A pen-based direct-drive manipulator enables precision manipulation and force display of a control point within three degrees of freedom. The control point exhibits substantially no backlash, very low friction and very low inertia making it useful as a force display. The manipulator also has a very high force generation bandwidth allowing high frequency force components to be displayed. A parallel actuator structure controls motion over two degrees of freedom in a horizontal plane. The parallel structure is a redundant structure including three chains in parallel coupled at the control point. The redundant structure provides a uniform force capability throughout the manipulator workspace. A pair of rotational actuators rotate the parallel structure about an axis to approximate a linear motion along a third axis. The rotational actuators provide a third degree of freedom for the control point. Motion about the third axis is substantially decouple from motion about the horizontal plane.

Patent
   RE37528
Priority
Nov 03 1994
Filed
Jun 30 1998
Issued
Jan 22 2002
Expiry
Nov 03 2014
Assg.orig
Entity
Large
12
74
all paid
8. A kinematic system responsive to operator manipulation of a control point, comprising:
first, second and third kinematic chains each having a respective anchor point and being coupled in parallel at a common joint;
an end effector in alignment with the common joint along a line perpendicular to a first plane of motion, the end effector defining a control point accessible to manipulation by an operator to move the control point within an end effector workspace;
wherein position of the common joint with respect to each one of the respective anchor points is controlled respectively to define a redundant control structure which allows motion of the control point within the first plane of motion to not more than two degrees of freedom.
0. 15. A force feedback interface device for providing low inertia, low backlash, low friction force feedback, comprising:
a reference surface;
an end effector defining a control point for engagement by a user, wherein said control point is translatable in two degrees of freedom with respect to said reference surface;
a first chain coupled between said reference surface and said end effector, said first chain including a first direct drive flat-coil actuator, a first inner link coupled to said first direct drive flat-coil actuator, and a first outer link coupled between said first inner link and said end effector; and
a second chain coupled between said reference surface and said end effector, said second chain including a second direct drive actuator, a second inner link coupled to said second direct drive actuator, and a second outer link coupled between said second inner link and said end effector,
wherein said first chain and said second chain provide parallel couplings between said reference surface and said control point, said first chain and said second chain providing not more than said two degrees of freedom to said control point.
1. A direct drive actuator system responsive to operator manipulation of a control point, comprising:
an end effector defining a control point accessible to manipulation by an operator within an end effector workspace;
first, second and third kinematic chains coupled in parallel to the end effector in common alignment to the control point to define a redundant actuator structure for allowing motion of the control point within a first plane of the workspace to not more than two degrees of freedom;
the first kinematic chain comprising: a first actuator, a first inner link and a first outer link, the first actuator fixed relative to the first plane and coupled to the first inner link, the first inner link coupled to the first outer link to define a first joint, the first outer link coupled to the end effector in alignment with the control point;
the second kinematic chain comprising: a second actuator, a second inner link and a second outer link, the second actuator fixed relative to the first plane and coupled to the second inner link, the second inner link coupled to the second outer link to define a second joint, the second outer link coupled to the end effector in alignment with the control point; and
the third kinematic chain comprising: a third actuator, a third inner link and a third outer link, the third actuator fixed relative to the first plane and coupled to the third inner link, the third inner link coupled to the third outer link to define a third joint, the third outer link coupled to the end effector in alignment with the control point.
12. A direct drive actuator system responsive to operator manipulation of a control point, comprising:
a tool being held by an operator;
an end effector defining a control point accessible to the tool for manipulation via the tool within an end effector workspace, wherein the tool is free to make contact and discontinue contact with the contact point;
first, second and third kinematic chains coupled in parallel to the end effector in common alignment with the control point to define a redundant actuator structure for allowing motion of the control point within a first plane of the workspace to not more than two degrees of freedom;
the first kinematic chain comprising: a first actuator, a first inner link and a first outer link, the first actuator fixed relative to the first plane and coupled to the first inner link, the first inner link coupled to the first outer link to define a first joint, the first outer link coupled to the end effector in alignment with the control point;
the second kinematic chain comprising: a second actuator, a second inner link and a second outer link, the second actuator fixed relative to the first plane and coupled to the second inner link, the second inner link coupled to the second outer link to define a second joint, the second outer link coupled to the end effector in alignment with the control point; and
the third kinematic chain comprising: a third actuator, a third inner link and a third outer link, the third actuator fixed relative to the first plane and coupled to the third inner link, the third inner link coupled to the third outer link to define a third joint, the third outer link coupled to the end effector in alignment with the control point.
2. The actuator system of claim 1 in which positions of the first, second and third actuators in response to operator manipulation at the control point are determined by choosing a torque vector for the respective first, second and third kinematic chains that substantially maximizes the force that can be applied at the control point.
3. The actuator system of claim 1 in which the first kinematic chain further comprises a first optical encoder for sensing position of the first actuator, the second kinematic chain further comprises a second optical encoder for sensing position of the second actuator, and the third kinematic chain further comprises a third optical encoder for sensing position of the third actuator.
4. The actuator system of claim 1 in which the end effector defines a free control point interface allowing an operator to apply a pen-like tool to the control point without the system holding the tool to the control point.
5. The actuator system of claim 1 in which the first, second and third kinematic chains define a common structure, and further comprising a fourth actuator for moving the common structure substantially orthogonal to the first plane within the end effector workspace, wherein the orthogonal movement movement is substantially decoupled from movement within the first plane within the end effector workspace.
6. The actuator system of claim 1 in which the first, second and third kinematic chains each have a respective anchor point and are coupled in parallel at a common joint; and wherein the control point is aligned with the common joint along a line perpendicular to the first plane; and wherein joint angle for the first joint, second joint and third joint are controlled respectively to define the redundant actuator structure which enables motion of the control point within the first plane of motion to not more than two degrees of freedom.
7. The actuator system of claim 1 in which the first, second and third kinematic chains each have a respective anchor point and are coupled in parallel at a common joint; and wherein the control point is aligned with the common joint along a line perpendicular to the first plane; and wherein output torque for each one of the first actuator, second actuator and third actuator are controlled to define the redundant actuator structure which enables motion of the control point within the first plane of motion to not more than two degrees of freedom.
9. The system of claim 8, further comprising a tool for being held to the control point only by a force applied by an operator via the tool, the tool being free to make contact and discontinue contact with the control point under operator control.
10. The system of claim 8 in which the position of the common joint with respect to each anchor point is controlled for each of the first, second and third kinematic chain by applying a respective torque vector to the respective first, second and third kinematic chains that substantially maximizes the force that can be applied at the control point.
11. The system of claim 8 in which the position of the common joint with respect to each anchor point is controlled respectively for each of the first, second and third kinematic chain by defining a joint angle for the respective first, second and third kinematic chains that substantially maximizes the force that can be applied at the control point.
13. The system of claim 12 in which output torque for each one of the first, second and third actuators is chosen in response to operator manipulation at the control point to define a torque vector for the respective first, second and third kinematic chains that substantially maximizes the force that can be applied at the control point.
14. The system of claim 12 in which joint angle for each one of the first joint, second joint and third joint are controlled respectively to define the redundant actuator structure which enables motion of the control point within the first plane of motion to not more than two degrees of freedom.
0. 16. The force feedback interface device as recited in claim 15 wherein said second direct drive actuator is a flat-coil actuator, and wherein said first direct drive flat-coil actuator includes a first movable flat coil coupled to a first fixed magnet and said second drive flat-coil actuator includes a second movable flat coil coupled to a second fixed magnet.
0. 17. The force feedback interface device as recited in claim 15 wherein said reference surface is a base plate.
0. 18. The force feedback interface device as recited in claim 15 wherein said reference surface is a ground surface.
0. 19. The force feedback interface device as recited in claim 16 wherein said first chain includes a first rotary joint coupling the first inner link and the first outer link and said second chain includes a second rotary joint coupling the second inner link and the second outer link.
0. 20. The force feedback interface device as recited in claim 19 wherein said two degrees of freedom are in a horizontal plane of motion.
0. 21. The force feedback interface device as recited in claim 20 wherein said end-effector includes a pen-like elongated member engaged and manipulated by the user.
0. 22. The force feedback interface device as recited in claim 19 wherein said end-effector includes an open tool interface point that can be engaged by a pen-like elongated member wherein the user can freely apply and remove the pen-like elongated member from the end-effector.
0. 23. The force feedback interface device as recited in claim 19 wherein said end-effector includes an open tool interface point that can be engaged by the user's finger.
0. 24. The force feedback interface device as recited in claim 20 further comprising:
a first sensor for detecting the position of the control point within said horizontal plane of motion; and
a second sensor for detecting the position of the control point within said horizontal plane of motion.
0. 25. The force feedback interface device as recited in claim 24 wherein said first and second sensors are optical encoders.
0. 26. The force feedback interface device as recited in claim 19 further including a third chain coupled between said reference surface and said end effector, said third chain including a third direct drive actuator, a third inner link, and a third outer link, one end of said third inner link being coupled to said third actuator through a rotary joint, another end of said third inner link being coupled to one end of said third outer link, another end of said third outer link being coupled to the end effector, wherein said first, second, and third chains provide parallel couplings between said reference surface and said control point.
0. 27. The force feedback interface device as recited in claim 20 further including a rotational actuation assembly coupled to said reference surface for providing an additional degree of motion to the control point by allowing the horizontal plane of motion to be rotated about an axis of rotation.
0. 28. The force feedback interface device as recited in claim 20 further including a vertical actuation assembly coupled to said reference surface for providing an additional degree of freedom to the control point by allowing the horizontal plane of motion to be translated along a z-axis of motion.
0. 29. The force feedback interface device as recited in claim 28 further including a fourth actuator for applying a force along said z-axis of motion.

This invention was made with government support under grant number BCS 9058408 awarded by the National Science Foundation. The government has certain rights in the invention.

This invention relates to direct-drive manipulators and force feedback devices. More particularly this invention relates to a direct-drive manipulator having three degrees of freedom and suitable for use as a pen-based force display for a virtual reality or telerobotic environment.

A manipulator can serve as an input device for controlling movement of a robot or other real or simulated device. A direct drive manipulator responds to operator manipulations using one or more actuators directly coupled to a load (on the output side) or an operator contact point (on the input side). This contrasts with an indirectly driven manipulator which responds to operator manipulations using one or more actuators indirectly coupled to the load or operator contact point through gears or other scaling devices.

A pen-based manipulator is characterized by an elongated member having a contact point for applying operator input forces and displacements. The manipulator enables an operator holding the elongated member to move the member within a workspace under the control of manipulator components (e.g., actuators, joints and links).

A force feedback device is characterized as an output device in which forces are applied to an operator holding the feedback device. In several telerobotic applications, for example, a master manipulator located away from a robot controls a slave manipulator located at the robot. The master manipulator serves as an input device for commanding movement of the robot via forces or displacements applied to the manipulator by an operator. In addition, the master manipulator sometimes serves as a force feedback device for exhibiting force sensations felt by the operator. In a force reflection application, for example, the forces encountered by the robot under control are reflected back to the operator at the manipulator to enable improved coordination of robot motion and dexterity. U.S. Pat. No. 5,072,361 (Davis et al.) discloses a force-reflective tele-operation control system in which a master station includes an actuator exhibiting force resistance to movement in a master link. Such resistance is to be comparable to the resistance encountered by a slave device so that movement of the master device by an operator tracks movement of the slave device being controlled.

A force feedback device also is referred to as a force display. In the computer field the term display refers to a visual output device upon which ephemeral images are shown. The display serves as a visual interface between an end user and a computer environment. An operator uses his visual sense to experience the images. Analogously, the term "force display" is coined to refer to an output device upon which ephemeral forces are exhibited. The force display serves as a force-reflective, haptic, kinaesthetic, or tactile interface between an operator and a real or simulated environment. The operator uses his sense of touch to experience the forces. The force display, however, typically is more than a display in that it also serves as an input device. A force display is a bidirectional mechanical interface through which an operator both applies and receives forces and displacements.

According to the invention, a direct-drive manipulator enables precision manipulation and force display at a control point. By using a pen-like or other end-effector an operator applies forces to the control point. The manipulator responds to the applied forces allowing movement of the control point within a workspace domain over three degrees of freedom. When combined with a controller implementing a control algorithm for a specific application environment, force sensations are reflected back to the control point to be experienced by the operator. Virtual reality, telerobotic, and other simulated, real or remote applications can be created to define a control algorithm. For example, a control algorithm may define immovable object shapes. An operator then is able to trace the virtual object shapes and feel the object boundaries. In another example, a control algorithm may define tissue having shape, texture and force resistance variables at different locations. An operator then may perform a virtual reality surgery, in which the control point is the cutting point of a scalpel. Depending on the position of the control point and force applied, the operator experiences the sensation of cutting though the virtual tissue. In a telerobotic application for remotely controlling a robot, the control algorithm is defined as a reflection of forces encountered by the robot. There are many other examples of a control algorithm that could be created to use with the manipulator. This invention is directed toward the manipulator with control point to be used as a force display.

To serve as a force display it is desirable that the manipulator have substantially no backlash, very low friction, and very low inertia. Backlash, friction and inertia detract from a natural feel of a control point. No matter how sophisticated a control algorithm, if the manipulator suffers from significant amounts of backlash, friction or inertia, then its use as a force display is compromised. It also is desirable that the manipulator have a high bandwidth so that high frequency force components can be displayed.

According to one aspect of the invention, direct drive actuators are used for the manipulator. Direct drive actuators have force display advantages over indirect drive actuators. Indirect drive geared actuators have unacceptable backlash and friction characteristics. Also, indirect drive actuators typically have lower bandwidth capability. Direct drive actuators are implemented here in a configuration for a control point having no backlash, very low friction and very high force generation bandwidth.

According to another aspect of the invention, a parallel actuator structure is used to control motion in a horizontal plane to achieve very low inertia of the control point. The parallel structure provides two degrees of freedom in a horizontal plane of motion.

According to another aspect of the invention, the parallel structure is a redundant structure including three chains in parallel coupled at the control point. Each chain includes an actuator and two links. Each actuator is positioned at a fixed origin. One end of an inner link is coupled to the actuator. An opposite end of the inner link is coupled to one end of an outer link. A joint is formed at the connection of the inner and outer links. The opposite end of the outer link is coupled to the control point. The three chains define a planar structure in which three actuators provide two degrees of freedom with redundancy.

The parallel redundant (3-chain) structure of this invention improves over prior parallel 2-chain structures by enabling a more uniform force capability throughout the manipulator workspace. In the workspace of a conventional 2-chain structure the maximum force that can be applied to a control point varies depending on where the control point currently is positioned. According to the 3-chain structure of this invention, however, the maximum force that can be applied is substantially uniform throughout the workspace.

According to another aspect of the invention redundant sensing also is performed by including a sensor at each actuator in the parallel structure. Redundant sensing enables more uniform high resolution position sensing throughout the workspace.

According to another aspect of the invention the end-effector defines an open tool interface point as the control point. An operator holds his finger, a pen-like tool or other tool to the interface point and applies forces or displacements to manipulate the control point. By providing an open interface there is no friction or backlash introduces by a device that would hold the tool tip in place at the control point. Similarly the operator can apply or remove the tool from the control point with a natural feel. For example if the tool is a scalpel in a surgical virtual reality application, the trainee physician can manipulate the scalpel as during a real operation, then apply the scalpel to the control point to perform a cutting/surgical maneuver. The operator therefore achieves a more realistic making and breaking of contact.

According to another aspect of the invention, a pair of rotational actuators rotate the parallel structure about an axis to approximate a linear motion along a third axis, and provide a third degree of freedom for the control point.

One advantage of the manipulator of this invention is that embodiments have substantially no backlash, very low friction, very low inertia and a very high force generation bandwidth enabling a natural feel when implemented as a force display. Another advantage is that embodiments have a substantially uniform force capability throughout there workspace. These and other aspects and advantages of the invention will be better understood by reference to the following detailed description taken in conjunction with the accompanying drawings.

FIG. 1 is a schematic diagram of the pen-based direct-drive manipulator according to an embodiment of this invention;

FIG. 2 is a diagram of the control point and workspace for the manipulator of FIG. 1 with a pen-like tool used by an operator;

FIG. 3 is a perspective view of the pen-based direct-drive manipulator according to an embodiment of this invention;

FIG. 4 is a perspective view of the planar assembly portion of the manipulator of FIG. 1 which defines two degrees of freedom; and

FIG. 5 is another perspective view of the planar assembly portion of the manipulator of FIG. 1 which defines two degrees of freedom; and

Overview

FIG. 1 shows a schematic diagram of the pen-based direct-drive manipulator 10 according to one embodiment of the invention. The function of the manipulator 10 is to enable precision manipulation and force display at a control point 12. Referring to FIG. 2, an operator uses a pen-like or other tool 14 to apply forces/displacements to the control point 12. The manipulator 10 responds to the applied forces allowing control point 12 movement with three degrees of freedom within a workspace 16. The control point 12 is defined at an end-effector 18. The manipulator 10 includes a planar structure 20 enabling motion in an xy plane to define two degrees of freedom. The planar structure 20 is moved along a z-axis by actuators 22, 24 to define a third degree of freedom.

FIG. 3 shows an assembled direct-drive manipulator 10 according to an embodiment of this invention. The manipulator includes a planar assembly 20 mounted to rotational actuation assemblies 60, 62. The rotational actuation assemblies 60, 62 are mounted to a yoke plate 64. The yoke plate is adjustably mounted to a base plate 66 via links 68, 70. The base plate 66 rests on a surface. The yoke plate 64 is adjustable relative to the base plate 66 to provide a desirable position and orientation to the planar assembly 20. For a given application an operator may prefer the xy plane to a have a specific position and orientation relative to the operator's tool 14. By adjusting the yoke plate relative to the base 66 a desired orientation is achieved. In an alternative embodiment, the rotational actuation assemblies 60, 62 are replaced with vertical actuation assemblies. As implemented in the embodiment shown, the rotational assemblies generate motion approximating vertical motion along the z-axis of workspace 16.

Planar Actuation Structure

Referring to FIGS. 1, 4 and 5, the planar structure 20 is a parallel, redundant actuator assembly, including three chains 26, 28, 30 in parallel coupled at an end effector 18. Each chain includes an actuator and two links. A first chain 26 includes an actuator 32, inner link 34 and outer link 36. A joint 37 is formed between the inner link 34 and outer link 36. A second chain 28 includes an actuator 38, inner link 40 and outer link 42. A joint 43 is formed between the inner link 40 and outer link 42. A third chain 30 includes an actuator 44, inner link 46 and outer link 48. A joint 50 is formed between the inner link 46 and outer link 48. Low friction ball bearings, washers and rigid connecting axes are included at joints 37, 43 and 50 and where outer links 36, 42, 48 couple to the end effector 18. Each actuator 32, 38, 44 is fixed relative to the planar structure 20, and thus, relative to the xy plane.

Referring to FIGS. 4 and 5 the chains 26, 28, 30 are mounted to a rigid disk 78 having a planar surface. In one embodiment the disk 78 is the media disk of a 3.5 inch hard disk drive. The inner links 34, 40, 46 and outer links 36, 42, 48 are machined from 3.5 inch hard disk drive media. Also, each actuator 32, 38, 44 is a direct drive actuator like those used in computer hard disk drives, such as a 1.8 inch hard disk drive. Each actuator 32, 38, 44 structure is implemented as a direct drive actuator and includes a flat coil, magnet, encoder, encoder base, codewheel, codewheel screw and codewheel base. Encoder bases 86, 88, 90 are shown. In an alternative embodiment, the planar structure 20 includes redundant actuators (e.g., 3), but not redundant encoders, (e.g., only two are used). In one embodiment the codewheels are Hewlett Packard codewheel part no. HEDM-5120-J03 and the encoders are Hewlett Packard encoder module part no. HEDS-9100-J00. The magnets and flat coils are from a 1.8 inch hard disk drive and the magnet frames 80, 82, 84 are machined from a 1.8 inch hard disk drive frame. Although 3.5 inch and 1.8 inch hard disk drive scaling is used on the described embodiment, the components may be scaled to larger or smaller dimension to increase or decrease the workspace 16 (see FIG. 2). In addition other types of actuators may be used. Preferably the actuators have low friction, low inertia and substantially no backlash.

Rotational Actuation Structure

Referring again to FIG. 3 the rotational actuation structures 60, 62 are shown. The planar structure 20 is coupled to the rotational actuation structures 60, 62 at fixed links 90, 92. The links 90, 92 are mounted to respect rotational actuator frames 94, 96. In one embodiment the frames 94, 96 are moved by 5.25 inch hard disk drive flat coil and magnet assemblies which serve as actuators 22, 24. Magnets 98, 100 and flat coils 102, 104 are shown. An encoder module is formed by encoder module base 106, encoder 108, codewheel 110, codewheel screw 112, codewheel base 114 and washers. In one embodiment the codewheel is a Hewlett Packard codewheel part no. HEDM-5120-J03 and the encoder is a Hewlett Packard encoder module HEDS-9100-J00. Although 5.25 inch hard disk drive scaling is used on the described embodiment, the components may be scaled to larger or smaller dimension to increase or decrease the workspace 16 (see FIG. 2). In the described embodiment, the rotational actuation structures 60, 62 define motion approximating vertical motion along the z axis of the workspace domain. If the vertical dimension of the workspace is desired to be increased outside the range of the vertical approximation, then the motion in the z direction is coupled to the motion in the x and y directions. In the preferred embodiment such motions are substantially decoupled.

Kinematic Characteristics

The manipulator 10 enables movement of a control point 12 within a workspace 16 over three degrees of freedom. Two degrees of freedom are provided by the planar actuation structure 20 allowing motion within an xy plane. A third degree of freedom is provided by the rotational actuation structures 60, 62 allowing motion along a z-axis. The workspace of the described embodiment is approximately 2 cm×2 cm×2 cm. For the rotational actuators 20, 22 this represents approximately ±20°C. Over such rotation, the rotary motion is approximated as linear motion along the z-axis. By approximating the motion as linear, the planar xy motion and the vertical z motion are substantially decoupled allowing for simpler kinematic modelling and simpler control algorithms.

In the following static and dynamic equations of the manipulator 10, the following notations are used:

iΘ1=angle of inner link in i-th serial chain

iΘ2=angle of outer link in i-th serial chain

iΘ12=iΘ1+iΘ2

ixo,iyo=position of origin of i-th serial chain in xy plane

ixin,iyin=position of intermediate joint in i-th serial chain in xy plane

xe,ye=position of end effector in xy plane

ze=vertical position of end effector

Also, in one embodiment, the following manipulator parameters are implemented:

l1=length of inner link for each serial chain=2 cm

l2=length of outer link for each serial chain=1.25 cm

l=length between the origins of a first and a second actuator in the planar actuating structure=4.05 cm

lz=displacement of end effector from the z-axis=2 cm

Position of end effector:

Because the motions in the xy plane are substantially decoupled from the motion along the z-axis, xe,ye is independent of ze. The end effector position in the xy plane is: [ x e y e ] = R ⁡ [ dtxdir dtydir ] + [ x in 1 y in 1 ]

where, R=frame rotation and more specifically R = [ ( x in 2 - x in 1 ) ( y in 2 - y in 1 ) ( y in 2 - y in 1 ) - ⁢ ( x in 2 - x in 1 ) ] / lendir dtxdir = lendir / 2 dtydir = ± l 2 2 - dtxdir 2 lendir = ( x in 2 - x in 1 ) 2 + ( y in 2 - y in 1 ) 2

The end effector position along the z-axis is:

ze=lz sin Θz≈lzΘz

The position of the intermediate joints formed by the inner and outer links of a respective serial chain are:

(1xin,1yin)=(-l1 cos (1Θ1, -l1 sin 1Θ1)+(1xo,1yo)

(2xin,2yin)=(-l1 cos (2Θ1, -l1 sin 2Θ1)+(2xo,2yo)

(3xin,3yin)=(-l1 cos (3Θ1, -l1 sin 3Θ1)+(3xo,3yo)

The joint angles, iΘ1, are defined as:

iΘ1=α tan [(iyin-iyo)/(ixin-ixo)] for ixin-ixo≧0;

and

iΘ1=α tan [(iyin-iyo)/(ixin-ixo)]+π for ixin-ixo<0

The actuated link displacement and overall actuator displacements in the xy plane are given as: i &it; &Theta; . 1 = [ cos _ i &it; &Theta; 12 sin i &it; &Theta; 12 I 1 &it; sin i &it; &Theta; 2 I 1 &it; sin i &it; &Theta; 2 ] &it; x . e and &Theta; &RightArrow; = [ &Theta; . 1 1 &Theta; . 1 2 &Theta; . 1 3 ] = J e - 1 &af; ( &Theta; _ ) &it; x . e

The force exerted on the end effector in the xy plane as a function of actuator displacements and torques is given as: F _ e = J e - &gamma; &af; ( &Theta; _ ) &af; [ &tau; 1 &tau; 2 &tau; 3 ]

The torque vector for the third degree of freedom is given as:

τz=lz(mg+Fz)

Dynamic Equations

At the end effector alone with no outside force applied, the equation of the i-th serial chain is:

iτ=iM(i{overscore (Θ)})iΘ+iV(i{overscore (Θ)},i{right arrow over (Θ)})+iG(i{overscore (Θ)})

and in the cartesian frame is:

i{overscore (F)}e=iMe(i{overscore (Θ)}){umlaut over (x)}e+iVe(i{overscore (Θ)},i{right arrow over (Θ)})+iGe(i{overscore (Θ)})

Assuming the gravity force to be zero because the planar actuation structure works in the horizontal plane, the interaction forces between the chains are given as:

1{overscore (F)}e+1Me(1{overscore (Θ)}){umlaut over (x)}e=1Ve(1{overscore (Θ)},1{right arrow over (Θ)})+{overscore (F)}21+{overscore (F)}31

2{overscore (F)}e+2Me(2{overscore (Θ)}){umlaut over (x)}e=2Ve(2{overscore (Θ)},2{right arrow over (Θ)})+{overscore (F)}12+{overscore (F)}32

3{overscore (F)}e+3Me(3{overscore (Θ)}){umlaut over (x)}e=3Ve(3{overscore (Θ)},3{right arrow over (Θ)})+{overscore (F)}13+{overscore (F)}23

where Fij is the force exerted by the i-th serial chain on the j-th serial chain. Because the force are endogenous, they sum to zero:

F21+F31+F12+F32+F13+F23=0

Adding together the three dynamic equations and considering an external force Fext, we get the dynamic equations of the 2-dof planar actuating structure in the cartesian frame of reference:

Σi{overscore (F)}e+{overscore (F)}ext=ΣMe(Θ){umlaut over (x)}e+ΣVe({overscore (Θ)},{right arrow over (Θ)})

The equation for the third degree of freedom is approximately:

τz=lzmg+lzFz+lz{dot over (ω)}z

where {dot over (ω)}z is the angular rotation of the Θz joint.

Actuation Redundancy

Because there are three actuators 32, 38, 44 providing two degrees of freedom, there are an infinite number of possible torque vectors that provide the same force. One approach is to select the torque vector that minimizes the energy spent by the serial chains 26, 28, 30. A preferable approach is to choose the torque vector that maximizes the force that can be applied at the control point 12 (subject to actuator limits). Accordingly, the serial chains are controlled to move in response to external forces at the control point 12 in a manner that minimizes the following:

max (|τ1|,|τ2|,|τ3|)

where τi is the torque magnitude of the i-th actuator in the planar structure 20.

In one embodiment a given controller implements a simplex algorithm to identify max (|τ1|,|τ2|,|τ3|). Inputs are the end effector position xe and the desired force Fe. The following steps then are performed:

Step 1: Calculate J-Te(xe(to));

Step 2: Calculate β1, β2, β3, where

β1=(J-Te11Fey-J-Te21Fex)

β2=(J-Te12Fey-J-Te22Fex)

β3=(J-Te13Fey-J-Te23Fex)

Step 3: Set i3=1, i1=2, i2=3;

Step 4: Calculate γi1, γi2, where

γi1=J-Te(1,i1)-J-Te(1,i3)·(βi1i3)

γi2=J-Te(1,i2)-J-Te(1,i3)·(βi2i3)

Step 5: Set γi1=sign(Yi1)·τsat, sign(Yi2)·τsat;

Step 6: Calculate τi3; and

γi3=(βi1i3i1+(βi2i3i2

Step 7: If |τi3|≧τsat permute i3=i2, i2=i1,i1=i3 and start again from step 4.

The output solution is τi1, τi2, τi3.

Experimental Results

In one embodiment, a manipulator 10 includes actuation structures machined in part from computer hard disk drive actuators. Characteristically these actuators have low inertia and low friction. Using 1.8" actuators for the planar actuation structure 20 and 5.25" actuators for the rotational actuating structures 60, 62, the following parameters were measured:

Steady state current at 120°C C.: 1.8" actuators=0.65 A 5.25" actuators=0.52 A

Continuous torque that can be generated: 1.8" act=0.01 Nm 5.25" act.=0.06 Nm

Short term peak torque: for 1.8"=0.03 Nm (at 2 A) for 5.25"=0.24 Nm (at 2 A)

Serial chain parameters:

l1=2 cm

l2=1.25 cm

l=4.05 cm

lz=2 cm

The mass of each inner link 34, 40, 46 is approximately m=1.0 grams. The mass of each outer link 36, 42, 48 is approximately 0.5 grams. The mass of the end effector is less than one gram. The moment of inertia of the inner links 34, 40, 46 about the axis passing through the center of mass and parallel to the z-axis is I1=0.083 gr-cm2. The moment of inertia of the outer links 36, 42, 48 about the axis passing through the center of mass and parallel to the z-axis is I1=0.016 gr-cm2. The total mass of the planar actuating structure 20 is approximately 150 grams.

Peak force applied by end effector in upward direction is 13.50N.

Maximum continuous force applied by end effector in upward direction is 4.5N.

Peak force applied by end effector in xy plane is 1.5N.

Maximum continuous force applied by end effector in xy plane is approximately 0.55N and substantially uniform throughout the workspace.

The practical range of maximum force applied in xy plane is 0.5-1.5N using a simplex algorithm.

In one embodiment the simplex algorithm is executed at 10 kHz as part of a controller written in assembly and C language on a 486DX 66 MHz general purpose microcomputer.

These values are for an end effector workspace of approximately 1.5 cm3.

Operation--Manipulation and Force Display

The manipulator 10 implemented as a force display is driven in one embodiment by a controller program executed on a general purpose microcomputer. The controller program defines a virtual reality environment or reflects a tele-environment. An operator using his finger, pen-like tool or other device applies forces to the control point 12 moving the control point 12 within the end effector workspace 16. For forces applied in the xy plane, the planar actuating structure responds to allow movement of the end effector 14. For forces applied in the z direction, the rotational actuating structures respond to allow common movement of the end effector 14 and planar structure 20 along the z-axis.

By using precision direct-drive actuators and serial-link components, substantially frictionless movement of the control point is achieved. During testing friction was less than 1 gr-f, backlash nonexistent, and inertia very low. As a result, a control algorithm is able to effectively define a virtual reality or tele-operational environment with a substantially natural feel. The feel is able to be as good as the controller program allows, rather than be limiting by the mechanics of the manipulator.

Concluding Remarks

Although a preferred embodiment of the invention has been illustrated and described, various alternatives, modifications and equivalents may be used. Therefore, the foregoing description should not be taken as limiting the scope of the inventions which are defined by the appended claims.

Buttolo, Pietro, Hannaford, Blake

Patent Priority Assignee Title
10013064, Sep 25 2015 META PLATFORMS TECHNOLOGIES, LLC Haptic surface with damping apparatus
11826910, May 20 2021 Carnegie Mellon University Direct drive end-effectors with parallel kinematics
6483499, Apr 21 2000 Hong Kong Productivity Council 3D sculpturing input device
7023423, Jan 18 1995 Immersion Corporation Laparoscopic simulation interface
8210942, Mar 31 2006 SG GAMING, INC Portable wagering game with vibrational cues and feedback mechanism
8500534, Sep 08 2005 LNW GAMING, INC Gaming machine having display with sensory feedback
8882575, Sep 08 2005 LNW GAMING, INC Gaming machine having display with sensory feedback
9058714, May 23 2011 LNW GAMING, INC Wagering game systems, wagering gaming machines, and wagering gaming chairs having haptic and thermal feedback
9142083, Jun 13 2011 SG GAMING, INC Convertible gaming chairs and wagering game systems and machines with a convertible gaming chair
9449456, Jun 13 2011 SG GAMING, INC Automated gaming chairs and wagering game systems and machines with an automated gaming chair
9778746, Sep 25 2015 META PLATFORMS TECHNOLOGIES, LLC Transversal actuator for haptic feedback
9971410, Sep 25 2015 META PLATFORMS TECHNOLOGIES, LLC Transversal actuator for haptic feedback
Patent Priority Assignee Title
3490059,
3795150,
3875488,
3919691,
4148014, Apr 06 1977 Texas Instruments Incorporated System with joystick to control velocity vector of a display cursor
4216467, Dec 22 1977 Northrop Grumman Corporation Hand controller
4398889, Nov 07 1980 Fokker B.V. Flight simulator
4436188, Nov 18 1981 Controlled motion apparatus
4477043, Dec 15 1982 The United States of America as represented by the Secretary of the Air Biodynamic resistant control stick
4638798, Sep 10 1980 Stereotactic method and apparatus for locating and treating or removing lesions
4653011, Oct 29 1984 Mitutoyo Mfg. Co., Ltd. Method of measuring by coordinate measuring instrument and coordinate measuring instrument
4775289, Sep 25 1987 REGENTS OF THE UNIVERSITY OF MINNESOTA, A CORP OF MN Statically-balanced direct-drive robot arm
4795296, Nov 17 1986 California Institute of Technology Hand-held robot end effector controller having movement and force control
4800721, Feb 13 1987 Caterpillar Inc.; Caterpillar Inc Force feedback lever
4803413, Jul 15 1986 Honeywell INC Magnetic isolating and pointing gimbal apparatus
4811608, Dec 18 1985 LABTEC INC Force and torque converter
4879556, Oct 27 1986 Huka Developments B.V. Joystick control unit using multiple substrates
4907970, Mar 30 1988 Grumman Aerospace Corporation Sidestick-type thrust control simulator
4961267, May 23 1987 Carl Zeiss Industrielle Messtechnik GmbH Method and apparatus for making coordinate measurements
4962448, Sep 30 1988 HONEYWELL INC , HONEYWELL PLAZA, MINNEAPOLIS, MINNESOTA 55408 A CORP OF DE Virtual pivot handcontroller
5004391, Aug 21 1989 Rutgers University Portable dextrous force feedback master for robot telemanipulation
5007300, Mar 03 1989 United Kingdom Atomic Energy Authority Multi-axis hand controller
5044956, Jan 12 1989 WARNER BROS ENTERTAINMENT INC Control device such as a steering wheel for video vehicle simulator with realistic feedback forces
5072361, Feb 01 1990 University of Utah Research Foundation Force-reflective teleoperation control system
5103404, Dec 06 1985 TENSOR DEVELOPMENT, INC , A CORP OF CO Feedback for a manipulator
5107080, Dec 01 1989 Massachusetts Institute of Technology; MASSACHUSETTS INSTITUTE OF TECHNOLOGY, A CORP OF MA Multiple degree of freedom damped hand controls
5142931, Feb 14 1991 Honeywell Inc. 3 degree of freedom hand controller
5143505, Feb 26 1991 Rutgers University Actuator system for providing force feedback to a dextrous master glove
5184319, Feb 02 1990 Virtual Technologies, INC Force feedback and textures simulating interface device
5185561, Jul 23 1991 IMMERSION CORPORATION DELAWARE CORPORATION Torque motor as a tactile feedback device in a computer system
5193963, Oct 31 1990 AERONAUTICS AND SPACE ADMINISTRATION, THE UNITED STATES OF AMERICAN, AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL NASA Force reflecting hand controller
5201838, Sep 05 1989 Position indicator for a piston controlled robot part
5223776, Dec 31 1990 ER-WE-PA DAVIS-STANDARD GMBH Six-degree virtual pivot controller
5228356, Nov 25 1991 Variable effort joystick
5231693, May 09 1991 The United States of America as represented by the Administrator, Telerobot control system
5264768, Oct 06 1992 Honeywell, Inc. Active hand controller feedback loop
5266875, May 23 1991 MASSACHUSETTS INSTITUTE OF TECHNOLOGY A MA CORPORATION Telerobotic system
5267956, Feb 05 1992 Alcon Research, Ltd Surgical cassette
5289273, Sep 28 1989 CEC ENTERTAINMENT, INC Animated character system with real-time control
5296846, Oct 15 1990 National Biomedical Research Foundation Three-dimensional cursor control device
5297057, Jun 13 1989 Schlumberger Technologies, Inc. Method and apparatus for design and optimization for simulation of motion of mechanical linkages
5382885, Aug 09 1993 The University of British Columbia Motion scaling tele-operating system with force feedback suitable for microsurgery
5389865, Dec 02 1992 Immersion Corporation Method and system for providing a tactile virtual reality and manipulator defining an interface device therefor
5397323, Oct 30 1992 International Business Machines Corporation Remote center-of-motion robot for surgery
5410638, May 03 1993 Northwestern University System for positioning a medical instrument within a biotic structure using a micromanipulator
5414337, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Actuator having electronically controllable tactile responsiveness
5436640, Oct 29 1993 GUILLEMOT CORPORATION, A FRENCH SOCIETE ANONYME Video game and simulator joystick controller with geared potentiometer actuation
5491477, Sep 13 1993 Apple Inc Anti-rotation mechanism for direct manipulation position input controller for computer
5513100, Jun 10 1993 IMMERSION CORPORATION DELAWARE CORPORATION Velocity controller with force feedback stiffness control
5524180, Aug 10 1992 Intuitive Surgical Operations, Inc Automated endoscope system for optimal positioning
5576727, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Electromechanical human-computer interface with force feedback
5589854, Jun 22 1995 IMMERSION CORPORATION DELAWARE CORPORATION Touching feedback device
5591924, Nov 06 1986 LABTEC INC Force and torque converter
5623582, Jul 14 1994 IMMERSION CORPORATION DELAWARE CORPORATION Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
5625576, Oct 01 1993 Massachusetts Institute of Technology Force reflecting haptic interface
5643087, May 19 1994 Microsoft Technology Licensing, LLC Input device including digital force feedback apparatus
5709219, Jan 27 1994 Microsoft Technology Licensing, LLC Method and apparatus to create a complex tactile sensation
5731804, Jan 18 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems
5734373, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for controlling force feedback interface systems utilizing a host computer
5742278, Jan 27 1994 Microsoft Technology Licensing, LLC Force feedback joystick with digital signal processor controlled by host processor
5755577, Mar 29 1995 Apparatus and method for recording data of a surgical procedure
5767839, Jan 18 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing passive force feedback to human-computer interface systems
5769640, Dec 02 1992 Immersion Corporation Method and system for simulating medical procedures including virtual reality and control method and system for use therein
5790108, Oct 23 1992 IMMERSION CORPORATION DELAWARE CORPORATION Controller
5805140, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION High bandwidth force feedback interface using voice coils and flexures
5808665, Jan 21 1992 SRI International Endoscopic surgical instrument and method for use
5825308, Nov 26 1996 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback interface having isotonic and isometric functionality
5828197, Oct 25 1996 IMMERSION CORPORATION DELAWARE CORPORATION Mechanical interface having multiple grounded actuators
6004134, May 19 1994 Microsoft Technology Licensing, LLC Interactive simulation including force feedback
6024576, Sep 06 1996 IMMERSION CORPORATION DELAWARE CORPORATION Hemispherical, high bandwidth mechanical interface for computer systems
JP434610,
WO9426167,
WO9520787,
WO9532459,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 30 1998Immersion Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Aug 07 2002ASPN: Payor Number Assigned.
Aug 07 2002RMPN: Payer Number De-assigned.
Dec 27 2004M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 28 2008ASPN: Payor Number Assigned.
Nov 28 2008M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Nov 28 2008RMPN: Payer Number De-assigned.


Date Maintenance Schedule
Jan 22 20054 years fee payment window open
Jul 22 20056 months grace period start (w surcharge)
Jan 22 2006patent expiry (for year 4)
Jan 22 20082 years to revive unintentionally abandoned end. (for year 4)
Jan 22 20098 years fee payment window open
Jul 22 20096 months grace period start (w surcharge)
Jan 22 2010patent expiry (for year 8)
Jan 22 20122 years to revive unintentionally abandoned end. (for year 8)
Jan 22 201312 years fee payment window open
Jul 22 20136 months grace period start (w surcharge)
Jan 22 2014patent expiry (for year 12)
Jan 22 20162 years to revive unintentionally abandoned end. (for year 12)