A pen-based direct-drive manipulator enables precision manipulation and force display of a control point within three degrees of freedom. The control point exhibits substantially no backlash, very low friction and very low inertia making it useful as a force display. The manipulator also has a very high force generation bandwidth allowing high frequency force components to be displayed. A parallel actuator structure controls motion over two degrees of freedom in a horizontal plane. The parallel structure is a redundant structure including three chains in parallel coupled at the control point. The redundant structure provides a uniform force capability throughout the manipulator workspace. A pair of rotational actuators rotate the parallel structure about an axis to approximate a linear motion along a third axis. The rotational actuators provide a third degree of freedom for the control point. Motion about the third axis is substantially decouple from motion about the horizontal plane.
|
8. A kinematic system responsive to operator manipulation of a control point, comprising:
first, second and third kinematic chains each having a respective anchor point and being coupled in parallel at a common joint; an end effector in alignment with the common joint along a line perpendicular to a first plane of motion, the end effector defining a control point accessible to manipulation by an operator to move the control point within an end effector workspace; wherein position of the common joint with respect to each one of the respective anchor points is controlled respectively to define a redundant control structure which allows motion of the control point within the first plane of motion to not more than two degrees of freedom.
0. 15. A force feedback interface device for providing low inertia, low backlash, low friction force feedback, comprising:
a reference surface; an end effector defining a control point for engagement by a user, wherein said control point is translatable in two degrees of freedom with respect to said reference surface; a first chain coupled between said reference surface and said end effector, said first chain including a first direct drive flat-coil actuator, a first inner link coupled to said first direct drive flat-coil actuator, and a first outer link coupled between said first inner link and said end effector; and a second chain coupled between said reference surface and said end effector, said second chain including a second direct drive actuator, a second inner link coupled to said second direct drive actuator, and a second outer link coupled between said second inner link and said end effector, wherein said first chain and said second chain provide parallel couplings between said reference surface and said control point, said first chain and said second chain providing not more than said two degrees of freedom to said control point.
1. A direct drive actuator system responsive to operator manipulation of a control point, comprising:
an end effector defining a control point accessible to manipulation by an operator within an end effector workspace; first, second and third kinematic chains coupled in parallel to the end effector in common alignment to the control point to define a redundant actuator structure for allowing motion of the control point within a first plane of the workspace to not more than two degrees of freedom; the first kinematic chain comprising: a first actuator, a first inner link and a first outer link, the first actuator fixed relative to the first plane and coupled to the first inner link, the first inner link coupled to the first outer link to define a first joint, the first outer link coupled to the end effector in alignment with the control point; the second kinematic chain comprising: a second actuator, a second inner link and a second outer link, the second actuator fixed relative to the first plane and coupled to the second inner link, the second inner link coupled to the second outer link to define a second joint, the second outer link coupled to the end effector in alignment with the control point; and the third kinematic chain comprising: a third actuator, a third inner link and a third outer link, the third actuator fixed relative to the first plane and coupled to the third inner link, the third inner link coupled to the third outer link to define a third joint, the third outer link coupled to the end effector in alignment with the control point.
12. A direct drive actuator system responsive to operator manipulation of a control point, comprising:
a tool being held by an operator; an end effector defining a control point accessible to the tool for manipulation via the tool within an end effector workspace, wherein the tool is free to make contact and discontinue contact with the contact point; first, second and third kinematic chains coupled in parallel to the end effector in common alignment with the control point to define a redundant actuator structure for allowing motion of the control point within a first plane of the workspace to not more than two degrees of freedom; the first kinematic chain comprising: a first actuator, a first inner link and a first outer link, the first actuator fixed relative to the first plane and coupled to the first inner link, the first inner link coupled to the first outer link to define a first joint, the first outer link coupled to the end effector in alignment with the control point; the second kinematic chain comprising: a second actuator, a second inner link and a second outer link, the second actuator fixed relative to the first plane and coupled to the second inner link, the second inner link coupled to the second outer link to define a second joint, the second outer link coupled to the end effector in alignment with the control point; and the third kinematic chain comprising: a third actuator, a third inner link and a third outer link, the third actuator fixed relative to the first plane and coupled to the third inner link, the third inner link coupled to the third outer link to define a third joint, the third outer link coupled to the end effector in alignment with the control point.
2. The actuator system of
3. The actuator system of
4. The actuator system of
5. The actuator system of
6. The actuator system of
7. The actuator system of
9. The system of
10. The system of
11. The system of
13. The system of
14. The system of
0. 16. The force feedback interface device as recited in
0. 17. The force feedback interface device as recited in
0. 18. The force feedback interface device as recited in
0. 19. The force feedback interface device as recited in
0. 20. The force feedback interface device as recited in
0. 21. The force feedback interface device as recited in
0. 22. The force feedback interface device as recited in
0. 23. The force feedback interface device as recited in
0. 24. The force feedback interface device as recited in
a first sensor for detecting the position of the control point within said horizontal plane of motion; and a second sensor for detecting the position of the control point within said horizontal plane of motion.
0. 25. The force feedback interface device as recited in
0. 26. The force feedback interface device as recited in
0. 27. The force feedback interface device as recited in
0. 28. The force feedback interface device as recited in
0. 29. The force feedback interface device as recited in
|
This invention was made with government support under grant number BCS 9058408 awarded by the National Science Foundation. The government has certain rights in the invention.
This invention relates to direct-drive manipulators and force feedback devices. More particularly this invention relates to a direct-drive manipulator having three degrees of freedom and suitable for use as a pen-based force display for a virtual reality or telerobotic environment.
A manipulator can serve as an input device for controlling movement of a robot or other real or simulated device. A direct drive manipulator responds to operator manipulations using one or more actuators directly coupled to a load (on the output side) or an operator contact point (on the input side). This contrasts with an indirectly driven manipulator which responds to operator manipulations using one or more actuators indirectly coupled to the load or operator contact point through gears or other scaling devices.
A pen-based manipulator is characterized by an elongated member having a contact point for applying operator input forces and displacements. The manipulator enables an operator holding the elongated member to move the member within a workspace under the control of manipulator components (e.g., actuators, joints and links).
A force feedback device is characterized as an output device in which forces are applied to an operator holding the feedback device. In several telerobotic applications, for example, a master manipulator located away from a robot controls a slave manipulator located at the robot. The master manipulator serves as an input device for commanding movement of the robot via forces or displacements applied to the manipulator by an operator. In addition, the master manipulator sometimes serves as a force feedback device for exhibiting force sensations felt by the operator. In a force reflection application, for example, the forces encountered by the robot under control are reflected back to the operator at the manipulator to enable improved coordination of robot motion and dexterity. U.S. Pat. No. 5,072,361 (Davis et al.) discloses a force-reflective tele-operation control system in which a master station includes an actuator exhibiting force resistance to movement in a master link. Such resistance is to be comparable to the resistance encountered by a slave device so that movement of the master device by an operator tracks movement of the slave device being controlled.
A force feedback device also is referred to as a force display. In the computer field the term display refers to a visual output device upon which ephemeral images are shown. The display serves as a visual interface between an end user and a computer environment. An operator uses his visual sense to experience the images. Analogously, the term "force display" is coined to refer to an output device upon which ephemeral forces are exhibited. The force display serves as a force-reflective, haptic, kinaesthetic, or tactile interface between an operator and a real or simulated environment. The operator uses his sense of touch to experience the forces. The force display, however, typically is more than a display in that it also serves as an input device. A force display is a bidirectional mechanical interface through which an operator both applies and receives forces and displacements.
According to the invention, a direct-drive manipulator enables precision manipulation and force display at a control point. By using a pen-like or other end-effector an operator applies forces to the control point. The manipulator responds to the applied forces allowing movement of the control point within a workspace domain over three degrees of freedom. When combined with a controller implementing a control algorithm for a specific application environment, force sensations are reflected back to the control point to be experienced by the operator. Virtual reality, telerobotic, and other simulated, real or remote applications can be created to define a control algorithm. For example, a control algorithm may define immovable object shapes. An operator then is able to trace the virtual object shapes and feel the object boundaries. In another example, a control algorithm may define tissue having shape, texture and force resistance variables at different locations. An operator then may perform a virtual reality surgery, in which the control point is the cutting point of a scalpel. Depending on the position of the control point and force applied, the operator experiences the sensation of cutting though the virtual tissue. In a telerobotic application for remotely controlling a robot, the control algorithm is defined as a reflection of forces encountered by the robot. There are many other examples of a control algorithm that could be created to use with the manipulator. This invention is directed toward the manipulator with control point to be used as a force display.
To serve as a force display it is desirable that the manipulator have substantially no backlash, very low friction, and very low inertia. Backlash, friction and inertia detract from a natural feel of a control point. No matter how sophisticated a control algorithm, if the manipulator suffers from significant amounts of backlash, friction or inertia, then its use as a force display is compromised. It also is desirable that the manipulator have a high bandwidth so that high frequency force components can be displayed.
According to one aspect of the invention, direct drive actuators are used for the manipulator. Direct drive actuators have force display advantages over indirect drive actuators. Indirect drive geared actuators have unacceptable backlash and friction characteristics. Also, indirect drive actuators typically have lower bandwidth capability. Direct drive actuators are implemented here in a configuration for a control point having no backlash, very low friction and very high force generation bandwidth.
According to another aspect of the invention, a parallel actuator structure is used to control motion in a horizontal plane to achieve very low inertia of the control point. The parallel structure provides two degrees of freedom in a horizontal plane of motion.
According to another aspect of the invention, the parallel structure is a redundant structure including three chains in parallel coupled at the control point. Each chain includes an actuator and two links. Each actuator is positioned at a fixed origin. One end of an inner link is coupled to the actuator. An opposite end of the inner link is coupled to one end of an outer link. A joint is formed at the connection of the inner and outer links. The opposite end of the outer link is coupled to the control point. The three chains define a planar structure in which three actuators provide two degrees of freedom with redundancy.
The parallel redundant (3-chain) structure of this invention improves over prior parallel 2-chain structures by enabling a more uniform force capability throughout the manipulator workspace. In the workspace of a conventional 2-chain structure the maximum force that can be applied to a control point varies depending on where the control point currently is positioned. According to the 3-chain structure of this invention, however, the maximum force that can be applied is substantially uniform throughout the workspace.
According to another aspect of the invention redundant sensing also is performed by including a sensor at each actuator in the parallel structure. Redundant sensing enables more uniform high resolution position sensing throughout the workspace.
According to another aspect of the invention the end-effector defines an open tool interface point as the control point. An operator holds his finger, a pen-like tool or other tool to the interface point and applies forces or displacements to manipulate the control point. By providing an open interface there is no friction or backlash introduces by a device that would hold the tool tip in place at the control point. Similarly the operator can apply or remove the tool from the control point with a natural feel. For example if the tool is a scalpel in a surgical virtual reality application, the trainee physician can manipulate the scalpel as during a real operation, then apply the scalpel to the control point to perform a cutting/surgical maneuver. The operator therefore achieves a more realistic making and breaking of contact.
According to another aspect of the invention, a pair of rotational actuators rotate the parallel structure about an axis to approximate a linear motion along a third axis, and provide a third degree of freedom for the control point.
One advantage of the manipulator of this invention is that embodiments have substantially no backlash, very low friction, very low inertia and a very high force generation bandwidth enabling a natural feel when implemented as a force display. Another advantage is that embodiments have a substantially uniform force capability throughout there workspace. These and other aspects and advantages of the invention will be better understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
Overview
Planar Actuation Structure
Referring to
Referring to
Rotational Actuation Structure
Referring again to
Kinematic Characteristics
The manipulator 10 enables movement of a control point 12 within a workspace 16 over three degrees of freedom. Two degrees of freedom are provided by the planar actuation structure 20 allowing motion within an xy plane. A third degree of freedom is provided by the rotational actuation structures 60, 62 allowing motion along a z-axis. The workspace of the described embodiment is approximately 2 cm×2 cm×2 cm. For the rotational actuators 20, 22 this represents approximately ±20°C. Over such rotation, the rotary motion is approximated as linear motion along the z-axis. By approximating the motion as linear, the planar xy motion and the vertical z motion are substantially decoupled allowing for simpler kinematic modelling and simpler control algorithms.
In the following static and dynamic equations of the manipulator 10, the following notations are used:
iΘ1=angle of inner link in i-th serial chain
iΘ2=angle of outer link in i-th serial chain
iΘ12=iΘ1+iΘ2
ixo,iyo=position of origin of i-th serial chain in xy plane
ixin,iyin=position of intermediate joint in i-th serial chain in xy plane
xe,ye=position of end effector in xy plane
ze=vertical position of end effector
Also, in one embodiment, the following manipulator parameters are implemented:
l1=length of inner link for each serial chain=2 cm
l2=length of outer link for each serial chain=1.25 cm
l=length between the origins of a first and a second actuator in the planar actuating structure=4.05 cm
lz=displacement of end effector from the z-axis=2 cm
Position of end effector:
Because the motions in the xy plane are substantially decoupled from the motion along the z-axis, xe,ye is independent of ze. The end effector position in the xy plane is:
where, R=frame rotation and more specifically
The end effector position along the z-axis is:
The position of the intermediate joints formed by the inner and outer links of a respective serial chain are:
The joint angles, iΘ1, are defined as:
and
The actuated link displacement and overall actuator displacements in the xy plane are given as:
The force exerted on the end effector in the xy plane as a function of actuator displacements and torques is given as:
The torque vector for the third degree of freedom is given as:
Dynamic Equations
At the end effector alone with no outside force applied, the equation of the i-th serial chain is:
and in the cartesian frame is:
Assuming the gravity force to be zero because the planar actuation structure works in the horizontal plane, the interaction forces between the chains are given as:
1{overscore (F)}e+1Me(1{overscore (Θ)}){umlaut over (x)}e=1Ve(1{overscore (Θ)},1{right arrow over (Θ)})+{overscore (F)}21+{overscore (F)}31
where Fij is the force exerted by the i-th serial chain on the j-th serial chain. Because the force are endogenous, they sum to zero:
Adding together the three dynamic equations and considering an external force Fext, we get the dynamic equations of the 2-dof planar actuating structure in the cartesian frame of reference:
The equation for the third degree of freedom is approximately:
where {dot over (ω)}z is the angular rotation of the Θz joint.
Actuation Redundancy
Because there are three actuators 32, 38, 44 providing two degrees of freedom, there are an infinite number of possible torque vectors that provide the same force. One approach is to select the torque vector that minimizes the energy spent by the serial chains 26, 28, 30. A preferable approach is to choose the torque vector that maximizes the force that can be applied at the control point 12 (subject to actuator limits). Accordingly, the serial chains are controlled to move in response to external forces at the control point 12 in a manner that minimizes the following:
where τi is the torque magnitude of the i-th actuator in the planar structure 20.
In one embodiment a given controller implements a simplex algorithm to identify max (|τ1|,|τ2|,|τ3|). Inputs are the end effector position xe and the desired force Fe. The following steps then are performed:
Step 1: Calculate J-Te(xe(to));
Step 2: Calculate β1, β2, β3, where
Step 3: Set i3=1, i1=2, i2=3;
Step 4: Calculate γi1, γi2, where
Step 5: Set γi1=sign(Yi1)·τsat, sign(Yi2)·τsat;
Step 6: Calculate τi3; and
Step 7: If |τi3|≧τsat permute i3=i2, i2=i1,i1=i3 and start again from step 4.
The output solution is τi1, τi2, τi3.
Experimental Results
In one embodiment, a manipulator 10 includes actuation structures machined in part from computer hard disk drive actuators. Characteristically these actuators have low inertia and low friction. Using 1.8" actuators for the planar actuation structure 20 and 5.25" actuators for the rotational actuating structures 60, 62, the following parameters were measured:
Steady state current at 120°C C.: 1.8" actuators=0.65 A 5.25" actuators=0.52 A
Continuous torque that can be generated: 1.8" act=0.01 Nm 5.25" act.=0.06 Nm
Short term peak torque: for 1.8"=0.03 Nm (at 2 A) for 5.25"=0.24 Nm (at 2 A)
Serial chain parameters:
l1=2 cm
l2=1.25 cm
l=4.05 cm
lz=2 cm
The mass of each inner link 34, 40, 46 is approximately m=1.0 grams. The mass of each outer link 36, 42, 48 is approximately 0.5 grams. The mass of the end effector is less than one gram. The moment of inertia of the inner links 34, 40, 46 about the axis passing through the center of mass and parallel to the z-axis is I1=0.083 gr-cm2. The moment of inertia of the outer links 36, 42, 48 about the axis passing through the center of mass and parallel to the z-axis is I1=0.016 gr-cm2. The total mass of the planar actuating structure 20 is approximately 150 grams.
Peak force applied by end effector in upward direction is 13.50N.
Maximum continuous force applied by end effector in upward direction is 4.5N.
Peak force applied by end effector in xy plane is 1.5N.
Maximum continuous force applied by end effector in xy plane is approximately 0.55N and substantially uniform throughout the workspace.
The practical range of maximum force applied in xy plane is 0.5-1.5N using a simplex algorithm.
In one embodiment the simplex algorithm is executed at 10 kHz as part of a controller written in assembly and C language on a 486DX 66 MHz general purpose microcomputer.
These values are for an end effector workspace of approximately 1.5 cm3.
Operation--Manipulation and Force Display
The manipulator 10 implemented as a force display is driven in one embodiment by a controller program executed on a general purpose microcomputer. The controller program defines a virtual reality environment or reflects a tele-environment. An operator using his finger, pen-like tool or other device applies forces to the control point 12 moving the control point 12 within the end effector workspace 16. For forces applied in the xy plane, the planar actuating structure responds to allow movement of the end effector 14. For forces applied in the z direction, the rotational actuating structures respond to allow common movement of the end effector 14 and planar structure 20 along the z-axis.
By using precision direct-drive actuators and serial-link components, substantially frictionless movement of the control point is achieved. During testing friction was less than 1 gr-f, backlash nonexistent, and inertia very low. As a result, a control algorithm is able to effectively define a virtual reality or tele-operational environment with a substantially natural feel. The feel is able to be as good as the controller program allows, rather than be limiting by the mechanics of the manipulator.
Concluding Remarks
Although a preferred embodiment of the invention has been illustrated and described, various alternatives, modifications and equivalents may be used. Therefore, the foregoing description should not be taken as limiting the scope of the inventions which are defined by the appended claims.
Buttolo, Pietro, Hannaford, Blake
Patent | Priority | Assignee | Title |
10013064, | Sep 25 2015 | META PLATFORMS TECHNOLOGIES, LLC | Haptic surface with damping apparatus |
11826910, | May 20 2021 | Carnegie Mellon University | Direct drive end-effectors with parallel kinematics |
6483499, | Apr 21 2000 | Hong Kong Productivity Council | 3D sculpturing input device |
7023423, | Jan 18 1995 | Immersion Corporation | Laparoscopic simulation interface |
8210942, | Mar 31 2006 | SG GAMING, INC | Portable wagering game with vibrational cues and feedback mechanism |
8500534, | Sep 08 2005 | LNW GAMING, INC | Gaming machine having display with sensory feedback |
8882575, | Sep 08 2005 | LNW GAMING, INC | Gaming machine having display with sensory feedback |
9058714, | May 23 2011 | LNW GAMING, INC | Wagering game systems, wagering gaming machines, and wagering gaming chairs having haptic and thermal feedback |
9142083, | Jun 13 2011 | SG GAMING, INC | Convertible gaming chairs and wagering game systems and machines with a convertible gaming chair |
9449456, | Jun 13 2011 | SG GAMING, INC | Automated gaming chairs and wagering game systems and machines with an automated gaming chair |
9778746, | Sep 25 2015 | META PLATFORMS TECHNOLOGIES, LLC | Transversal actuator for haptic feedback |
9971410, | Sep 25 2015 | META PLATFORMS TECHNOLOGIES, LLC | Transversal actuator for haptic feedback |
Patent | Priority | Assignee | Title |
3490059, | |||
3795150, | |||
3875488, | |||
3919691, | |||
4148014, | Apr 06 1977 | Texas Instruments Incorporated | System with joystick to control velocity vector of a display cursor |
4216467, | Dec 22 1977 | Northrop Grumman Corporation | Hand controller |
4398889, | Nov 07 1980 | Fokker B.V. | Flight simulator |
4436188, | Nov 18 1981 | Controlled motion apparatus | |
4477043, | Dec 15 1982 | The United States of America as represented by the Secretary of the Air | Biodynamic resistant control stick |
4638798, | Sep 10 1980 | Stereotactic method and apparatus for locating and treating or removing lesions | |
4653011, | Oct 29 1984 | Mitutoyo Mfg. Co., Ltd. | Method of measuring by coordinate measuring instrument and coordinate measuring instrument |
4775289, | Sep 25 1987 | REGENTS OF THE UNIVERSITY OF MINNESOTA, A CORP OF MN | Statically-balanced direct-drive robot arm |
4795296, | Nov 17 1986 | California Institute of Technology | Hand-held robot end effector controller having movement and force control |
4800721, | Feb 13 1987 | Caterpillar Inc.; Caterpillar Inc | Force feedback lever |
4803413, | Jul 15 1986 | Honeywell INC | Magnetic isolating and pointing gimbal apparatus |
4811608, | Dec 18 1985 | LABTEC INC | Force and torque converter |
4879556, | Oct 27 1986 | Huka Developments B.V. | Joystick control unit using multiple substrates |
4907970, | Mar 30 1988 | Grumman Aerospace Corporation | Sidestick-type thrust control simulator |
4961267, | May 23 1987 | Carl Zeiss Industrielle Messtechnik GmbH | Method and apparatus for making coordinate measurements |
4962448, | Sep 30 1988 | HONEYWELL INC , HONEYWELL PLAZA, MINNEAPOLIS, MINNESOTA 55408 A CORP OF DE | Virtual pivot handcontroller |
5004391, | Aug 21 1989 | Rutgers University | Portable dextrous force feedback master for robot telemanipulation |
5007300, | Mar 03 1989 | United Kingdom Atomic Energy Authority | Multi-axis hand controller |
5044956, | Jan 12 1989 | WARNER BROS ENTERTAINMENT INC | Control device such as a steering wheel for video vehicle simulator with realistic feedback forces |
5072361, | Feb 01 1990 | University of Utah Research Foundation | Force-reflective teleoperation control system |
5103404, | Dec 06 1985 | TENSOR DEVELOPMENT, INC , A CORP OF CO | Feedback for a manipulator |
5107080, | Dec 01 1989 | Massachusetts Institute of Technology; MASSACHUSETTS INSTITUTE OF TECHNOLOGY, A CORP OF MA | Multiple degree of freedom damped hand controls |
5142931, | Feb 14 1991 | Honeywell Inc. | 3 degree of freedom hand controller |
5143505, | Feb 26 1991 | Rutgers University | Actuator system for providing force feedback to a dextrous master glove |
5184319, | Feb 02 1990 | Virtual Technologies, INC | Force feedback and textures simulating interface device |
5185561, | Jul 23 1991 | IMMERSION CORPORATION DELAWARE CORPORATION | Torque motor as a tactile feedback device in a computer system |
5193963, | Oct 31 1990 | AERONAUTICS AND SPACE ADMINISTRATION, THE UNITED STATES OF AMERICAN, AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL NASA | Force reflecting hand controller |
5201838, | Sep 05 1989 | Position indicator for a piston controlled robot part | |
5223776, | Dec 31 1990 | ER-WE-PA DAVIS-STANDARD GMBH | Six-degree virtual pivot controller |
5228356, | Nov 25 1991 | Variable effort joystick | |
5231693, | May 09 1991 | The United States of America as represented by the Administrator, | Telerobot control system |
5264768, | Oct 06 1992 | Honeywell, Inc. | Active hand controller feedback loop |
5266875, | May 23 1991 | MASSACHUSETTS INSTITUTE OF TECHNOLOGY A MA CORPORATION | Telerobotic system |
5267956, | Feb 05 1992 | Alcon Research, Ltd | Surgical cassette |
5289273, | Sep 28 1989 | CEC ENTERTAINMENT, INC | Animated character system with real-time control |
5296846, | Oct 15 1990 | National Biomedical Research Foundation | Three-dimensional cursor control device |
5297057, | Jun 13 1989 | Schlumberger Technologies, Inc. | Method and apparatus for design and optimization for simulation of motion of mechanical linkages |
5382885, | Aug 09 1993 | The University of British Columbia | Motion scaling tele-operating system with force feedback suitable for microsurgery |
5389865, | Dec 02 1992 | Immersion Corporation | Method and system for providing a tactile virtual reality and manipulator defining an interface device therefor |
5397323, | Oct 30 1992 | International Business Machines Corporation | Remote center-of-motion robot for surgery |
5410638, | May 03 1993 | Northwestern University | System for positioning a medical instrument within a biotic structure using a micromanipulator |
5414337, | Oct 24 1991 | IMMERSION CORPORATION DELAWARE CORPORATION | Actuator having electronically controllable tactile responsiveness |
5436640, | Oct 29 1993 | GUILLEMOT CORPORATION, A FRENCH SOCIETE ANONYME | Video game and simulator joystick controller with geared potentiometer actuation |
5491477, | Sep 13 1993 | Apple Inc | Anti-rotation mechanism for direct manipulation position input controller for computer |
5513100, | Jun 10 1993 | IMMERSION CORPORATION DELAWARE CORPORATION | Velocity controller with force feedback stiffness control |
5524180, | Aug 10 1992 | Intuitive Surgical Operations, Inc | Automated endoscope system for optimal positioning |
5576727, | Jul 16 1993 | IMMERSION CORPORATION DELAWARE CORPORATION | Electromechanical human-computer interface with force feedback |
5589854, | Jun 22 1995 | IMMERSION CORPORATION DELAWARE CORPORATION | Touching feedback device |
5591924, | Nov 06 1986 | LABTEC INC | Force and torque converter |
5623582, | Jul 14 1994 | IMMERSION CORPORATION DELAWARE CORPORATION | Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects |
5625576, | Oct 01 1993 | Massachusetts Institute of Technology | Force reflecting haptic interface |
5643087, | May 19 1994 | Microsoft Technology Licensing, LLC | Input device including digital force feedback apparatus |
5709219, | Jan 27 1994 | Microsoft Technology Licensing, LLC | Method and apparatus to create a complex tactile sensation |
5731804, | Jan 18 1995 | IMMERSION CORPORATION DELAWARE CORPORATION | Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems |
5734373, | Jul 16 1993 | IMMERSION CORPORATION DELAWARE CORPORATION | Method and apparatus for controlling force feedback interface systems utilizing a host computer |
5742278, | Jan 27 1994 | Microsoft Technology Licensing, LLC | Force feedback joystick with digital signal processor controlled by host processor |
5755577, | Mar 29 1995 | Apparatus and method for recording data of a surgical procedure | |
5767839, | Jan 18 1995 | IMMERSION CORPORATION DELAWARE CORPORATION | Method and apparatus for providing passive force feedback to human-computer interface systems |
5769640, | Dec 02 1992 | Immersion Corporation | Method and system for simulating medical procedures including virtual reality and control method and system for use therein |
5790108, | Oct 23 1992 | IMMERSION CORPORATION DELAWARE CORPORATION | Controller |
5805140, | Jul 16 1993 | IMMERSION CORPORATION DELAWARE CORPORATION | High bandwidth force feedback interface using voice coils and flexures |
5808665, | Jan 21 1992 | SRI International | Endoscopic surgical instrument and method for use |
5825308, | Nov 26 1996 | IMMERSION CORPORATION DELAWARE CORPORATION | Force feedback interface having isotonic and isometric functionality |
5828197, | Oct 25 1996 | IMMERSION CORPORATION DELAWARE CORPORATION | Mechanical interface having multiple grounded actuators |
6004134, | May 19 1994 | Microsoft Technology Licensing, LLC | Interactive simulation including force feedback |
6024576, | Sep 06 1996 | IMMERSION CORPORATION DELAWARE CORPORATION | Hemispherical, high bandwidth mechanical interface for computer systems |
JP434610, | |||
WO9426167, | |||
WO9520787, | |||
WO9532459, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 30 1998 | Immersion Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 07 2002 | ASPN: Payor Number Assigned. |
Aug 07 2002 | RMPN: Payer Number De-assigned. |
Dec 27 2004 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 28 2008 | ASPN: Payor Number Assigned. |
Nov 28 2008 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Nov 28 2008 | RMPN: Payer Number De-assigned. |
Date | Maintenance Schedule |
Jan 22 2005 | 4 years fee payment window open |
Jul 22 2005 | 6 months grace period start (w surcharge) |
Jan 22 2006 | patent expiry (for year 4) |
Jan 22 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 22 2009 | 8 years fee payment window open |
Jul 22 2009 | 6 months grace period start (w surcharge) |
Jan 22 2010 | patent expiry (for year 8) |
Jan 22 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 22 2013 | 12 years fee payment window open |
Jul 22 2013 | 6 months grace period start (w surcharge) |
Jan 22 2014 | patent expiry (for year 12) |
Jan 22 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |