A wheel-activated vehicle restraint system including a support structure disposed beside the path of the vehicle approaching the dock, and including a guide member extending away from the dock face, and an elevated supporting member. A trigger assembly is operatively connected to the guide member, and initially engages the wheel of the vehicle as it rolls toward the dock. A locking arm operatively engages the supporting member to move from a stored position to a chocking position on the wheel as the wheel engages the trigger and moves it toward the dock. A trolley assembly operatively connects the trigger assembly and the locking arm, the trolley assembly and the locking arm being connected at a connection point. The trigger assembly is selectively positionable relative to the connection point in response to the dimensions of the wheel, and the locking arm engages a bottom portion of the wheel, and moves along the peripheral surface of the wheel to a chocking position as the wheel continues to push the trigger assembly toward the dock.
|
0. 54. A wheel-actuated chocking device for restraining at least one wheel of a vehicle at a loading dock, the device comprising:
a support structure extending from a first end thereof adjacent the dock to a distal end thereof, the support structure comprising a guide member disposed along the roadway adjacent the loading dock, said support structure including a support surface; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm adapted to move to a chocking position on the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism; and a trolley assembly between the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position.
27. The wheel-activated chocking device for restraining at least one wheel of a vehicle at a loading dock, the device comprising:
a support structure extending from a first end thereof adjacent the dock to a distal end thereof, the support structure comprising a guide member disposed along a roadway adjacent the loading dock, the support structure also including an elevated support member; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm for moving to a chocking position on the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism; and a trolley assembly operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position.
0. 63. A wheel-actuated chocking device for restraining at least one wheel of a vehicle at a loading dock, the device comprising:
a support structure extending from a first end thereof adjacent the dock to a distal end thereof, the support structure comprising a guide member disposed along a roadway adjacent the loading dock, said support structure including a support surface; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm adapted to move to a chocking position on the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism; and a variable length biasing link between the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm resiliently engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position.
0. 62. A wheel-actuated chocking device for restraining at least one wheel of a vehicle on a roadway path at a loading dock, the device comprising:
a support structure on said roadway and extending from a first end thereof adjacent the dock to a distal end thereof, the support structure comprising a guide member disposed along the roadway adjacent the loading dock, the support structure also including an elevated support surface; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm for moving along said support surface to a chocking position on the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism; and a variable length biasing link controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm resiliently engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position.
0. 56. A wheel-actuated chocking device for restraining at least one wheel of a vehicle on a roadway vehicle path at a loading dock, the device comprising:
a support structure extending from a first end thereof adjacent the dock to a distal end thereof, the support structure being disposed on the roadway adjacent the dock; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently-biased locking arm including a roller projecting away from the support structure into the vehicle path, the locking arm being movable between a stored position in which the roller is disposed on the roadway and a raised chocking position in which the roller is in contact with the leading wheel; and a trolley assembly operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position.
0. 64. A wheel-actuated chocking device for restraining at least one wheel of a vehicle on a roadway path at a loading dock, the device comprising:
a support structure extending from a first end thereof adjacent the dock to a distal end thereof, the support structure being disposed on the roadway adjacent the dock; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently-biased locking arm including a roller projecting away from the support surface into the path of the wheel, the locking arm being movable between a stored position in which the roller is disposed on the roadway and a raised chocking position in which the roller is in contact with the leading wheel; and a variable length biasing link operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm resiliently engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position.
0. 40. A wheel-actuated chocking device for restraining at least one wheel of a vehicle on a roadway vehicle path at a loading dock, the device comprising:
a support structure on said roadway and extending from a first end thereof adjacent the dock to a distal end thereof, the support structure comprising a guide member disposed along the roadway adjacent the loading dock, the support structure also including an elevated support surface; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm for moving along said support surface from a storage position to a chocking position on the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism; and a trolley assembly operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position.
38. A wheel-activated chocking device for restraining at least one wheel of a vehicle at a loading dock, the device comprising:
a support structure extending from a first end thereof adjacent the dock to a distal end thereof; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm for moving to a chocking position on the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism; and a trolley assembly operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position, the trigger mechanism operatively engaging the support structure for movement therealong, the trigger mechanism including a guide portion and a wheel-engaging portion for movement along the support structure, the wheel-engaging portion being vertically displaceable relative to the guide portion.
32. A wheel-activated chocking device for restraining at least one wheel of a vehicle at a loading dock, the device comprising:
a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm for moving to a chocking position on the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism; a trolley assembly operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position; and an operator controlled latching assembly for securing the vehicle in place at the dock, and including a latch member operatively connected to the trolley assembly and moveable between an engaging position, wherein the latch member engages a stationary member, and a non-engaging position wherein the latch member is spaced from the stationary member to allow the trolley assembly to move relative thereto.
0. 66. A wheel-actuated chocking device for restraining at least one wheel of a vehicle at a loading dock, the device comprising:
a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm for moving to a chocking position on the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism; a variable length biasing link operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein the locking arm resiliently engages a bottom edge of the wheel and moves along the peripheral surface of the wheel to a chocking position; and an operator controlled latching assembly for securing the vehicle in place at the dock, and including a latch member operatively connected to the variable length biasing link and movable between an engaging position, wherein the latch member engages a stationary member, and a non-engaging position wherein the latch member is spaced from the stationary member to allow the variable length biasing link to move relative thereto.
1. A wheel-activated vehicle restraint device for restraining at least one wheel of a vehicle during loading and unloading of the vehicle at a position adjacent a dock face, the wheel rolling along a roadway surface adjacent the dock face, the restraint comprising:
a support structure extending from a first end thereof adjacent the dock to a distal end thereof, the support structure comprising a guide member disposed along the roadway surface, the support structure also including an elevated supporting member; a trigger assembly operatively connected to the guide member for initially engaging the wheel of the vehicle as the wheel rolls toward the dock position; a locking arm which operatively engages the supporting member for moving to a chocking position on the wheel in response to engagement between the wheel and the trigger assembly; a trolley assembly operatively connecting the trigger assembly and the locking arm at a connection point such that the trigger assembly is selectively positionable relative to the connection point in response to the dimensions of the wheel for insuring that the locking arm engages a bottom portion of the wheel and moves along the peripheral surface of the wheel to a chocking position whereby the vehicle can be restrained at the dock position.
0. 61. A wheel-actuated chocking device for restraining at least one wheel of a vehicle on a roadway vehicle path at a loading dock, the device comprising:
a support structure on said roadway and extending from a first end thereof adjacent the dock to a distal end thereof, the support structure comprising a guide member disposed along the roadway adjacent the loading dock, the support structure also including an elevated support surface; a ramp having a ramp surface disposed between the distal end of said support surface and the roadway; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm for moving along said ramp surface and said support surface from a storage position at the distal end of said ramp surface to a chocking position on said support surface behind the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism, said locking arm including a roller projecting away from the support structure into the vehicle path; a trolley assembly operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein said storage position is spaced from said trigger mechanism such that said wheel engages said locking arm adjacent said roadway prior to engaging said trigger mechanism and the locking arm moves along the peripheral surface of the wheel and the elevated support surface to a chocking position; an operator-controlled latching assembly for securing the vehicle in place at the dock, said latch assembly including: a latching bar operatively connected to the support structure for movement between an unlatched position and a latched position; the latching bar including a vertical latch web and the support structure including a vertical support web, one of said webs having angled slots spaced therealong, the slots including sidewalls, and the other of said webs having horizontally disposed pins attached thereto, the pins being received in the angled slots such that longitudinal relative movement of the latching bar and the support web causes the sidewalls of the slots to engage the pins, thereby raising the latching bar from the unlatched to the latching position; and an actuator coupled to said latching bar for moving the latching bar between the unlatched and latched positions, said latching assembly adapted to operatively connect said locking arm to said support structure to prevent said locking arm from moving longitudinally along said support structure.
0. 65. A wheel-actuated chocking device for restraining at least one wheel of a vehicle on a roadway path at a loading dock, the device comprising:
a support structure on said roadway and extending from a first end thereof adjacent the dock to a distal end thereof, the support structure comprising a guide member disposed along the roadway adjacent the loading dock, the support structure also including an elevated support surface; a ramp having a ramp surface disposed between the distal end of said support surface and the roadway; a trigger mechanism for engaging a leading wheel of the vehicle as the vehicle moves toward the dock; a resiliently biased locking arm for moving along said ramp surface and said support surface from a storage position at the distal end of said ramp surface to a chocking position on said support surface behind the leading wheel, the locking arm being activated in response to engagement between the leading wheel and the trigger mechanism, said locking arm including a roller projecting away from the support structure into the path of the wheel; a variable length biasing link operatively connecting the trigger mechanism and the locking arm and controlling the movement of the locking arm in response to the dimensions and movement of the wheel, wherein said storage position is spaced from said trigger mechanism such that said wheel engages said locking arm adjacent said roadway prior to engaging said trigger mechanism and the locking arm is resiliently biased to move along the peripheral surface of the wheel and the elevated support surface to a chocking position; an operator-controlled latching assembly for securing the vehicle in place at the dock, said latching assembly including: a latching bar operatively connected to the support structure for movement between an unlatched position and a latched position; the latching bar including a vertical latch web and the support structure including a vertical support web, one of said webs having angled slots spaced therealong, the slots including sidewalls, and the other of said webs having horizontally disposed pins attached thereto, the pins being received in the angled slots such that longitudinal relative movement of the latching bar and the support web causes the sidewalls of the slots to engage the pins, thereby raising the latching bar from the unlatched to the latching position; and an actuator coupled to said latching bar for moving the latching bar between the unlatched and latched positions, said latching assembly adapted to operatively connect said locking arm to said support structure to prevent said locking arm from moving longitudinally along said support structure.
2. The wheel-activated vehicle restraint device of
a latching bar operatively connected to the supporting member for movement between an unlatched and a latching position; an actuator coupled to the latching bar for moving the latching bar between the unlatched and latching positions; a latch member, the latch being operatively connected to the trolley assembly for movement relative thereto, and including at least one engaging portion, the latch member being moveable relative to the trolley assembly between an engaging position, wherein the engaging portion engages a first surface of the guide member, and a non-engaging position, wherein the engaging portion is spaced from the first surface, the latch member being operatively connected to the latching bar for the movement between the non-engaging position and the engaging position in response to movement of the latching bar between the unlatched and latching positions.
3. The wheel-activated vehicle restraint device of
4. The wheel-activated vehicle restraint device of
5. The wheel-activated vehicle restraint device of
6. The wheel-activated vehicle restraint device of
7. The wheel activated vehicle restraint device of
8. The wheel-activated vehicle restraint device of
9. The wheel-activated vehicle restraint device of
10. The wheel-activated vehicle restraint device of
11. The wheel-activated vehicle restraint device of
12. The wheel-activated vehicle restraint device of
13. The wheel-activated vehicle restraint device of
14. The wheel-activated vehicle restraint device of
15. The wheel-activated vehicle restraint device of
16. The wheel-activated vehicle restraint device of
17. The wheel-activated vehicle restraint device of
18. The wheel-activated vehicle restraint device of
19. The wheel-activated vehicle restraint device of
20. The wheel-activated vehicle restraint device of
21. The wheel-activated vehicle restraint device of
22. The wheel-activated vehicle restraint device of
23. The wheel-activated vehicle restraint device of
24. The wheel-activated vehicle restraint device of
25. The wheel-activated vehicle restraint device of
26. The wheel-activated vehicle restraint device of
28. The chocking device of
29. The chocking device of
30. The chocking device of
31. The chocking device of
33. The chocking device of
34. The chocking device of
35. The chocking device of
36. The chocking device of
37. The chocking device of
39. The chocking device of
0. 41. The chocking device of
0. 42. The chocking device of
0. 43. The chocking device of
0. 44. The chocking device of
0. 45. The chocking device of
0. 46. The chocking device of
0. 47. The chocking device of
0. 48. The chocking device of
0. 49. The chocking device of
0. 50. The chocking device of
0. 51. The chocking device of
0. 52. The chocking device of
0. 53. The chocking device of
0. 55. The chocking device of
0. 57. The chocking device of
0. 58. The chocking device of
0. 59. The chocking device of
0. 60. The chocking device of
|
This is a continuation of application Ser. No. 08/562,912 filed on Nov. 27, 1995, now abandoned, which is a continuation-in-part of U.S. application Ser. No. 08/327,308 filed on Oct. 21, 1994,
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications, and equivalents included within the spirit and scope of the invention as defined by the appended claims.
The tire-actuated vehicle restraint device according to the present invention is shown in an illustrative operating environment in FIG. 1. The restraint device 10 engages a leading tire T of a vehicle V to maintain the vehicle V in a loading/unloading position adjacent a loading dock D. The term "tire" as used herein refers to the combination of a wheel and a tire rotatably mounted to a vehicle V. Thus, an action performed on a tire is also performed on a wheel. Tire T is referred to as the "leading" tire as it is the first to approach the dock D as the vehicle V backs into position over the roadway R. As is conventional, the dock D shown in
The vehicle restraint 10 in
The elevational view in
Returning to
The lock assembly 20 includes an actuation assembly, designated generally by A in
To achieve the automatic positioning function and the tire sizing function, the actuation assembly A includes a trigger assembly 50, and a trolley assembly 60. Both the trigger assembly 50 and the trolley assembly 60 move linearly along the guide member 31 between the stored position of
The tire-engaging portion 52 of the trigger assembly 50 according to the present embodiment includes a generally box-like structure defined by sidewalls 52a (FIG. 3), and supported by transverse webs, such as at 52b. A plurality of rollers are secured to the tire-engaging portion to assist in its function. Roadway-engaging rollers 54 and 55 are secured to the box-like structure to provide a smooth rolling action as the tire-engaging portion 52 passes over the roadway surface R. The rollers 54 and 55 are illustratively mounted for rotation on shafts 54a and 55a, respectively, the ends of which are received within holes disposed within vertical members 54b and 54c and 52a and 52b, respectively. While the rollers 54 and 55 are described herein as cylindrical, other rollers, such as a spherical caster mounted on a horizontal shaft, could also be used. Tire-engaging portion 52 also includes a tire-engaging roller 56, extending across the width of the box-like structure in the present embodiment. Since the dockward travelling tire will engage the roller 56 at an engagement point 21 (FIG. 4), the ability of this roller to rotate ensures that the tire T will not roll up and over the tire-engaging portion 52. Rather, the tire will roll against the roller 56, and the tire-engaging portion 52 will be pushed dockward under the influence of the tire T. Of course, this function of roller 56 assumes that the tire-engaging portion 52 is not somehow obstructed from moving in a dockward direction. According to an aspect of the invention, however, the projection or profile above the roadway R is small enough that the tire could pass over the tire-engaging portion 52 in the event of a large enough roadway obstruction such as would prevent dockward movement of the tire-engaging portion 52. At the same time, the tire engaging portion 52 according to the invention includes a feature to help prevent any obstructions and/or roadway irregularities from impeding its movement as activated by the tire T.
According to this feature, which forms a significant aspect of the present invention, the tire-engaging portion is vertically displaceable relative to the guide portion 51 of the trigger assembly 50. In the present embodiment, this vertical displaceability is provided by the tire-engaging portion being pivotal about a horizontal axis relative to the guide portion 51. The pivoting nature of the tire engaging portion 52 is best seen in FIG. 6. In that Figure, the portion 52 is shown in its normal orientation in solid lines. It is also shown in both a pivoted up and a pivoted down configuration in broken lines. By virtue of the fact that the tire-engaging portion can pivot in this manner, roadway obstructions or irregularities that would otherwise impede the travel of the tire-engaging member 52 or that would place member 52 in an unsupported, cantilevered position, may be avoided. For example, if the roadway surface included a bump between the present position of the tire-engaging portion 52 and the dock, the bump could prevent further movement of the portion 52 toward the dock in the absence of this feature. Instead, the portion 52 can pivot and simply roll up and over the bump. This not only ensures that the portion 52 can continue toward the dock, but also ensures that proper engagement of the tire-engaging roller 56 with the tire T is maintained. Similarly, if the roadway surface R were to include a depression, the portion 52 could pivot downwardly to maintain contact with the roadway R as it passed over the depression. At the same time the roller 56 would maintain proper contact with the trailing edge of the tire T.
In the present embodiment of the invention the pivoting of the tire-engaging portion 52 relative to the guide portion 51 is provided by a block 51c (
Returning to
As can be seen in
The locking arm 70 includes a proximal end (relative to the dock) adjacent the connection point 71 to the trolley assembly 60. The locking arm 70 also includes a first roller 74 disposed at its distal end. As seen in the top view of
The locking arm 70 according to the invention, is intended to move from the stored position of
As the locking arm 70 was moving from the stored position to the chocking position as just described, the attached second roller 75 (
As the tire T continues dockward, the trailing edge TE no longer prevents movement of the roller 75 and locking arm 70. Accordingly, the force exerted by the springs 80 on the trolley assembly 60 begins to pull the trolley in a dockward direction. As described in detail above, such dockward movement of the trolley assembly 60 causes the locking arm 70 to begin moving from its stored position (
Once the locking arm 70 is in the chocking position, further dockward movement of the tire T simply translates the lock assembly 20 further dockward, as it is maintained in the chocking position. When the vehicle V is backed all the way up to the dock in the loading/unloading position, the operator actuated latch mechanism 40 is actuated to latch the lock assembly in place along the support structure 30 to prevent movement of the vehicle V away from the dock.
The structure of the lock assembly 20 thus provides the advantageous feature which allows the roller 75 of the locking arm 70 to engage a bottom portion of the tire, and then move along the peripheral surface of the tire to a chocking position. This feature is provided primarily by the connection point 71 and the trigger assembly 50, more particularly the first engagement point 21, being selectively positionable relative to each other in response to the dimensions of the tire T. In the example shown in
This selective positioning is provided primarily by the resilient connection between the trolley assembly 60 and the trigger assembly 50. As the trolley is connected to the locking arm 70 at the connection point 71, the trolley assembly 60 and springs 80 form a variable length biasing link connecting the connection point 71 to the trigger assembly 50. This allows the distance between the connection point 71 and the engagement point 21 on the trigger assembly to vary in response to the dimensions of the tire T. The resulting movement of the roller 75, wherein it engages a bottom surface of the tire, and then moves along the peripheral surface of the tire to a chocking position is advantageous as it minimizes or eliminates any interference with the vehicle undercarriage or any other obstructions on the vehicle as the locking arm moves to the chocked position.
To secure the vehicle V adjacent the loading dock, the restraint 10 according to the invention includes an operator actuated latching mechanism 40, shown in detail in
To secure the trolley assembly 60 to the guide member 31, a latch member 43 is provided which is operatively connected to the trolley assembly 60. In the present embodiment, the latch member is pivotally connected to the trolley assembly 60 through a pivot axis designated 100 in FIG. 13. As can be seen in greater detail in the section view of
To secure the trolley assembly 60 to the guide member 31, the latch member 43 is movable relative to the trolley assembly between a non-engaging position, shown in
While the frictional engagement between the engaging portion 110 of the latch member 43 and the surface 121 may be sufficient to secure the trolley assembly 60 and the attached locking arm 70 in place along the support structure, the latching mechanism according to this embodiment of the invention also includes a structure that clamps the trolley assembly to the guide member 31. Toward that end, the trolley assembly 60 includes at least one engaging block 130 operatively connected thereto. In the present embodiment, an engaging block 130 is connected to each of the sidewalls of the trolley assembly, with a block 130 corresponding to each of the two halves 43' and 43" of the latch member 43. As seen in
The movement of the latch member 43 between the non-engaging and engaging positions is controlled by movement of the latching bar 42 between its unlatched and latching positions. As seen most clearly in
The linear movement of the latching bar 42, according to the present embodiment, is provided by the actuator 44, shown in FIG. 2 and which is operatively connected to the dock end of the latching bar 42 and to the dock end of support structure 30. In the present embodiment, the actuator 44 is a linear actuator including a piston 44a which is pivotally attached to the dock end of the latching bar 42 at pivot point 42a. A pivotal connection of the linear actuator 44, the latching bar 42 and the support structure is required to prevent the complex horizontal and vertical movement of the latching bar between the unlatched and latching positions from placing undue stresses on the actuator 44. Actuator 44 can be pneumatic, hydraulic, or another commonly known type of linear motion device.
The movement of the latching bar 42 between the unlatched and latching positions causes the latch member 43 to move between its non-engaging and engaging positions. As seen in
Once the locking arm of the present invention is in a chocking position, and once the vehicle V has backed to its loading/unloading position adjacent the dock D, an operator actuates the latching mechanism 40. To summarize, such actuation of the latching mechanism 40 causes the actuator 44 to move the latching bar 42 to the left in the sense of FIG. 13. This in turn causes the latching bar 42 to move upwardly because of the engagement of the pins 160 in the angled slots 150. The upward movement of the latching bar 42 is translated to the latch member, such that the latch member 43 rotates to the engaging position, wherein the engaging portion 110 engages a top surface 121 of the flange 120. As the engaging portion 110 engages the surface 120, the engaging block 130 is pulled upward into engagement with the bottom surface 123 of the flange 120, thus clamping the trolley assembly 60 and attached locking arm 70 in place along the support structure. This clamping action provides a clamping or restraining force that prevents the vehicle V from moving away from the loading dock when the latching mechanism 40 is actuated.
The latching mechanism 40 just described also includes an advantageous feature, which forms a significant aspect of the invention, wherein the restraining force of the latching mechanism increases as the pulling force exerted on the assembly by a vehicle V attempting to drive away from the dock (with the latching mechanism activated) increases. Referring to
According to a further significant aspect of the invention, any increased restraining force provided by the latching mechanism 40, for increasing pullout force by the vehicle V, is not borne by the actuator 44. When the increased pullout force causes the latch member to rotate to the
It will be appreciated by one of skill in the art that various modifications may be made to the operator actuated latching mechanism 40 without departing from the scope of the invention. For example, and as referred to above, the latch member may either be unitary or in two similarly-operating halves 43' and 43" (FIG. 16). As presently preferred, the latch member is in the two halves 43' and 43". Use of such a latch member is advantageous since the vehicle V could exert forces on the latching mechanism which would be in a direction either to the left or to the right in the sense of FIG. 16. Such "side loading" of the lock assembly could cause uneven application of the clamping force on the flange 120 if a unitary latch member were used. Use of the two-part latch member allows each to act independently. Accordingly, in a side load situation, it would be possible for one latch member, such as 43' to successfully clamp the flange 120, while the other latch member 43" would not clamp the flange to the same degree. This may be preferable to having the side load cause an uneven clamping by a unitary latch member. In addition, the connection between the latch member or members 43 need not be limited to a pivotal connection. Rather, other types of connections could be used, so long as they provided for movement of the latch member between a non-engaging and engaging position upon movement of the latching bar between its unlatched and latching positions. Similarly, the connection between the latching bar and the latch member is not limited to the roller engagement with a T-bar flange as has been disclosed herein. In addition, while the textured surface of the engaging portion of the latch member and the engaging blocks is preferably a toothed surface, other high-friction textures could also be used. Further modifications within the scope of the invention will also occur to those of skill in the art.
According to a further aspect of the invention, the vehicle restraint may include signalling components to enhance the safety of vehicle loading and unloading. As one example of such safety enhancements, the restraint according to the invention may be provided with a switch that is responsive to movement of the latching bar 42 to the latching position for illuminating a visual signal. For this purpose, a switch 180 is shown mounted to the inside face of one of the flanges 165 mounted to the supporting member 32. The switch 180 is disposed at a position such that it will sense movement of the latching bar to the latching position. In the present embodiment, this is achieved by the switch 180 being disposed adjacent the distal end of the latching bar 42 when the latching bar is in the unlatched position of FIG. 13. As the latching bar 42 moves to the latching position, the latching bar 42 interacts with the switch 180, causing it to emit a signal that the latching bar 42 is in the latching position. The switch 180 may be any of a variety of sensors, including (by way of example) electro-mechanical, magnetic and electro-optic sensors. Accordingly, the "interaction" of the latching bar 42 with the switch 180 may be a mechanical interaction, or it may simply be the bar 42 passing in front of an electric eye or the like. In any event the latching bar 42 is shown interacting with the switch 180 in the position of FIG. 14. The switch 180 is further connected to electronics (not shown) which illuminate a visual signal, such as a green light G (shown interior the loading dock in
According to a further aspect of the invention, an additional switch 190 may also be provided to ensure that the locking arm is in a chocking position. The switch 190, which according to this embodiment is an electro-mechanical sensor is disposed on the trolley assembly 60, and is engaged by one of the sideplates of the locking arm 70 when the locking arm is in the stored position of FIG. 2. Like switch 180, switch 190 may be any of a variety of sensors. Movement of the locking arm 70 to the chocking position of
While the invention has been described as including a single vehicle restraint, two restraints could also be used.
There has thus been described a new wheel-activated vehicle restraint for securing a vehicle in a loading/unloading position adjacent a loading dock. A support structure is disposed so as to be beside the vehicle as it approaches the dock. A lock assembly is operatively mounted on the support structure for movement between a stored position and a chocking position, wherein a leading tire of the vehicle is disposed between a trigger assembly and a locking arm. The trigger, locking arm and intermediate trolley assembly are operatively connected and designed to operate such that the locking arm moves from its stored position to a chocking position in response to engagement between the tire and the trigger, and such that the locking arm engages a bottom portion of the tire and moves along the peripheral surface of the wheel to the chocking position. The invention also includes an operator actuated latch mechanism which secures the lock assembly in place along the support structure to thereby restrain the chocked vehicle in place relative to the loading dock. A latching bar is actuated by an actuator and moves a latch assembly into an engaging position. In the engaging position, the trolley assembly is clamped to a portion of the support structure to prevent movement of the vehicle. A pullout force exerted by the vehicle causes the clamping force to increase, and decouples the latch member from the latching bar. The invention also includes a variety of safety features. Further, the invention may be practiced otherwise than as specifically disclosed herein. The invention is intended to cover any such modifications and equivalents as may fall within the scope of the appended claims.
Hahn, Norbert, Springer, Scott L., van de Wiel, Hans, Boon, Marcel, De Beer, Frank
Patent | Priority | Assignee | Title |
10329104, | Apr 04 2016 | ASSA ABLOY ENTRANCE SYSTEMS AB | Vehicle restraint |
10329105, | Jun 06 2016 | ASSA ABLOY ENTRANCE SYSTEMS AB | Wheel chock systems |
10745220, | Jun 28 2017 | Systems, LLC | Vehicle Restraint System |
10781062, | Nov 24 2015 | Systems, LLC | Vehicle restraint system |
10906759, | Jun 28 2017 | Systems, LLC | Loading dock vehicle restraint system |
10988329, | Feb 15 2019 | ASSA ABLOY ENTRANCE SYSTEMS AB | Vehicle restraint |
11465865, | Nov 24 2015 | Systems, LLC | Vehicle restraint system |
11618642, | Aug 20 2020 | ASSA ABLOY ENTRANCE SYSTEMS AB | Vehicle restraint systems and methods |
6773221, | Jul 05 2001 | RITE-HITE HOLDING CORPORATION, A WISCONSIN CORPORATION | Positive locking mechanism for a wheel-activated vehicle restraint |
8006811, | Sep 07 2007 | RITE-HITE HOLDING CORPORATION, A CORP OF WISCONSIN | Loading dock wheel restraint comprising a flexible elongate member |
8286757, | Jul 09 2010 | RITE-HITE HOLDING CORPORATION, A WISCONSIN CORPORATION | Wheel chock system |
8307956, | Jul 25 2007 | Rite-Hite Holding Corporation | Wheel chock system |
8443945, | May 25 2010 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vehicle chocking systems and methods of using the same |
8464846, | Mar 04 2008 | Rite-Hite Holding Corporation | Restraining arms for wheel chocks |
8590674, | Feb 23 2010 | 9172-9863 QUEBEC INC | Chock system |
8857574, | Mar 29 2010 | Stertil B.V. | Device and method for blocking a vehicle and loading-unloading station provided therewith |
8869948, | Dec 01 2009 | 4Front Engineered Solutions, Inc. | Wheel chocks and associated methods and systems |
9139384, | Mar 05 2013 | RITE-HITE HOLDING CORPORATION, A WISCONSIN CORPORATION | Track-mounted wheel restraint systems |
9162831, | Jun 21 2012 | STERTIL B V | Device for blocking a vehicle, method therefor and loading-unloading station provided therewith |
9555816, | Dec 05 2013 | Holland, L.P. | Wheel chock apparatus and methods of using the same |
9751702, | Jun 06 2016 | ASSA ABLOY Entrance Systems, Inc.; ASSA ABLOY ENTRANCE SYSTEMS AB | Wheel chock systems |
D712112, | May 28 2013 | LEUM ENGINEERING, INC D B A DOCKZILLA CO | Low-profile lip extender unit for a dock ramp |
Patent | Priority | Assignee | Title |
1102773, | |||
2413744, | |||
2773564, | |||
3110466, | |||
3221907, | |||
3305049, | |||
3447639, | |||
3542157, | |||
3666118, | |||
3667160, | |||
4013145, | Jan 07 1976 | Lawrence Peska Associates, Inc. | Vehicle hill holder |
4024820, | Jun 12 1975 | HOLLAND COMPANY, A CORP OF ILLINOIS | Lateral and longitudinal adjustable stowable choking system |
4122629, | Jan 24 1977 | Dock safety apparatus | |
4146888, | Oct 11 1977 | ABON CORPORATION, A DE CORP | Hydraulic securing device |
4191503, | Feb 01 1978 | ABON CORPORATION, A DE CORP | Device for releasably securing one unit against a second unit |
4207019, | Sep 11 1978 | Truck dock wheel safety chock system | |
4208161, | May 30 1978 | ABON CORPORATION, A DE CORP | Device for releasably securing a vehicle to an adjacent support |
4216724, | Oct 28 1977 | Cgee Alsthom | Stop device for stopping a wheeled vehicle |
4264259, | Sep 06 1979 | ABON CORPORATION, A DE CORP | Releasable locking device |
4267748, | Oct 02 1978 | ABON CORPORATION, A DE CORP | Releasable lock mechanism |
4282621, | Dec 11 1978 | ABON CORPORATION, A DE CORP | Releasable locking device |
4373847, | May 04 1981 | ABON CORPORATION, A DE CORP | Releasable locking device |
4379354, | Aug 05 1981 | ABON CORPORATION, A DE CORP | Releasable locking device |
4443150, | Nov 13 1981 | ABON CORPORATION, A DE CORP | Releasable locking device |
4472099, | Jun 29 1981 | ABON CORPORATION, A DE CORP | Releasable locking device |
4560315, | Jul 11 1984 | ABON CORPORATION, A DE CORP | Vehicle restraint |
4572080, | Mar 18 1983 | Oleo International Holdings Limited | Movable stops for railway vehicles |
4605353, | Aug 24 1983 | Rite-Hite Holding Corporation | Vehicle restraint |
4634334, | Jul 19 1985 | Rite-Hite Holding Corporation | Vehicle restraint |
4653967, | May 24 1984 | Device for restricting rolling of cylindrical objects | |
4674941, | Nov 20 1985 | Kelley Company Inc. | Vehicle restraint using a parallelogram linkage |
4676344, | Jun 13 1983 | Self-locking chocks for a semi-trailer | |
4695216, | May 14 1986 | Kelley Company, Inc. | Vehicle restraint |
4728242, | Apr 14 1986 | Kelley Company Inc. | Vehicle restraint having downwardly facing hook |
4759678, | Sep 08 1986 | Kelley Company Inc. | Vehicle restraint utilizing a fluid cylinder |
4765792, | Mar 23 1987 | Autoquip Corporation | Surface mounted truck leveler |
4767254, | Apr 21 1986 | Kelley Company Inc. | Vehicle restraint having an upwardly biased restraining member |
4784567, | Nov 20 1985 | Kelley Company Inc. | Vehicle restraint utilizing a fluid cylinder |
4815918, | Aug 21 1987 | Kelley Company, Inc. | Vehicle restraint having a snubbing restraining member |
4861217, | Feb 17 1987 | Kelley Company, Inc. | Vehicle restraint using both linear and pivotal movement |
4865508, | May 21 1987 | Kelley Company Inc. | Vehicle restraint |
4915568, | Feb 24 1988 | Vehicle restraining apparatus | |
4938647, | Sep 21 1989 | Kelley Company Inc. | Truck actuated vehicle restraint having a pivotable slide |
4963068, | Jan 23 1989 | Systems, Inc. | Trailer restraint |
4969792, | Sep 01 1988 | SPX DOCK PRODUCTS, INC | Truck supporting device |
4973213, | Sep 21 1989 | Kelley Company Inc. | Truck actuated vehicle restraint having a pivotable inclined surface |
5096021, | May 08 1991 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION | Tire chock interlock system for a gas truck |
5249905, | Jul 22 1992 | SPX DOCK PRODUCTS, INC | Automatic wheel chocking apparatus having an improved drive mechanism |
5302063, | Feb 28 1992 | HOLDEN AMERICA INC ; 4077776 CANADA INC | Vehicle wheel chock |
5375965, | Jan 25 1993 | Rite-Hite Holding Corporation | Vehicle restraining device |
5553987, | Mar 07 1994 | Rite-Hite Holding Corporation | Truck activated wheel chocking device |
5709518, | Nov 27 1995 | DOCK PRODUCTS CANADA INC | Automatic wheel chock system |
CA1308222, | |||
DE2735826, | |||
DE3830891, | |||
DE4242415, | |||
DE583404, | |||
EP302356, | |||
EP384850, | |||
EP537075, | |||
EP580415, | |||
EP639488, | |||
FR2284481, | |||
FR2394423, | |||
FR2652340, | |||
FR2672578, | |||
FR2682343, | |||
FR2689845, | |||
IT526008, | |||
JP6036230, | |||
NL157253, | |||
RE32968, | Dec 10 1987 | Abon Corporation | Vehicle restraint |
RE33154, | Aug 12 1988 | Rite-Hite Holding Corporation | Vehicle restraint |
RE33242, | Dec 11 1987 | Rite-Hite Holding Corporation | Device for releasably securing a vehicle to an adjacent support |
SU1036593, | |||
WO9518029, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 10 1998 | Rite-Hite Holding Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 15 2005 | ASPN: Payor Number Assigned. |
Nov 14 2005 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 12 2009 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 05 2005 | 4 years fee payment window open |
Sep 05 2005 | 6 months grace period start (w surcharge) |
Mar 05 2006 | patent expiry (for year 4) |
Mar 05 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 05 2009 | 8 years fee payment window open |
Sep 05 2009 | 6 months grace period start (w surcharge) |
Mar 05 2010 | patent expiry (for year 8) |
Mar 05 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 05 2013 | 12 years fee payment window open |
Sep 05 2013 | 6 months grace period start (w surcharge) |
Mar 05 2014 | patent expiry (for year 12) |
Mar 05 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |