A dental implant assembly is provided, as well as a system and method for exposing an embedded implant after osseointegration has taken place. The implant assembly comprises an implant member for embedding in the jaw and a rest factor member for securing to the implant member, the rest factor member having an upper rest surface just above the tissue level for opposing an overlying portion of a prosthesis anchored elsewhere in the jaw to form a non-retentive rest or support for accepting down pressure from the prosthesis. The implant member is relatively short and can be installed in distal jaw regions without interference with the mandibular nerve. A bore is cut out in the jaw for receiving the implant, inserting the implant and an attached healing screw in the implant. The implant site is closed and osseointegration takes place over an extended period. Subsequently, the implant site is uncovered, the healing screw is removed, and the rest factor member is secured in the implant.
|
0. 38. A dental implant assembly for embedding in the jawbone of patient, comprising:
an implant member for embedding in and osseointegrating with the jawbone of a patient at a selected site; an attachment member for securing to the implant member after osseointegration; the implant member having an upper end portion with a central bore, the attachment member and central bore of the implant member having interengageable securing means for releasably securing the attachment member to the implant member, and a stem portion depending downwardly from the upper end portion for engagement with a recess in the jawbone of shape and dimensions matching those of the stem portion; the stem portion having an annular indent at its lower end; and the attachment member comprising a rest factor member having an upper rest surface for supporting, but not being connected to, overlying portions of a denture anchored elsewhere in the jaw, the rest factor member having an upper, dome-shaped portion and a downwardly depending stem portion for engagement in said implant member bore, the rest surface comprising the upper end of said dome-shaped portion.
0. 16. A dental implant assembly for supporting as a rest factor the distal end of a denture anchored elsewhere in the jaw, comprising:
implant means for embedding in the distal region of the jawbone including a first part for projecting into and osseointegrating with the jawbone and a second part for projecting up to just above the tissue level; the first part being relatively thin and having a predetermined height less than the distance between the top of a patient's jawbone at the implant site and the underlying region of the mandibular nerve; the second part having an upper rest surface for supporting but not being connected to overlying portions of a denture anchored elsewhere in the jaw to resist biting pressure on the tissue and bone; the first part comprising a thin disc-shaped member having a downwardly projecting annular rim; and axially extending spaced grooves in the outer surface of the annular rim for restricting rotation of the embedded implant.
0. 1. A dental implant assembly for supporting as a rest factor the distal end of a denture anchored elsewhere in the jaw, comprising:
implant means for embedding in the distal region of the jawbone including a first part for projecting into and osseointegrating with the jawbone and a second part for projecting up to just above the tissue level; the first part being relatively thin and having a predetermined height less than the distance between the top of a patient's jawbone at the implant site and the underlying region of the mandibular nerve; the second part having an upper rest surface for supporting but not being connected to overlying portions of a denture anchored elsewhere in the jaw to resist biting pressure on the tissue and bone; and the first part comprising a thin disc-shaped member having a downwardly projecting annular rim and a central spigot projecting downwardly from the disc-shaped member.
0. 17. A dental implant assembly for supporting as a rest factor the distal end of a denture anchored elsewhere in the jaw, comprising;
implant means for embedding in the distal region of the jawbone including a first part for projecting into and osseointegrating with the jawbone and a second part for projecting up to just above the tissue level; the first part being relatively thin and having a predetermined height less than the distance between the top of a patient's jawbone at the implant site and the underlying region of the mandibular nerve; the second part having an upper rest surface for supporting but not being connected to overlying portions of a denture anchored elsewhere in the jaw to resist biting pressure on the tissue and bone; the first part comprising a generally cylindrical member having a downwardly depending annular rim, and a central spigot projecting downwardly from the cylindrical member, the central spigot having a length in the range from 1 to 2 mm.
0. 18. A combined denture and support assembly, comprising:
a denture of more than one tooth; an anchor securing one end of the denture to the jawbone; support means for freely supporting a distal region of the denture at a selected location to the rear of the first bicuspid, the support means comprising a first part for embedding in the jawbone at the selected location and a second part for projecting up to at least the tissue level, the second part having an upper rest surface for supporting but not being connected to the denture and for accepting biting pressure from the denture; and the first part comprising a thin disc-shaped member having a downwardly projecting annular rim and a central spigot depending downwardly from the disc-shaped member to define an annular cavity between the spigot and rim.
0. 46. An implant member for embedding in a patient's jawbone for attachment to other dental devices, the member comprising:
a body having an externally-unthreaded upper end portion and, extending downwardly from said upper end portion, an externally-threaded lower portion for insertion in a recess prepared in a patient's jawbone; said implant member having an internal site for insertion of a portion of a dental device to be attached to the implant member; and said lower portion having an outer surface and multiple lead threads projecting outwardly from said outer surface, said multiple lead threads extending over substantially the entire length of said externally-threaded lower portion and wherein the spacing between adjacent threads is substantially the same, and the height of said outwardly projecting threads, is approximately the same, over said substantially entire length.
0. 52. An implant member for embedding in a patient's jawbone for attachment to other dental devices, the member comprising:
a body having an externally-unthreaded upper end portion and, extending downwardly from said upper end portion, an externally-threaded lower portion for insertion in a recess prepared in a patient's jawbone; said implant member having a central bore for insertion of a portion of a dental device to be attached to the implant member; and said externally-threaded lower portion having an outer surface, and at least two separate lead threads protecting outwardly from said outer surface, said multiple lead threads extending over substantially the entire length of said lower portion and wherein the spacing between adjacent threads is substantially the same, and the height of said outwardly projecting threads, is approximately the same, over said substantially entire length.
0. 58. An implant member for embedding in a patient's jaw bone for attachment to other dental devices, the member comprising:
a body having an externally-unthreaded upper end portion and, extending downwardly from said upper end portion, an externally-threaded lower portion for insertion in a recess prepared in a patient's jawbone; said implant member having a central bore for insertion of a portion of a dental device to be attached to the implant member; and said externally-threaded lower portion having an outer surface and at least two threads with separate leads projecting outwardly from said outer surface, said at least two threads forming multiple lead threads extending over substantially the entire length of said lower portion and wherein the spacing between adjacent threads is approximately the same, and the height of said outwardly projecting threads, is approximately the same, over said substantially entire length.
42. An implant member for embedding in a patient's jawbone for attachment to other dental devices, the member comprising:
a generally cylindrical body having an externally-unthreaded upper end portion for projecting above the jawbone,and,a extending downwardly from said upper end portion, an externally-threaded lower stem portion for insertion in a recess prepared in a patient's jawbone; the upper end portion said implant member having a central bore for insertion of a portion of a dental device to be attached to the implant member; and the lower end stem portion having an outer cylindrical surface and a plurality of multiple lead threads projecting outwardly from the outer surface, said multiple lead threads extending over said outer surface and wherein the spacing between adjacent threads is substantially the same, and the height of said outwardly projecting threads is substantially the same, over the entire threaded surface.
24. A dental implant assembly for embedding in the jawbone of a patient, comprising:
an implant member for embedding in and osseointegrating with the jawbone of a patient at a selected site; an attachment member for securing to the implant member after osseointegration; the implant member having an externally-unthreaded upper end portion with and a central bore, the attachment member and central bore of the implant member having interengageable securing means for releasably securing the attachment member to the implant member, and a an externally-threaded stem portion depending downwardly from the upper end portion for engagement with a recess in the jawbone of shape and dimensions matching those of the stem portion; the stem portion having an annular indent at its lower end; the stem portion having outwardly projecting screw threads wherein the spacing between adjacent threads is substantially the same, and the height of said outwardly projecting screw threads, is substantially the same, over the entire threaded length of said stem portion; and the threads comprising multiple lead threads.
0. 2. The assembly as claimed in
0. 3. The assembly as claimed in
0. 4. The assembly as claimed in
0. 5. The assembly as claimed in
0. 6. The assembly as claimed in
0. 7. The assembly as claimed in
0. 8. The assembly as claimed in
0. 9. The assembly as claimed in
0. 10. The assembly as claimed in
0. 11. The assembly as claimed in
0. 12. The assembly as claimed in
0. 13. The assembly as claimed in
0. 14. The assembly as claimed in
0. 15. The assembly as claimed in
0. 19. The assembly as claimed in
0. 20. The assembly as claimed in
0. 21. The assembly as claimed in
0. 22. The assembly as claimed in
0. 23. The assembly as claimed in
28. The assembly as claimed in
29. The assembly as claimed in
30. The assembly as claimed in
31. The assembly as claimed in
32. The assembly as claimed in
33. The assembly as claimed in
34. The assembly as claimed in
35. The assembly as claimed in
36. The assembly as claimed in
37. The assembly as claimed in
0. 39. The assembly as claimed in
0. 40. The assembly as claimed in
0. 41. The assembly as claimed in
43. The implant member as claimed in
44. The implant member as claimed in
45. The implant member as claimed in
0. 47. The implant member as claimed in
0. 48. The implant member as claimed in
0. 49. The implant member as claimed in
0. 50. The implant member as claimed in
0. 51. The implant member as claimed in
0. 53. The implant member as claimed in
0. 54. The implant member as claimed in
0. 55. The implant member as claimed in
0. 56. The implant member as claimed in
0. 57. The implant member as claimed in
0. 59. The implant member as claimed in
0. 60. The implant member as claimed in
0. 61. The implant member as claimed in
0. 62. The implant member as claimed in
0. 63. The implant member as claimed in
|
This application is a Continuation-In-Part of application Ser. No. 07/861,183 filed Mar. 31, 1992, abandoned, which was a Continuation of application Ser. No. 07/751,661 filed Aug. 22, 1991, now U.S. Pat. No. 5,254,005, which was a Continuation of application Ser. No. 07/436,432 filed Nov. 14, 1989 (now abandoned).
The present invention relates to a dental implant system.
Dental implants are embedded in the jaw bone and serve to anchor one or more artificial teeth or dentures. Most implant systems involve a relatively long implant cylinder which is placed into a custom bored hole in the jawbone, then left for several months to allow healing and bone integration. Then the implant must be exposed for attachment of a dental prosthetic appliance such as a crown, denture, partial denture or bridge. This generally involves the dentist cutting out a flap of tissue which is peeled back to expose the implant, and secured by sutures after installing the prosthesis. This results in a relatively large area of trauma with a certain degree of pain to the patient and risk of post-operative infection.
Another problem with conventional implants is their length, which makes them difficult to implant in the distal jaw region, where there is insufficient depth to enable their insertion without interference with the mandibular nerve, without the assistance of a dental surgeon to locate the precise position of the nerve and ensure that the implant does not interfere with it. A shorter cylindrical implant would not normally be suitable since it would provide insufficient "hold" and would likely become loosened with time if anchored to a denture or bridge. Also, side to side forces on the implant lead to bone erosion and trauma. Thus, dentures or bridges are often not anchored at the rear of the jaw. However, this has the disadvantage that trauma to the tissue and underlying bone beneath the denture occurs as a result of the denture repeatedly impacting the bone, particularly with long dentures which will tend to tilt or rotate about their attachment or anchor points during chewing or other jaw motions. This biting pressure can result in bone erosion or resorption down to the level of the nerve.
It is an object of this invention to provide an improved dental implant system and method which is less likely to cause significant tissue trauma and which reduces bone erosion as a result of denture wear.
It is a further object of this invention to provide an improved system and method for exposing an implant site after osseointegration has taken place.
According to a first aspect of the present invention, a dental implant assembly is provided which comprises a first, implant member for implanting in the distal region of the jaw bone, and a second member or rest factor for attachment to the implant member. The two members have cooperating releasable securing devices for releasably securing them together, preferably comprising a screw threaded bore in the implant member and a corresponding threaded portion on the rest factor member. The rest factor member projects up to just above the level of the tissue overlying the jaw bone and has an upper surface opposing an overlying portion of a prosthesis anchored elsewhere in the jaw to form a rest for the prosthesis which accepts down pressure only, and which acts as a support to prevent or restrict bone erosion. The implant member has a selected height less than the depth of the mandibular nerve at the implant site, so that it can be embedded in the bone without risk of interference with the nerve. At the same time, the implant member is as wide as possible, and preferably has the maximum diameter possible according to the width of the patient's alveolar ridge at the implant site. The implant member diameter is preferably selected to be 1 mm less than the available alveolar ridge or bone width at the implant site. Implant members in a range of different heights and diameters are preferably provided to meet the requirements of a range of patients. Preferably, implant members with heights of 2 mm, 4.5 mm, 7 mm and 10 mm are provided, to allow for patients whose jawbone is already eroded to some extent. Implant members with diameters ranging from about 4 mm to 6 mm may be provided.
Since the implant member is of relatively large diameter, it has a relatively large surface area resisting downward forces. In a preferred embodiment of the invention, the implant member has a generally cylindrical body with an upper end portion and downwardly depending stem portion which engages in a corresponding recess drilled out in the bone. Preferably, at least part of the stem portion at the lower end of the implant member has an annular recess forming an outer rim and central boss. This engages a corresponding annular recess drilled out in the bone to resist sideways movement of the implant. This will resist sideways movement of the implant during osseointegration, and also provides additional depth for securing the rest factor to the implant member. A bore of corresponding shape to the undersurface of the implant member is drilled out in the jawbone at the implant site, so that when the implant member is positioned in the bore, the peripheral rim will provide stabilization of the member against lateral movement during the osseointegration period. The shape of the undersurface of the implant provides a large area of bone to implant contact for osseointegration, and significant resistance to both lateral and downward forces both during and after the osseointegration period. Preferably, at least two separate or double lead threads are provided, and triple or quadruple threads may be provided for added retention. Bone grows into the gaps between threads.
The outer surface of the stem portion of the implant preferably has threads to provide additional surface area for bone attachment. Bone grows into the area above and below the threads to resist loosening of the implant.
Since the rest factor is not anchored to the prosthesis, the risk of jaw bone erosion or damage as a result of upward forces is reduced. However, the rest factor does accept down pressure as a result of biting pressure of the denture, and will thus reduce the risk of trauma to the tissue and jawbone erosion as a result of pressure. The localized contact between the rest factor and the underlying bone via the implant member reduces or substantially eliminates pressure trauma on the entire bone.
If desired, the upper surface of the rest factor and the opposing portion of the prosthesis may be provided with opposing, non-retentive mating formations, such as opposing slightly convex and concave formations, for guiding the prosthesis against the rest factor. However, these formations do not provide any upwards retention of the prosthesis. A series of such rest factors may be provided at appropriate locations in the jaw where maximum down pressure from a denture is encountered, considerably reducing the discomfort of denture use and reducing the risk of tissue and jawbone damage as would result from conventionally anchored dentures.
The rest factor may be preformed with a suitable rest surface in incremental heights, in which case the procedure after removing the healing screw comprises selecting an appropriate height rest factor and securing the selected rest factor in the implant member.
The implant member may be relatively short with a relatively large diameter, so that it can be anchored securely in the jawbone without needing a deep bore to be drilled out. The implant member is provided in several heights. The shortest of the implants will be shorter and wider than conventional cylindrical implants, and thus can be used at the back or posterior mandible of the jaw where the nerve position prevents or restricts the use of long implants. This implant is particularly suitable for positioning a rest factor in the second molar area in conjunction with implant dentistry where cantilevered bridges or anterior implants need support or in other places where a rest factor is needed in dentistry. The implant requires less bone to be drilled out than conventional cylindrical implants, reducing or minimizing bone loss, and is able to accept hundreds of pounds of down pressure from an overlying denture or prosthesis.
After bone integration, the implant can be recovered by piercing the tissue overlying a healing screw secured to the implant with a pointed end of a locating guide tool, probing the implant site with the pointed end until it engages a hole in the top of the healing screw, inserting the pointed end into the hole, utilizing a tissue punch centered on the guide tool to cut out a plug of tissue directly over the implant, and subsequently removing the healing screw.
Thus, the locating tool and tissue punch can be removed together from the implant site, carrying with them the tissue plug to expose the healing screw for removal with a separate tool. The implant is then exposed for secondary healing or restoration procedures while a minimum amount of tissue has been disturbed and little or no suturing is required. This considerably reduces the trauma, secondary tissue healing, discomfort to the patient, and risk of infection.
The implant member provides osseointegration with good resistance to loosening forces as a result of chewing. It may alternatively be used to secure other dental devices such as an implant denture anchor or an implant magnet abutment.
An implant locating and exposing tool may be used to recover the implant. The tool comprises an elongate shaft having a head at one end and a locating probe at the opposite end having a sharp end for probing the tissue over an implant site to locate a central hole in the top of a healing screw, and a cutter member mounted on the elongate member with its cutting face facing in the same direction as the locating probe, the cutter member being movable along the elongate shaft to cut out a plug of tissue overlying a healing screw.
Thus, the healing screw can be located and the overlying tissue removed in one step, without having to cut out a relatively large flap of tissue.
The healing screw may be provided with a concave upper surface so that the locating probe will be guided towards the central opening.
The implant system and method described above provides a rest surface for an overlying cantilevered bridge or denture which is anchored elsewhere in the jaw, on which the denture can rest and which accepts down pressure from the denture, reducing tissue trauma. Rest surfaces may be provided wherever needed, in conjunction with the conventional implants and anchors used for securing the denture or prosthesis in the jaw. The improved implant recovery tool and method produces minimal trauma when exposing a previously embedded implant for subsequent connection to either a rest factor or to a conventional anchor or magnet abutment.
The present invention will be better understood from the following detailed description of a preferred embodiment of the invention, taken in conjunction with the accompanying drawings, in which like reference numerals refer to like parts, and in which:
As best illustrated in
Also illustrated in
The extension or rest factor member 18 as it appears prior to installation in the jaw is illustrated in FIG. 2. The member comprises a generally cylindrical boss 36 having a projecting shaft 38 at one end dimensioned for mating engagement in the bore 32 of implant 12. Shaft 38 has an upper, larger diameter portion 39 having external screw threads for threaded engagement with the internal screw threads 34 in the upper part 33 of bore 32, and a lower, smaller diameter cylindrical extension 40 for fitting into the lower part 35 of bore 32, as illustrated in FIG. 11. The upper end of shaft 38 has a taper 41 matching the taper 37 at the upper end of the implant bore 32. Member 18 has a curved, slightly convex rest or support surface 42 at its upper end, and an external hex formation 43 for securing it to a suitable tool for insertion into the implant. The member 18 will also be of a suitable dental material such as titanium alloy.
Member 18 may alternatively be formed with a concave support surface (not illustrated), or with any suitably shaped upper rest or support surface. Member 18 will be made in a range of heights to allow the dentist to select the appropriate size rest factor for a particular patient's tissue level. The rest factor is selected to project only to a distance of the order of ½ to 1 mm above the tissue level when installed in the jaw, and is preferably kept as low as possible so that it acts to accept biting pressures but will not interfere with normal jaw motions.
The implant assembly with the rest surface 42 is used to form a rest or support surface in implant dentistry for a prosthesis anchored elsewhere in the jaw, for example, as illustrated in
Most typical denture anchors allow a limited degree of pivoting or side-to-side motions of the denture with jaw motions so as to reduce stress in the jaw bone areas to which the denture is positively anchored. With relatively long partial or full dentures which extend into the posterior jaw regions, tilting or rotation of the denture about the anchor points with jaw or biting motions will apply pressure or biting force to the underlying tissue and jawbone, causing discomfort and trauma to the underlying bone and tissue, and ultimately resulting in significant bone erosion. The rest surface or surfaces avoid or reduce this problem by accepting down or biting pressure from the denture. Since the rest surfaces are not positively anchored to the denture, they will not be pulled up or from side to side as a result of jaw motions, and will therefore be less likely to cause bone erosion or damage. The implant assembly is therefore intended to be used at appropriate locations in the jaw which would otherwise be subject to considerable down pressure and potential trauma from an implant such as a full or partial denture or cantilevered bridge. The rest factor surface will be shaped to ensure that it can accept down pressure from an overlying denture in various possible orientations, whatever the angle of the patient's jaw. The support surface prevents excessive force on the tissue, and thus protects the gum tissue from impacting forces which could cause soreness and trauma. Additionally, the rest or support surface prevents or reduces bone erosion by providing support to the distal end of the denture and resisting biting forces.
The implant assembly is designed for implantation at any position in the jaw where a rest factor or surface for a full or partial denture or bridge is needed. Normally, this will be in the posterior jaw, for example in between the first bicuspid and the second molar area, as illustrated in
As can be seen in
This implant is sufficiently short to be safely inserted even where some bone erosion has already taken place, with the appropriate height implant member and rest factor being selected according to the bone depth and tissue height of the particular patient.
The method of inserting the implant 12 in the jaw will now be described with reference to
All three cutting tools may be provided with a cage for collecting bone as it is drilled out of the bore. The collected bone may be used for filling any edges or spaces left after insertion of the implant.
After the bore for receiving the implant 12 has been prepared as described above, and debris has been cleaned out in the standard manner, for example by irrigating the site with sterile water or sterile saline, the implant 12 can be inserted. The healing screw 70 is initially secured to the implant.
Prior to insertion in the previously prepared bore, the internal faces of the implant will be coated with a suitable bonding agent, such as hydroxyl apatite. These faces may be roughened as illustrated in
The tissue or gum 21 is then secured over the implant and healing screw with conventional flap sutures 80. Since the head portion of the healing screw projecting above the implant member is relatively short, little or no bulge will be apparent when the tissue is sewn up. The site is left to heal for several months to allow the implant to osseointegrate, or bond with the surrounding bone. At this time, a special locating tool 82, best illustrated in
The retrieval tool 82 comprises a central shaft 84 with a head or gripping handle 86 at one end. Handle 86 projects to one side of the shaft as indicated. A projecting probe 88 at the opposite end is designed for engagement in the bore 76 of healing screw. The probe has a sharp pointed end 91. A cutter sleeve or tissue punch 92 is slidably mounted on shaft 84. Cutter sleeve 92 has a projecting annular handle or gripping portion 94 and a lower cutting edge 96.
The use of the retrieval tool 82 to locate the implant site will now be explained, with reference to
Once the probe has entered bore 76, as illustrated in
A separate healing screw removal tool 110 is then used to remove the exposed healing screw. Tool 110 is illustrated in
This technique for exposing or recovery of an embedded implant after healing and osseointegration has taken place removes only a small plug of tissue from immediately above the implant site, avoiding the need to cut out an enlarged flap of the tissue both to locate the implant and to expose the healing screw for removal. Little or no suturing will be required. Thus, considerably less trauma to the tissue is involved, reducing the healing time and the risk of infection. Also, the healing screw is located and the tissue plug may be removed simultaneously with one tool, simplifying the procedure and reducing the time involved. The method involves the use of a specialized healing screw with a bore in its upper surface, together with a special locating and retrieval tool. It may be used not only for location of the implant 12 as described above, but also for locating any conventional cylindrical implants in implant dentistry, replacing the conventional healing screws of such implants with a healing screw as illustrated in
As an additional aid in locating the embedded implant, a thread or wire may be left projecting from the heading screw through the suture area, so that the location may be found easily after healing. Alternatively, the tissue overlying the implant may be marked with a suitable dye. However, it is expected that such markers will not normally be required, the dentist locating the general implant site by feel before piercing the tissue with the probe.
The same implant recovery tools may be used for any selected implant size, since the dimensions of bore 76 in the healing screw will be identical.
Once the healing screw has been removed and the exposed surface of the implant suitably cleaned and prepared, the appropriate rest factor 18 is inserted into the implant. The rest factor 18, in addition to providing a rest surface, also acts as a secondary tissue healing insert. The rest factor is selected with a head height so that it will project just above the patient's tissue level when installed. The shaft 38 of rest factor 18 is screwed into bore 32 of implant 12, as indicated in
Although the rest factor in the preferred embodiment has a head portion preformed in a range of heights, it may alternatively be provided with a longer extension piece which projects above the tissue level 20 when the member 18 is fully inserted. In this case, the dentist marks around the periphery of the selected member 18 at the tissue height, and removes the member from the implant. A suitable temporary cover or crown of a standard nature may be fitted into implant 12 at this point.
The dentist then mounts the member 18 in a previously prepared cast of the patient's jaw, and machines or cuts away the upper face of member 18 to provide the desired rest surface 22 at the tissue level 20, as determined by the markings made while the member was mounted in the patient's jaw. The cut away surface may be slanted or inclined according to the angle of the patient's tissue or gum. This allows the height to be customized for minimal side torque. The shape of the rest surface 22 may be of the dentists choice. For example, it may be concave, while the denture or prosthesis with which it is to cooperate has a corresponding convex area or bump 95 for fitting into the concave depression on the rest surface, so that the rest factor or member 18 accepts down pressure from the denture without any retention. However, in the preferred embodiment, members 18 with ready-made ball-shaped or other shape heads of various sizes in a range of tissue heights are provided to avoid the need for machining on site by the dentist.
This procedure may be utilized to implant one or more rest factors at any suitable location in the jaw, depending on the denture pressure points, for example as illustrated in
As illustrated in
The member 180 has a recess 190 in its upper surface with a taper 191 extending around the outer periphery of the recess. A central, straight cylindrical bore 192 extends from the center of recessed area 190 into the spigot 186, and bore 192 has screw threads 193 extending along its length. Member 180 is made of the same material as the implant 12 of the first embodiment. As in the first embodiment, circular or rounded indents 194 are provided on the outer surface of member 180 to resist rotational movement after implantation. Between six and eight equally spaced indents may be provided, for example.
Healing screw 182 has a relatively short head portion 195 and a downwardly depending, screw threaded shaft portion 196 for mating engagement in the bore 192 of implant member 180, as illustrated in FIG. 18. The undersurface of head portion 195 seats in recessed area 190 and has a tapered annular surface portion 197 for seating on taper 191 around the recessed area 190, for accurate seating of the screw in bore 192. The upper surface of head 195 has a central, tool receiving bore 198 for receiving the end of a suitable tool for inserting the arrangement in a previously prepared bore in the jawbone, and also for receiving the end of locating tool 82 as described above in connection with the first embodiment of the invention. Bore 198 is of hexagonal cross-section, and is designed to be removed by a suitable removal tool having a hexagonal end after location by tool 82.
The rest factor or member of the second embodiment is not illustrated in the drawings but will be similar or equivalent to rest factor 36 as illustrated in
The modified method of inserting insert member 180 in the jaw will now be described with reference to
A bore matching the selected implant dimensions is then accurately drilled out using a series of three internally irrigated drilling burrs. The first burr 210 has a straight pilot drill 212 for drilling out a cylindrical bore 214 to a desired depth at the implant site, as determined by stop 216, as illustrated in FIG. 15. Preferably, bore 214 will be slightly longer than the implant member, for example 3 mm. A second burr 218 is designed to cut out the desired bore shape to match the shape of the undersurface of implant member 180, as illustrated in FIG. 16. Burr 218 has a central, non-cutting guide or spigot 220 for fitting into previously drilled bore 214 for centering purposes, a first cutting surface 222 for cutting down to the level of flat 224, and an annular, downwardly projecting rim of cutting teeth 226 for cutting out part of annular recess 228 for receiving the annular rim 184 of the implant member. Preferably, teeth 226 are designed to cut recess 228 to a depth of ½ mm. The final burr 230 is illustrated in FIG. 17 and is designed to finish and smooth the surfaces of recess 228. Burr 230 also has a central guide 231 and an annular rim of finer cutting teeth 232 which cut the final ½ mm of the recess to a total depth of around 1 mm, and which smooth and finish the cut surfaces.
The finished bore of
After osseointegration is complete, the site is located and the healing screw 182 exposed and removed as described above in connection with the first embodiment of the invention. The rest factor (not illustrated) is inserted into the implant member as described in connection with the previous embodiment.
In both of the embodiments described above, the shape of the undersurface of the implant ensures that there will be little or no side sway either during or after the osseointegration period. This results from the downwardly projecting peripheral rim, having inner and outer circumferential surfaces which combine to resist any sideways forces. This resistance to side-sway is enhanced by the spigot 186 which also acts to resist sideways movement. The relatively large diameter of the implant provides a large area of downwardly facing surfaces which together resist downward forces on the implant assembly, further increasing the stability of the implant and acting to absorb biting pressures. The implant is selected to be of the maximum possible diameter according to the bone width available for implantation in a particular patient. The indents 29, 194 will act to resist rotational movements during and after osseointegration. The combined effect of the shape of the undersurface of the implant and its relatively large surface area is to produce a very stable implant with minimal penetration into the bone.
Although the implant member is illustrated as implanted so that its upper surface is at the bone level, it may be implanted to a lesser depth if the patient has a large amount of bone erosion or resorption. For example, if there is only 1 mm bone depth available for implantation without fear of interference with the nerve, the implant is simply installed to 1 mm in depth so that approximately 1 mm projects above the bone level. However, it will still have sufficient holding power to remain in position since the undersurface, and particularly the peripheral rim, will position the implant during osseointegration and bond to the surrounding bone to resist sideways and downwards forces. Since it is not anchored to any overlying body, upwards forces do not have to be resisted. Thus, sufficient bonding area is provided to resist any loosening during normal wear.
This implant system and method may be used in any implant procedure where a denture or prosthesis of more than one tooth is involved, and is particularly useful in posterior areas of the jaw where the implant depth is limited, for example the second molar area, and in conjunction with anterior implants or cantilevered bridges. The implant has a relatively short penetration into the bone, so that it can be installed in regions to the rear of the first bicuspid without fear of interference with the nerve, yet has sufficient anchoring surface area to integrate with the bone and accept down pressure of two to three hundred pounds from an overlying denture or prosthesis. Since the implant is not positively anchored to the prosthesis, it does not have to resist large upward or sideways forces, reducing the risk of bone erosion. At the same time, the rest factor will reduce the trauma to underlying tissue and reduce or eliminate bone erosion from the overlying denture by accepting the downward pressure from the denture.
The implant recovery method and tool described above will eliminate the need to locate and expose osseointegrated implants by a surgical flap technique. The locating tool and guided tissue punch accurately locate the implant with minimal trauma, and remove only a plug of tissue directly above the implant sufficient to expose the healing screw for removal. The amount of trauma and bleeding is reduced and the tissue around the implant site remains virtually intact.
The rest factor 250 is made from a suitable metal such as titanium alloy. The dome portion has a wear resistant titanium nitride coating applied. Rest factors are provided in a range of different dimensions. The dome portion is preferably provided in a range of different heights, and in a preferred embodiment rest factors were provided with dome portions of height 1.5 mm, 2.5 mm and 3.5 mm for fitting patients with different gum thicknesses. The total height of the rest factor is preferably in the range 2 mm to 4.5 mm.
The stem portion 264 of the implant 260 has an annular recess 274 extending upwardly from its lower end to a position close to but offset downwardly from the lower end of the recess 268. Recess 274 forms an outer annular rim 276 and a central boss 278 at the lower end of the implant, and provides an area for bone growth and osseointegration upwardly into the implant. Thus, the implant is generally cup-shaped at its lower end, with a central protrusion in the cupped area. A triple lead screw having a first lead or thread 279, a second thread 280, and a third lead or thread 282 is formed around the outside of the stem portion 264. The threads 279, 280, 282 are preferably of square cross-section and project out a predetermined distance from the surface of the stem portion 264. The threads may each extend around approximately 180°C and preferably do not overlap, although they may overlap in alternative embodiments.
A triple lead thread having first, second and third threads 297, 298 and 299 is formed around the outer surface of stem portion 290. Preferably, the threads 297, 298 and 299 start at equally spaced intervals around the periphery of the stem portion adjacent its upper end but spaced downwardly a distance below the annular ring portion 286. The threads extend around the stem portion towards its lower end and terminate at a location spaced above the lower end of the stem portion. As in the version of
A series of four separate threads 314, 316, 318 and 320 is provided around the periphery of the stem portion 312. The threads start at equally spaced intervals around the periphery of the stem at a location close to but spaced slightly below the upper end of the stem portion, to leave a gap between the annular ring 286 and the threads. The gap is in the range from 1 mm to 2 mm.
Although in the illustrated embodiment the implants 260 and 284 each have three threads, and the longest implant has four external threads, any one of these implants may have two, three or four threads. The double, triple or quadruple lead thread allows for quick and solid engagement into a tapped bone site. The projecting screw threads form an undercut region and bone growth and attachment in this area increases the strength of the attachment and resistance to loosening forces. The unique cup shaped recess design at the lower end of the implant is also designed to increase bone to implant surface contact and attachment area.
The pitch or angle of the thread is preferably relatively steep and is preferably in the range from around 9°C to 17°C. The spacing between adjacent threads is preferably at least 1 mm. It has been found that this is the minimum spacing required to ensure significant bone growth and osseointegration in the gaps between threads. The threads preferably project out around ½ mm from the surface of the stem portion of the implant, and they are about ½ mm in height. Thus, the gaps between the threads are twice as wide as the threads themselves. This provides good blood supply to the bone between the threads, and provides a greater bone thickness and stronger shelf of bone between the threads.
Both the implants and the rest factor are all made in a range of lengths and diameters to fit the size of different patient's jaws. Implants will be provided in a range of lengths. Preferably, the lengths are of the order of 2 mm, 4.5 mm, 7 mm, 10 mm and 13 mm. The 2 mm length implant will be of the type illustrated in
The implants are made of a suitable material such as titanium and may be coated with a coating of a material for improving bone adhesion.
The method of installing implants 260, 284 and 286 will be similar with appropriate changes in the dimensions of the drilled bore to accommodate the different length stem portions and numbers of threads. The method will therefore be described for the implant 260 only, by way of example. The implantation method is similar to that illustrated in
The first step in the implant procedure is to select the site in the jaw at which the implant is to be installed. The appropriate height and diameter implant member is selected dependent on the bone depth, tissue height, and jaw thickness at the selected site. The minimum bone depth required is 1 mm between the bottom end of the installed implant and the mandibular nerve canal or maxillary sinus space. Thus, the total bone depth required for installing the 2.5 mm implant is only 3.5 mm, while the longer implants can be installed where a greater bone depth is available. The minimum bone width required to place a rest factor implant is ½ mm each on the lingual and facial sides of the implant, requiring a 5.0 mm total ridge width for the 4.0 diameter implant, 6.0 mm ridge width for the 5.0 mm diameter implant, and 7.0 mm ridge width for the 6.0 mm implant. Based on these dimensions, the appropriate implant can be selected.
The very short, 2.5 mm implant can be installed safely even where some bone erosion has already taken place and even in the distal jaw regions without risking interference with the mandibular nerve. The design is such that the implant has a relatively large surface area for bone to implant osseointegration, and undercut areas for improved retention and resistance to movement in any direction.
Once the appropriate implant has been selected, a bore shaped and dimensioned to correspond to the shape and dimensions of the implant is cut out. This is done in a series of steps. First, a mesio-distal incision is made through the tissue or gum 321 along the alveolar mid-crest at the selected site, typically the area of the second molar. A bone plateau is created which is made as flat as possible by removing ridges or other bone irregularities. At this point, the width of the alveolar crest can be measured to determine the largest diameter rest factor implant which can be fitted within the available width and still allow at least ½ mm of bone on each side. The implant is placed as close as possible to the lingual side while still allowing the ½ mm of bone on the lingual side.
At this point, a pilot burr is used to drill out a pilot hole of appropriate depth at the center of the insertion site, as illustrated in
An alignment pin may be placed in the pilot hole to check for proper alignment to the path of a prosthetic insertion and between multiple implants.
After alignment, a spot-face drill (not illustrated) is used to make a shallow, 360°C shoulder or seat 324 into the crest of the bone. This seat is used to assist in engaging of a bone tap in a later stage of the procedure. The drill is withdrawn several times during site preparation to remove bone buildup between the flutes of the drill. An implant body drill is used to drill out the main recess 328 for receiving the implant. This drill will be similar to drill 44 illustrated in
In the next step of the procedure, a core drill 326 is used to cut an annular ring or recess 330 at the bottom of recess 328 for receiving the underside rim 272 of the implant. Drill 326 has a central guide 332 for centering in the previously drilled pilot hole 322, a cylindrical central body portion, and a downwardly facing annular ring of cutting teeth 334 for drilling out an annular groove or recess 330 for receiving the rim 272 (or 302 in the case of the implant 284 or 310) of the implant.
A series of three guided hand taps (starting tap, intermediate tap and finish tap) are used to make a multiple lead tapped preparation into the drilled hole 328. It will be understood that the triple and quadruple leads will be made in a similar manner. One of the thread taps 336 is illustrated in FIG. 25. Each tap has a tap guide pin 338 which engages the pilot bore to keep the tap centered on the recess. Optionally, a tap guide template (not illustrated) may be secured across the recess via pins secured on opposite sides of the implant site. This can be used to provide better support for the bone tap if the patient has spongy, cancellous bone. The tap 336 has triple lead cutting flutes 340 for forming a thread matching that on the insert. The starting tap has a machined line indicating the start of the double cutting edge of the bone tap. The starting tap is positioned into the drilled recess and the cutting flutes are engaged into the cortical bone, with the machined line on the tap positioned perpendicular to the longitudinal axis of the ridge. The implant site is then hand tapped and threads 342, 343 and 345 are tapped into the recess. The tap is backed off a quarter of a turn several times during the process to clear bone chips. In this way, the tap is worked down to the bottom of the drilled recess 328.
The procedure is then repeated using an intermediate tap, which will be marked with two lines to distinguish from the other two thread cutting taps. The lines are positioned in the same starting position as the line on the starting tap. Finally, the procedure is repeated with the finish tap, which will be marked with three lines, to create a final cut of the bone thread to accept the implant.
An octagonal wrench 344 is used to place the implant into the prepared implant recess, as illustrated in FIG. 26. The octagonal end of wrench 344 will engage in the octagon 268 cut through the threads 266 and will not damage the threads in bore 266. The implant is completely seated with the implant threads completely engaged in the bone threads and the tapered upper portion of the implant projecting above the level of the bone, as illustrated in FIG. 26. If the implant is set in correctly, the stem portion 264 will have its upper end located ½ to 1 mm below the top of the bone, as illustrated in FIG. 26.
A healing screw is then threaded into the implant to protect the internal threads of the implant during the osseointegration period. The healing screw is similar to the healing screw 70 of the first embodiment but with a threaded stem matching bore 266 and a hex hole in place of threaded hole 76 at the upper end of the screw. The flap of gum 321 is sewn down over the implant site, in a similar manner to that illustrated in
The implant is then left for a healing period to allow the bone to osseointegrate with the surface of the implant. A healing period of not less than 4½ months should be used. The bone will grow over and osseointegrate into the gaps between the threads, providing a greater osseointegration surface area and better retention of the implant. The cup-shaped design of the lower end of the implant, along with the multiple lead threads, increases bone to surface contact and helps to withstand posterior occlusal load.
Where a triple or quadruple lead thread is used, resistance to rocking or movement of the implant is provided. With two opposing threads, there may be some tendency for the implant to rock from side to side. Thus, implants with three or four threads are used for even greater resistance to rocking as a result of loads.
After the minimum period required for osseointegration, an incision is made over the implant for access to the healing screw. Radiographic charts and finger palpation may be used to locate the general area of the implant. The incision may be made in a conventional manner, but preferably a guided tissue punch 82 is used as in the previous embodiments. The tissue is pierced with the sharp point or probe 91 of the tissue punch, and the implant site is probed until the point 91 locates a hex hole provided on the top of the healing screw. The guided tissue punch 92 is then turned down on the guide with firm pressure until it punches an opening through the tissue or gum. The tissue punch will engage the outside diameter of the healing screw, and will cut out a plug of tissue directly over the center of the implant, as illustrated in
The locating tool/tissue punch assembly is then removed, simultaneously pulling out the cut plug of tissue. If the tissue does not pull out with the tissue punch, forceps may be used to remove it and expose the healing screw. A cover screw hex tool (not illustrated) is used to engage the hex hole at the top of the cover screw and remove the cover screw from the implant.
The implant is now exposed for attachment of the dome-shaped rest factor 250 as illustrated in FIG. 27. The implant may alternatively be attached to other dental devices, such as implant anchors or magnetic abutments for dentures. The dimensions of the selected rest factor will depend on the implant dimensions and also the tissue height of the patient. The height of the implant should be such that the top of the dome is at the tissue level or only slightly above it. The dome portion of the rest factor selected should therefore have a height substantially equal to the tissue or gum thickness. If the gingival layer has a height substantially greater than the largest dome portion, tissue reduction must be used to reduce the gingiva thickness to a maximum of 3 mm at the implant site.
Once the correct size rest factor has been selected, a hex wrench 346 having a hexagonal shaft 348 is used to engage the hex bore 256 at the upper end of the dome-shaped upper end portion 252 of the rest factor. The rest factor is then threaded into the bore of the implant, as illustrated in FIG. 27. The tissue is then sewn back around the implant dome, as indicated in dotted lines in
If a change in tissue height has occurred during the tissue healing period, the rest factor may be unthreaded and replaced with another rest factor of the correct dimensions.
Once the healing period is complete, the top of the dome is exposed for a prosthesis to rest on with lateral freedom of movement. The preferred arrangement is to use the dome as a permanent, non-retentive rest when the patient has existing anterior retention for a prosthesis. However, the rest factor may be used as an attachment if required, for example if there is no existing retentive means for the prosthesis, or lateral stability is needed due to severely reduced ridge height. A hole is drilled into the center of the dome to an appropriate depth, and resin is injected into the counter-bore. When the resin starts to become firm, a post forming part of a standard rest plate of a denture is inserted into the bore until the bottom of the plate comes into contact with the resin.
Apart from threaded bore 352 and wrench element 354, insert 350 is otherwise identical to that of FIG. 21 and like reference numerals have been used as appropriate. It will be understood that a wrench element 354 may also be provided on the insert of
The use of an implant having two or more stabilizing threads on the outer surface of the stem embedded in the jawbone, combined with the inverted cup shape of the lower end of the implant, provides a stable implant which resists movement even in the case of the very short version. Bone growth into the inverted cup and between the threads provides a large area of bone to implant contact and osseointegration, providing significant resistance to both lateral and downward forces both during and after the osseointegration period.
The non-retentive rest factor can be used to support dentures non-retentively in the posterior area of the jaw. As a result, the pressure applied to the lower jaw by the denture during mastication is dramatically reduced, reducing the discomfort and bone erosion normally resulting from denture wear. Although the implant can be installed anywhere in the jaw for retentive or non-retentive engagement with a denture or prosthesis, it is particularly useful for providing support in posterior regions of the jaw where the jawbone has become eroded. The accepted formula for cantilevered dentition attached to anterior implants limits the extension of the cantilever over the posterior ridge to no further than the distance between the plane of the most anterior implant and the furthest posterior implant. This results in a lack of support under the molar dentition and an extraction effect on the anterior implants during masticatory function. With the additional support provided by one or more rest factors and implants in posterior regions of the jaw, the extraction effect is significantly reduced or eliminated. In addition, trauma to the ridge under occlusal load, and the resulting bone loss, may be reduced.
Although some preferred embodiments of the present invention have been described above by way of example only, it will be understood by those skilled in the field that modifications may be made to the disclosed embodiments without departing from the scope of the invention, which is defined by the appended claims.
Patent | Priority | Assignee | Title |
10772709, | Apr 19 2018 | Charles Buist, DMD, PA | Dental implant having split fins |
10820969, | Jul 09 2008 | Nobel Biocare Services AG | Medical implant and method of implantation |
11850114, | Jul 09 2008 | Nobel Biocare Services AG | Medical implant and method of implantation |
6966772, | May 02 2003 | Leo J., Malin | Method of adjusting a drill bushing for a dental implant |
6971877, | May 02 2003 | Leo J., Malin | Dental implant tool with attachment feature |
6997711, | Dec 23 2002 | Dental implant | |
7044735, | May 02 2003 | Leo J., Malin | Method of installing a dental implant |
7677891, | Feb 01 2005 | IMPLANT DIRECT INT L | Tapered endosseous dental implants with external multiple lead threads |
7905727, | Nov 01 2007 | Hitachi Metals, Ltd. | Implant keeper and its assembly, and keeper-fixing method |
8382811, | Jun 19 2009 | CTL Medical Corporation | Triple lead bone screw |
Patent | Priority | Assignee | Title |
2112007, | |||
3499222, | |||
3514858, | |||
3656236, | |||
3905109, | |||
4177562, | May 02 1977 | Dental implant and method of inserting the same | |
4234309, | Jun 22 1979 | Dental twist lock pin and wrench | |
4268253, | Dec 26 1979 | TURNER, CHRISTOPHER H | Dowel post for dental and medical prosthetic devices |
4359318, | Dec 18 1981 | IMPLANT SYSTEMS, INC , A CORP OF PA | Dental implant |
4431416, | Apr 29 1982 | CENTERPULSE DENTAL INC | Endosseous dental implant system for overdenture retention, crown and bridge support |
4486178, | Aug 14 1982 | Friedrichsfeld GmbH Steinzeug-und Kunststoffwerke | Tooth implant made of metal |
4488875, | Apr 29 1982 | Core-Vent Corporation | Connector for overdenture |
4531915, | Aug 14 1981 | Dental implant | |
4645453, | Sep 19 1985 | Bendable adapter for dental implant | |
4713003, | May 17 1985 | GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO, THE | Fixture for attaching prosthesis to bone |
4713004, | Sep 04 1986 | NOBEL BIOCARE USA; IMPLANT INNOVATIONS, INC | Submergible screw-type dental implant and method of utilization |
4738622, | Oct 07 1983 | Wada Seimitsu Shiken Kabushiki Kaisha; Nippon Maktron Kabushiki Kaish; Haruyuki, Kawahara | Removable denture retaining structure |
4744755, | Aug 13 1986 | ROSS SYSTEMS CORPORATION, A CORP OF DE | Dental implant and method for installing same |
4762492, | Jul 18 1986 | Yamaura Seisakusho Ltd. | Artificial tooth root member and method of implanting same |
4854872, | Sep 24 1987 | Prosthetic implant attachment system and method | |
4856994, | Jan 25 1988 | Biomet 3i, LLC | Periodontal restoration components |
4906191, | Jun 25 1987 | Astra Tech Aktiebolag | Dental bridge |
4907969, | Apr 14 1988 | Universal dental prosthesis retention system | |
4932868, | Sep 04 1986 | V P INTELLECTUAL PROPERTIES, L L C | Submergible screw-type dental implant and method of utilization |
4978350, | Oct 13 1986 | Stryker Trauma SA | Transcutaneous pin for fixation of a bone part or fragment |
5007835, | Aug 17 1989 | Dental implant | |
5022860, | Dec 13 1988 | Implant Innovations, Inc. | Ultra-slim dental implant fixtures |
5078607, | Jan 08 1987 | CENTERPULSE DENTAL INC | Dental implant including plural anchoring means |
5087201, | Dec 04 1987 | Self-threading pin for the implantation of dental prosthesis | |
5108288, | Jun 14 1991 | Non-rotational prosthodontic restoration | |
5195891, | Dec 06 1990 | Sterngold Dental, LLC | Adjustable dental implant system |
5209659, | Sep 05 1990 | Impla-Med Incorporated | Method for installing a dental implant |
5246369, | Sep 02 1988 | Implantable system, rotary device and operating method | |
5254005, | Nov 14 1989 | Zimmer Dental, Inc | Dental implant system and method |
5259398, | Oct 26 1989 | Method for fixing prosthesis to bones | |
5269686, | May 10 1993 | Threaded drivable dental implant | |
5443509, | Dec 10 1992 | Linvatec Corporation | Interference bone-fixation screw with multiple interleaved threads |
5468149, | Sep 14 1992 | Dual function prosthetic locking device for endosseous dental implants | |
5593410, | Oct 26 1989 | Screw device for fixing prostheses to bones | |
DE4238383, | |||
FR2635964, | |||
WO9312733, |
Date | Maintenance Fee Events |
May 28 2004 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 07 2008 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Jul 14 2008 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Apr 09 2005 | 4 years fee payment window open |
Oct 09 2005 | 6 months grace period start (w surcharge) |
Apr 09 2006 | patent expiry (for year 4) |
Apr 09 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 09 2009 | 8 years fee payment window open |
Oct 09 2009 | 6 months grace period start (w surcharge) |
Apr 09 2010 | patent expiry (for year 8) |
Apr 09 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 09 2013 | 12 years fee payment window open |
Oct 09 2013 | 6 months grace period start (w surcharge) |
Apr 09 2014 | patent expiry (for year 12) |
Apr 09 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |