turn on losses that impair circuit efficiency.

Many variations of the circuit of FIG. 1 operate in the same manner without departing from the spirit and scope of the invention. The circuit of FIG. 3 discloses a flyback converter having a drive winding on the power transformer. In the circuit of FIG. 4 the output filter is connected to a tap in the power secondary winding to achieve both forward and flyback mode operation.

In the circuit variations of FIGS. 5 through 10, the drive winding for the synchronous rectifiers is contained in a separate drive transformer rather than the power transformer 102. In FIGS. 5 through 7, the primary winding of the drive transformer 110 and a series connected capacitor (to block DC current) are connected across the power switch 101. This drive circuit is shown in a forward converter in FIG. 5, a flyback converter in FIG. 6, and a converter with a tapped secondary winding in FIG. 7. In FIGS. 8 through 10, the drive transformer and capacitor are connected instead across a winding of the power transformer 102. This drive configuration is shown for the same three basic converters, a forward converter in FIG. 8, a flyback converter in FIG. 9, and a converter with a tapped secondary winding in FIG. 10.

FIG. 11 is a schematic diagram that represents all nine of the aforementioned circuit variations; i.e., all combinations of three circuit topologies and three possible locations of the synchronous-rectifier drive winding. FIGS. 12 through 14 show part of the circuit of FIG. 11, to illustrate some further circuit variations that embody the principles of the invention and can be applied to any of the nine aforementioned circuits.

The drive circuit in FIG. 12 accomplishes the same action as that in FIG. 11, but for a different kind of synchronous rectifier switch. This switch is biased conducting when the gate-to-source voltage is zero or positive, and it is biased nonconducting by a negative gate-to-source voltage. Diodes 121 and 122, which may be intrinsic to synchronous-rectifier switches 105 and 106, limit the positive voltage applied to the gate electrodes of the switches. Switches 117 and 118, along with the voltage source Vp, limit the negative voltage applied to the gate electrodes of 105 and 106. In the embodiment shown in FIG. 12, FETs 117 and 118 are p-channel enhancement-mode FETs, which turn on when the gate-to-source voltage is less than the negative threshold voltage of the device. These switches also contain intrinsic body diodes that conduct to permit turning on the corresponding synchronous-rectifier switch.

During turn-on of synchronous-rectifier switch 106, in FIG. 12, current flows out of the dotted terminal of winding 110, through the body diode of switch 118, and charges the gate capacitance of 106. The gate-to-source voltage of 106 rises to a positive value, clamped by the forward drop of diode 122, turning switch 106 on. Simultaneously, switch 105 is turned off by current flowing out of the gate capacitance of 105 through switch 117. When the source voltage of switch 117 falls to Vp minus the negative threshold voltage of 117, switch 117 turns off, clamping the gate-to-source voltage of switch 105 to a negative value within the limits of the device. During the other switching transition, when synchronous-rectifier switch 106 turns off, the roles of 106, 118, and 122 are exchanged with those of 105, 117, and 121.

FIGS. 13 and 14 show other variations on the circuit of FIG. 11, with either synchronous-rectifier switch replaced by A diode. Specifically, synchronous-rectifier switch 105 in FIG. 11 can be replaced by diode 113 in FIG. 13, with capacitor 115 substituted for the gate-to-source capacitance of switch 105. Alternatively, synchronous-rectifier switch 106 in FIG. 11 can be replaced by diode 114 in FIG. 14, with capacitor 116 substituted for the gate-to-source capacitance of switch 106. These circuits operate in essentially the same manner as described previously for FIG. 1, except that a diode is conducting during one portion of the switching cycle instead of a synchronous-rectifier switch.

Another means of boosting the drive voltage for self-driven synchronous rectifiers is illustrated in FIG. 15. In this example, the voltage available at the secondary power winding 211 is sufficient to drive one of the two synchronous-rectifier switches, 206, but not to drive the other, switch 205. The solution is to add drive winding 210 to the main power transformer 202, with one lead connected to the secondary power winding 211 and the other lead connected in series with one or two voltage-limiting switches and the control electrode of synchronous-rectifier switch 205. Gate-drive switches 209 and 209 are included as in FIG. 1 to limit the positive voltage applied to the gates of the synchronous rectifier switches, New gate-drive switch 217 and new bias voltage Vp are included to limit the "off" voltage applied to the gate of switch 205 during the time synchronous rectifier switch 206 is conducting. During turn-on of switch 205, gate-drive current can flow through the body diode of p-channel FET 217, but during turn-off, gate-drive current flows through the channel of switch 217 until its source voltage (between switches 209 and 217) falls to less than -Vp minus the negative threshold voltage of switch 217. This action protects the gate of synchronous-rectifier switch 205 from excessive negative voltage.

FIG. 16 is a generalized diagram of the invention illustrated in FIG. 15, and a circuit suitable for the alternate type of synchronous-rectifier switch introduced in FIG. 12. Both portions 211 and 219 of the power secondary winding may be present, yielding an isolated buck converter with a tapped secondary winding, or the turns of winding 219 may be set to zero, yielding a forward converter as in FIG. IS, or the turns of winding 211 may be set to zero, giving a flyback converter. Independently, the turns of either drive winding 210 or 218 may be set to zero if sufficient drive voltage is present for a particular design and range of operating conditions. Either of switches 209 and 216 may be eliminated, and either of switches 209 and 217 may be eliminated, as long as the associated gate voltage is not excessive. Finally, either synchronous-rectifier switch 205 or 206 may be replaced by a diode, if desired. Any of these circuit variations embodies the principles of the invention.

Bowman, Wayne C., Niemela, Van A.

Patent Priority Assignee Title
10199950, Jul 02 2013 Vicor Corporation Power distribution architecture with series-connected bus converter
10594223, Jul 02 2013 Vicor Corporation Power distribution architecture with series-connected bus converter
11075583, Jul 02 2013 Vicor Corporation Power distribution architecture with series-connected bus converter
11705820, Jul 02 2013 Vicor Corporation Power distribution architecture with series-connected bus converter
6535400, Mar 30 2001 Texas Instruments Incorporated Control circuit for synchronous rectifiers in DC/DC converters to reduce body diode conduction losses
6791851, Feb 01 2002 BEL POWER SOLUTIONS INC Isolated drive circuitry used in switch-mode power converters
6804125, Jan 26 2001 BEL POWER SOLUTIONS INC Isolated drive circuitry used in switch-mode power converters
6912143, Jul 30 2002 Delta Electronics, Inc. Synchronous rectifier with burst mode control
7102898, Feb 01 2001 BEL POWER SOLUTIONS INC Isolated drive circuitry used in switch-mode power converters
7375988, Mar 08 2005 Wall Industries, Inc. Self-synchronized high voltage synchronous rectifier and drive
7558083, Jan 24 1997 SynQor, Inc. High efficiency power converter
7564702, Jan 24 1997 SynQor, Inc. High efficiency power converter
7791903, Nov 28 2005 Bel Power (Hangzhou) Co., Ltd. DC-DC flyback converter having a synchronous rectification self-driven circuit
8023290, Jan 24 1997 SynQor, Inc. High efficiency power converter
8493751, Jan 24 1997 SynQor, Inc. High efficiency power converter
9099928, Jul 30 2012 Delta Electronics, Inc. Synchronous rectifying apparatus and controlling method thereof
9143042, Jan 24 1997 SynQor, Inc. High efficiency power converter
Patent Priority Assignee Title
3989995, May 05 1975 Bell Telephone Laboratories, Incorporated Frequency stabilized single-ended regulated converter circuit
4441146, Feb 04 1982 VLT CORPORATION, ONE RIVERWALK PLACE, 700 NORTH ST MARY S SAN ANTONIO, TEXAS 78205, A TX CORP Optimal resetting of the transformer's core in single ended forward converters
4618919, Oct 04 1984 Sperry Corporation Topology for miniature power supply with low voltage and low ripple requirements
4716514, Dec 13 1984 MICRO USPD, INC Synchronous power rectifier
4788634, Jun 22 1987 Massachusetts Institute of Technology Resonant forward converter
4809148, Oct 21 1987 BRITISH COLUMBIA TELEPHONE COMPANY, 3777 KINGSWAY, BURNABY, B C V5H 3Z7, A FEDERAL CORP OF CANADA Full-fluxed, single-ended DC converter
4857822, Sep 23 1987 VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VA Zero-voltage-switched multi-resonant converters including the buck and forward type
4870555, Oct 14 1988 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P High-efficiency DC-to-DC power supply with synchronous rectification
4899271, Jul 22 1987 Scanpower Power supply circuit
4903189, Apr 27 1988 Fairchild Semiconductor Corporation Low noise, high frequency synchronous rectifier
4931716, May 05 1989 VIRGINIA TECH INTELLECTUAL PROPERTIES, INC , 220 BURRUSS HALL, BLACKSBURG, VA 24061, A CORP OF VA Constant frequency zero-voltage-switching multi-resonant converter
4959764, Nov 14 1989 Artesyn Technologies, Inc DC/DC converter switching at zero voltage
4975821, Oct 10 1989 PIONEER MAGNETICS, INC High frequency switched mode resonant commutation power supply
5066900, Nov 14 1989 Artesyn Technologies, Inc DC/DC converter switching at zero voltage
5099406, Sep 05 1989 KYUSHU UNIVERSITY DC-DC converter with surge voltage prevention
5126651, Jul 26 1991 Motorola, Inc. Gate drive circuit for a synchronous rectifier
5126931, Sep 07 1990 C&D TECHNOLOGIES, INC Fixed frequency single ended forward converter switching at zero voltage
5179512, Sep 18 1991 Lockheed Martin Corporation Gate drive for synchronous rectifiers in resonant converters
5231563, Sep 07 1990 INTERNATIONAL POWER SYSTEMS, INC Square wave converter having an improved zero voltage switching operation
5268830, Apr 20 1992 AT&T Bell Laboratories Drive circuit for power switches of a zero-voltage switching power converter
5274543, Apr 20 1992 Lineage Power Corporation Zero-voltage switching power converter with lossless synchronous rectifier gate drive
5282123, Dec 16 1992 AT&T Bell Laboratories Clamped mode DC-DC converter
5291382, Apr 10 1991 Lambda Electronics Inc. Pulse width modulated DC/DC converter with reduced ripple current coponent stress and zero voltage switching capability
5303138, Apr 29 1993 Lineage Power Corporation Low loss synchronous rectifier for application to clamped-mode power converters
5353212, Apr 20 1992 AT&T Bell Laboratories Zero-voltage switching power converter with ripple current cancellation
5434768, Feb 12 1993 DELTA ENERGY SYSTEMS SWITZERLAND AG Fixed frequency converter switching at zero voltage
5528480, Apr 28 1994 PDACO LTD Highly efficient rectifying and converting circuit for computer power supplies
5528482, Apr 29 1993 Lineage Power Corporation Low loss synchronous rectifier for application to clamped-mode power converters
5535112, Mar 31 1993 ALCATEL-LUCENT FORMERLY KNOWN AS ALCATEL ; POWER SUPPLY SYSTEMS HOLDING THE NETHERLANDS B V DC/DC conversion circuit
5541828, Dec 15 1992 Lineage Power Corporation Multiple output converter with continuous power transfer to an output and with multiple output regulation
5636116, Sep 14 1993 PWER BRIDGE, LLC Synchronous rectifier impervious to reverse feed
EP58400,
EP289186,
EP428377,
EP474471,
EP508664,
SU892614,
WO8302858,
WO8908347,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 17 1998Lucent Technologies Inc.(assignment on the face of the patent)
Dec 29 2000Lucent Technologies IncTYCO ELECTRONICS LOGISTICS A G ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0201030045 pdf
Feb 28 2008Tyco Electronics Logistics AGLINEAGE OVERSEAS CORP ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0224940921 pdf
Feb 28 2008LINEAGE OVERSEAS CORP Lineage Power CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0225100282 pdf
Nov 21 2008Lineage Power CorporationWELLS FARGO FOOTHILL, LLC, AS AGENTSECURITY AGREEMENT0235250343 pdf
Feb 28 2011Wells Fargo Capital Finance, LLCLineage Power CorporationPATENT RELEASE AND REASSIGNMENT0279340566 pdf
Date Maintenance Fee Events
May 28 2004M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 30 2008M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jul 07 2008REM: Maintenance Fee Reminder Mailed.


Date Maintenance Schedule
Jan 15 20054 years fee payment window open
Jul 15 20056 months grace period start (w surcharge)
Jan 15 2006patent expiry (for year 4)
Jan 15 20082 years to revive unintentionally abandoned end. (for year 4)
Jan 15 20098 years fee payment window open
Jul 15 20096 months grace period start (w surcharge)
Jan 15 2010patent expiry (for year 8)
Jan 15 20122 years to revive unintentionally abandoned end. (for year 8)
Jan 15 201312 years fee payment window open
Jul 15 20136 months grace period start (w surcharge)
Jan 15 2014patent expiry (for year 12)
Jan 15 20162 years to revive unintentionally abandoned end. (for year 12)