A polyaxial orthopedic device for use with rod implant apparatus includes a screw having a curvate head, a two-piece interlocking coupling element which mounts about the curvate head, and a rod receiving cylindrical body member having a tapered socket into which both the screw and the interlocking coupling element are securely nested. The interlocking coupling element includes a socket portion which is slotted and tapered so that when it is radially compressed by being driven downwardly into the tapered socket in the cylindrical body it crush locks to the screw. The securing of the rod in the body member provides the necessary downward force onto the socket portion through a contact force on the top of the cap portion. Prior to the rod being inserted, therefore, the screw head remains polyaxially free with respect to the coupling element and the body. In a preferred embodiment, the cap portion and the socket portion are formed and coupled in such a way that when the cap portion is compressed toward the socket portion, there is an additional inward radial force applied by the cap portion to the socket portion, thereby enhancing the total locking force onto the head of the screw.

Patent
   RE37665
Priority
Apr 13 1995
Filed
Jan 30 2001
Issued
Apr 16 2002
Expiry
Apr 13 2015
Assg.orig
Entity
Large
425
5
EXPIRED
0. 18. An orthopedic fixation assembly for use with an orthopedic rod implantation apparatus, comprising:
a body comprising an axial bore extending therethrough and a channel extending perpendicularly to said axial bore at a top end of said body, said axial bore having a threaded portion at said top end of said body member and a chamber portion at a bottom end of said body member, said chamber portion defining an upper chamber portion and a bottom chamber portion, said bottom chamber portion including a nesting surface defining a nesting volume;
a screw having a semi-spherical head, said semi-spherical head being located within said chamber portion of said body member;
a coupling element comprising:
a retaining portion having an inner surface which seats said semi-spherical head of said screw permitting angulation of said screw relative to said body, and an outer surface being seated within said nesting volume, said retaining portion further including a slot extending between said inner and outer surfaces, said slot rendering at least said outer surface of retaining portion to be deformable; and
a cap portion moveably located within said upper chamber portion and over said semispherical head of said screw; and
a locking nut having a threaded portion which is mateable with said threaded portion of said axial bore allowing a portion of said locking nut to advance into said axial bore;
wherein when a rod is placed in said channel, advancement of said locking nut produces a downward force on the rod translating into a downward movement of at least said cap portion and said screw causing deformation of said outer surface of said retaining portion within said nesting surface resulting in a locking force applied by said retaining portion against said semi-spherical head causing said screw to be compression locked within said body.
0. 12. An orthopedic fixation assembly for securing an orthopedic rod implantation apparatus, comprising:
a cylindrical body including an axial bore extending therethrough, said body including a channel at a top end of said body, said axial bore defining a chamber portion at a bottom end of said body, said chamber portion having an upper chamber portion and a bottom chamber portion, said bottom chamber portion further including a retaining surface, and said top end of said body having a threading thereon;
a screw having a semi-spherical head, said semi-spherical head is mounted within said bottom chamber portion of said axial bore of said body;
a coupling assembly comprising:
a retaining portion having an inner surface for seating said semi-spherical head of said screw, said retaining portion further including a slot formed therein, said slot rendering a volume of said retaining portion to be adjustable, said retaining portion further being shaped to seat in said retaining surface of said bottom chamber of said axial bore of said cylindrical body, such that advancement of semi-spherical head against said retaining portion causes said head of said screw to be compression locked thereagainst,
a cap portion slidably located within said upper chamber portion and adapted for location between a rod and said top surface of said screw head; and
a top locking nut, mateable with said threading of said body,
wherein said semi-spherical head portion is freely rotational within said retaining portion prior to being compressed onto said retaining portion, and
whereby when the rod is in said channel, downward movement of said top locking nut onto the rod results in a force upon said cap portion causing forcible advancement of the semi-spherical head of said screw thereby locking said screw, said coupling assembly and said body relative to one another.
1. A polyaxial screw and coupling element assembly for use with orthopedic rod implantation apparatus, comprising:
a screw having a semi-spherical head;
a cylindrical body including an axial bore defining a bottom chamber portion at a bottom end thereof and a rod receiving channel at a top end thereof, said bottom chamber portion further defining a tapered lower portion and a constant diameter upper chamber portion, and said top end having a threading thereon;
a two-piece interlocking coupling element including
a socket portion having a semi-spherical interior volume for receiving therein the head of said screw, upper and lower sections, and vertical slots formed in said upper and lower sections, at least one of said slots rendering said interior volume expandable and contractable, said lower section having a tapered exterior surface for nesting in said tapered lower chamber portion of said cylindrical body such that forceable advancement of socket portion along the tapered lower chamber portion of the axial bore causes the at least one of said slots to narrow such that the semi-spherical interior volume contract, and
a cap portion having an opening in a bottom thereof and an interior chamber extending upwardly therefrom for joining with, and slideably retaining therein, the upper section of said socket portion, said cap portion initially seating with a portion thereof extending into a bottom portion of said rod receiving channel; and
a top locking nut, mateable with said threading, for locking a rod in said channel and for applying therethrough a downward force onto said cap portion,
wherein said semi-spherical head portion is rotationally freely mounted within the semi-spherical interior volume of the socket portion prior to said socket portion being forceably advanced into the tapered lower chamber portion of the axial bore, and
whereby downward compression of a rod in said channel portion of said body member, by said top locking nut, onto the cap portion causes the forceable advancement of the socket portion into the tapered lower chamber portion of the axial bore, and locks the screw, coupling element and body relative to one another.
7. An orthopaedic implant apparatus having a rod and a plurality of screw and coupling element assemblies, comprising:
at least one screw having a semi-spherical head;
at least one cylindrical body including an axial bore defining a bottom chamber portion at a bottom end thereof and a rod receiving channel at a top end thereof, said bottom chamber portion further defining a tapered lower portion and a constant diameter upper chamber portion, and said top end having a threading thereon;
at least one corresponding two-piece interlocking coupling element including
a socket portion having a semi-spherical interior volume for receiving therein the head of said corresponding screw, upper and lower sections, and vertical slots formed in said upper and lower sections, at least one of said slots rendering said interior volume expandable and contractable, said lower section having a tapered exterior surface for nesting in said corresponding tapered lower chamber portion of said cylindrical body such that forceable advancement of socket portion along the tapered lower chamber portion of the axial bore causes the at least one of said slots to narrow such that the semi-spherical interior volume contract, and
a cap portion having an opening in a bottom thereof and an interior chamber extending upwardly therefrom for joining with, and slideably retaining therein, the upper section of said socket portion, said cap portion initially seating with a portion thereof extending into a bottom portion of said rod receiving channel; and
at least one corresponding top locking nut, mateable with said threading, for locking a rod in said channel and for applying therethrough a downward force onto said cap portion,
wherein said semi-spherical head portion is rotationally freely mounted within the semi-spherical interior volume of the socket portion prior to said socket portion being forceably advanced into the tapered lower chamber portion of the axial bore, and
whereby downward compression of a rod in said channel portion of said body member, by said top locking nut, onto the cap portion causes the forceable advancement of the socket portion into the tapered lower chamber portion of the axial bore, and locks the screw, coupling element and body relative to one another.
2. The polyaxial screw as set forth in claim 1, wherein said semi-spherical head of said screw further includes a recess formed therein for receiving therein a screwdriving tool such that said screw may be threadably advanced into a vertebral bone.
3. The polyaxial screw as set forth in claim 1, wherein said threading on said top end is on the interior surface of said channel.
4. The polyaxial screw as set forth in claim 3, wherein said cap portion further includes a threading and wherein said cap portion needs to be threadably advanced along the threading to be seated in the bore into its initial position.
5. The assembly as set forth in claim 1,
wherein said socket portion further comprises a substantially constant diameter upper section having an outwardly annular extending lip at an extreme end thereof,
wherein said opening in the bottom of the cap portion comprises an inwardly directed annular lip, and
wherein at least one of said vertical slots in the upper section of said socket portion renders the upper section thereof to be expandable and contractable such that the upper section of the socket portion may be forceably inserted into the opening in the bottom of the cap portion so that it may be retained in the interior chamber therein by mutual interference engagement of the inwardly directed annular lip of the cap portion and the outwardly extending annular lip of the socket portion.
6. The assembly as set forth in claim 5, wherein the interior chamber of the cap portion comprises a tapered surface such that advancement thereof into the hole causes an inwardly directed force against the upper section of the socket portion, therein causing the at least one of said vertical slots in the upper section to narrow and causes the upper section to contract and further lock the head of the screw within the interior semi-spherical volume of the socket portion.
8. The apparatus as set forth in claim 7, wherein said threading on said top end is on the interior surface of said channel.
9. The apparatus as set forth in claim 8, wherein said cap portion further includes a threading and wherein said cap portion needs to be threadably advanced along the threading to be seated in the bore into its initial position.
10. The apparatus as set forth in claim 7,
wherein said socket portion further comprises a substantially constant diameter upper section having an outwardly annular extending lip at an extreme end thereof,
wherein said opening in the bottom of the cap portion comprises an inwardly directed annular lip, and
wherein at least one of said vertical slots in the upper section of said socket portion renders the upper section thereof to be expandable and contractable such that the upper section of the socket portion may be forceably inserted into the opening in the bottom of the cap portion so that it may be retained in the interior chamber therein by mutual interference engagement of the inwardly directed annular lip of the cap portion and the outwardly extending annular lip of the socket portion.
11. The apparatus as set forth in claim 10, wherein the interior chamber of the cap portion comprises atapered surface such that advancement thereof into the hole causes an inwardly directed force against the upper section of the socket portion, therein causing the at least one of said vertical slots in the upper section to narrow and causes the upper section to contract and further lock the head of the screw within the interior semi-spherical volume of the socket portion.
0. 13. The orthopedic fixation assembly set forth in claim 12, wherein said axial bore has a substantially constant diameter at said upper chamber portion.
0. 14. The orthopedic fixation assembly set forth in claim 12, wherein said semi-spherical head of said screw further includes a recess for receiving a screwdriving tool such that said screw may be threadably advanced into a vertebral bone.
0. 15. The orthopedic fixation assembly set forth in claim 12, wherein said threading on said top end is on a surface of said axial bore.
0. 16. The orthopedic fixation assembly set forth in claim 15, wherein said cap portion further includes a threading mating with said threading on said axial bore and wherein said cap portion is threadably advanced along said threading of said axial bore to be seated into said upper chamber portion.
0. 17. The orthopedic fixation assembly set forth in claim 12 wherein said channel extends through a top surface of said body creating at least one pair of upwardly extending members.
0. 19. The orthopedic fixation assembly of claim 18, where said semi-spherical head of said screw further comprises a recess formed therein for receiving a screwdriving tool such that said screw may be threadably advanced into a vertebral bone.
0. 20. The orthopedic fixation assembly of claim 18, wherein said axial bore has a constant diameter at said upper chamber portion.
0. 21. The orthopedic fixation assembly of claim 18, wherein said cap portion further includes a threading and wherein said cap portion is threadably advanced along said threaded portion of said axial bore prior to seating in said chamber portion.
0. 22. The orthopedic fixation assembly of claim 18, wherein said locking nut includes a post position which is seated in said axial bore, wherein when the rod is in said channel, a bottom surface of said post portion contacts the rod.
0. 23. The orthopedic fixation assembly set forth in claim 18 wherein said channel extends through a top surface of said body creating at least one pair of upwardly extending members.

This application is a continuation-in-part of prior application U.S. Ser. No. 08/663,383, entitled "A Polyaxial Pedicle Screw", filed Jun. 13, 1996, now U.S. Pat. No. 5,669,911 and which, in turn, was a continuation-in-part of Ser. No. 08/421,087, filed Apr. 13,1995, now issued U.S. Pat. No. 5,520,690, entitled "An Anterior Spinal Polyaxial Locking Screw Plate Assembly".

1. Field of the Invention

This invention relates generally to a polyaxial screw and coupling apparatus for use with orthopedic fixation systems. More particularly, the present invention relates to a screw for insertion into spinal bone, and a coupling element polyaxially mounted thereto, via a two-piece interlocking coupling element having a socket portion and a threaded compression member, for coupling the screw to an orthopedic implantation structure, such as a rod, therein enhancing the efficacy of the implant assembly by providing freedom of angulation among the rod, screw and coupling element.

2. Description of the Prior Art

The bones and connective tissue of an adult human spinal column consists of more than 20 discrete bones coupled sequentially to one another by a tri-joint complex which consist of an anterior disc and the two posterior facet joints, the anterior discs of adjacent bones being cushioned by cartilage spacers referred to as intervertebral discs. These more than 20 bones are anatomically categorized as being members of one of four classifications: cervical, thoracic, lumbar, or sacral. The cervical portion of the spine, which comprises the top of the spine, up to the base of the skull, includes the first 7 vertebrae. The intermediate 12 bones are the thoracic vertebrae, and connect to the lower spine comprising the 5 lumbar vertebrae. The base of the spine is the sacral bones (including the coccyx). The component bones of the cervical spine are generally smaller than those of the thoracic and lumbar spine. For the purposes of this disclosure, however, the word spine shall refer only to the cervical region.

Referring now to FIGS. 1, 2, and 3, top, side, and posterior views of a vertebral body, a pair of adjacent vertebral bodies, and a sequence of vertebral bodies are shown, respectively. The spinal cord is housed in the central canal 10, protected from the posterior side by a shell of bone called the lamina 12. The lamina 12 includes a rearwardly and downwardly extending portion called the spinous process 16, and laterally extending structures which are referred to as the transverse processes 14. The anterior portion of the spine comprises a set of generally cylindrically shaped bones which are stacked one on top of the other. These portions of the vertebrae are referred to as the vertebral bodies 20, and are each separated from the other by the intervertebral discs 22. The pedicles 24 comprise bone bridges which couple the anterior vertebral body 20 to the corresponding lamina 12.

The spinal column of bones is highly complex in that it includes over twenty bones coupled to one another, housing and protecting critical elements of the nervous system having innumerable peripheral nerves and circulatory bodies in close proximity. In spite of these complexities, the spine is a highly flexible structure, capable of a high degree of curvature and twist in nearly every direction. Genetic or developmental irregularities, trauma, chronic stress, tumors, and disease, however, can result in spinal pathologies which either limit this range of motion, or which threaten the critical elements of the nervous system housed within the spinal column. A variety of systems have been disclosed in the art which achieve this immobilization by implanting artificial assemblies in or on the spinal column. These assemblies may be classified as anterior, posterior, or lateral implants. As the classifications suggest, lateral and anterior assemblies are coupled to the anterior portion of the spine, which is the sequence of vertebral bodies. Posterior implants generally comprise pairs of rods, which are aligned along the axis which the bones are to be disposed, and which are then attached to the spinal column by either hooks which couple to the lamina or attach to the transverse processes, or by screws which are inserted through the pedicles.

"Rod assemblies" generally comprise a plurality of such screws which are implanted through the posterior lateral surfaces of the laminae, through the pedicles, and into their respective vertebral bodies. The screws are provided with upper portions which comprise coupling elements, for receiving and securing an elongate rod therethrough. The rod extends along the axis of the spine, coupling to the plurality of screws via their coupling elements. The rigidity of the rod may be utilized to align the spine in conformance with a more desired shape.

It has been identified, however, that a considerable difficulty is associated with inserting screws along a misaligned curvature and simultaneously exactly positioning the coupling elements such that the rod receiving portions thereof are aligned so that the rod can be passed therethrough without distorting the screws. Attempts at achieving proper alignment with fixed screws is understood to require increased operating time, which is known to enhance many complications associated with surgery. Often surgical efforts with such fixed axes devices cannot be achieved, thereby rendering such instrumentation attempts entirely unsucessful.

The art contains a variety of attempts at providing instrumentation which permit a limited freedom with respect to angulation of the screw and the coupling element. These teachings, however, are generally complex, inadequately reliable, and lack long-term durability. These considerable drawbacks associated with prior art systems also include difficulty properly positioned the rod and coupling elements, and the tedious manipulation of the many small parts in the operative environment.

It is, therefore, the principal object of the present invention to provide a pedicle screw and coupling element assembly which provides a polyaxial freedom of implantation angulation with respect to rod reception.

In addition, it is an object of the present invention to provide such an assembly which comprises a reduced number of elements, and which correspondingly provides for expeditious implantation.

Accordingly it is also an object of the present invention to provide an assembly which is reliable, durable, and provides long term fixation support.

Other objects of the present invention not explicitly stated will be set forth and will be more clearly understood in conjunction with the descriptions of the preferred embodiments disclosed hereafter.

The preceding objects of the invention are achieved by the present invention which is a polyaxial locking screw and coupling element for use with rod stabilization and immobilization systems in the spine. More particularly, the polyaxial screw and coupling element assembly of the present invention comprises a bone screw having a head which is curvate in shape, for example semi-spherical, and a two-piece interlocking coupling element mounted thereto. This combination is mounted inside the bottom of an internal channel of a cylindrical body member.

More specifically, with respect to the cylindrical body member, the tubular body comprises a rod receiving channel formed in the upper portion thereof, with a threading formed on the remaining upper elements so that a rod securing nut and/or set screw may be threaded thereon once a rod has been placed in the channel. The body further includes an axial bore which includes extends from the rod receiving channel through to the bottom of the cylinder. The portion of the axial bore which is below the channel forms a receiving chamber, the upper portion thereof having a constant diameter, and the lower portion of the chamber being inwardly tapered. The inner surface of the upper portion of the chamber and/or the inner surface of the portion of the axial bore which is above the chamber may further include a threading.

The two-piece interlocking coupling element comprises and socket portion and a cap portion. The socket portion is designed with an interior semi-spherical volume, so that it may receive the semi-spherical head of a corresponding bone screw. The interior volume of the socket portion is open at both axial ends thereof. The exterior surface of the socket portion, at the bottom thereof, includes a first set of slots which extend upwardly from the opening so that the interior semi-spherical volume may be expanded or contracted by the application of a radial force. In addition, the exterior surface at the bottom is tapered so that it is narrower at the bottom than at a midpoint. This taper is designed to mate with and nest in the tapered lower portion of the socket portion of the axial bore of the body member.

The upper exterior surface of the socket portion comprises a second set of slots, directed axially along the element to the midpoint, such that the upper opening of the socket element may expand and contract in accordance with the application of a radial force thereon. The exterior surface of this upper section of the socket portion is not tapered and is narrower than the widest taper position of the bottom of the socket portion. The upper section, however, does further include an outwardly extending annular lip at the uppermost axial position. This upper section is designed to be inserted into, and joined with, the cap portion of the coupling element.

The cap portion has a generally cylindrical shape, having an open bottom. The open bottom is inwardly tapered, forming an inwardly extending annular lip, so that as the upper end of the socket portion is inserted, its upper slots are narrowed. Once axially inserted beyond this taper, the upper section of the socket portion expands outward over the inwardly extending annular lip. The inwardly extending annular lip engages the outwardly extending lip of the socket portion so as to prevent disengagement of the two pieces. The socket portion is then permitted to slide into the cap portion, until the larger diameter of the tapered lower portion of the socket contacts the entrance of the cap portion.

The exterior surface of the cap portion may be threaded, so that it may engage a threading of the upper portion of the socket portion and/or the inner surface of the axial bore which is above the socket portion. In addition, the top of the cap includes an opening so that a screw driving tool may directly engage the top of the screw.

The assembly of the entire device begins with the joining of the socket portion to the cap portion of the two-piece interlocking coupling element. This is achieved by the slideable interlocking mating of the two elements. Next, the semi-spherical head of the screw is inserted into the socket portion through the lower expandable opening in the taper portion. Once these parts have been assembled the screw and coupling element should be polyaxially rotateable relative to one another. The screw and coupling element are then inserted through the axial bore of the body (which may require the threading the cap portion of the coupling element along the threading on the inner surface of the axial bore and/or the threading of the cap along the threading of the upper portion of the chamber) until the socket portion nests in the tapered lower portion of the axial bore. If the upper portion of the chamber includes a threading it should not extend beyond the point of the initial nesting of the coupling element in the chamber. This is important because the cap portion must be able to move relative to the socket portion.

In this initial position, the top of the cap portion should rest above the bottom of the rod receiving channel so that a rod, when placed therein, seats directly onto the top of the cap. This direct contact provides the downward force necessary to compress the coupling element into the chamber so that the socket portion is compressed in the tapered portion and locks to the head of the screw.

In a preferred variation of this embodiment, the interior surface of the cap portion includes a slight narrowing taper so that as the cap is compressed downward by the rod, the upper slots of the socket portion are also narrowed, further increasing the crush locking effect on the head of the screw.

The implantation of this screw by a surgeon may proceed first by the assembly of the screw into its initial state. The shaft of the screw is then driven into the vertebral bone at the desired angulation. A rod is then introduced into the rod receiving channel, and the body is angulated into the most ideal position for receiving the rod. A nut and/or set screw is then used to secure the rod in the channel, and simultaneously to provide a sufficient downward translational force to cause the socket portion to be driven into the tapered portion of the chamber in the axial bore, and further to cause the cap portion to drive downwardly also (this further compression locking the screw head in the embodiment wherein the sliding of the cap portion toward the socket portion provides an additional compression on the top of the socket portion and therefore onto the head of the screw).

In a preferred variation, the locking nut comprises a cap nut which has a central post which is designed to provide additional structural support to the inner walls of the element at the top thereof, as well as providing a central seating pressure point for locking the rod in the channel. In either variation, the locking nut seats against the rod and prevents it from moving translationally, axially and rotationally.

Multiple screw assemblies are generally necessary to complete the full array of anchoring sites for the rod immobilization system, however, the screw assembly of the present invention is designed to be compatible with alternative rod systems so that, where necessary, the present invention may be employed to rectify the failures of other systems when the surgery may have already begun.

FIG. 1 is a top view of a human vertebra, which is representative of the type for which the present invention is useful for coupling thereto a rod apparatus;

FIG. 2 is a side view of a pair of adjacent vertebrae of the type shown in FIG. 1;

FIG. 3 is a posterior view of a sequence of vertebrae of the type shown in FIGS. 1 and 2;

FIG. 4 is a side view of a screw having a curvate head which is an aspect of the present invention;

FIG. 5 is a side view of a two-piece interlocking coupling element of present invention;

FIG. 6 is a side view of a two-piece interlocling coupling element of present invention mounted around the head of a screw of the type shown in FIG. 4;

FIG. 7 is a side cross-sectional view of a cylindrical body having a chamber for receiving the two-piece interlocking coupling element and the screw of the present invention;

FIG. 8 is a side cross-sectional view of a top locking nut which is an aspect of the present invention;

FIG. 9 is a side cross-sectional view of an embodiment of the present invention in its fully assembled disposition having a rod securely locked therein; and

FIG. 10 is a side view of an alternative embodiment of the present invention in its fully assembled disposition having a rod securely locked therein.

While the present invention will be described more fully hereinafter with reference to the accompanying drawings, in which particular embodiments and methods of implantation are shown, it is to be understood at the outset that persons skilled in the art may modify the invention herein described while achieving the functions and results of this invention. Accordingly, the descriptions which follow are to be understood as illustrative and exemplary of specific structures, aspects and features within the broad scope of the present invention and not as limiting of such broad scope.

Referring now to FIG. 4, a side view of the screw portion of the present invention, comprising a curvate head, is shown. The screw 120 comprises a head portion 122, a neck 124, and a shaft 126. In FIG. 4, the shaft 126 is shown as having a tapered shape with a high pitch thread 128. It shall be understood that a variety of shaft designs are interchangeable with the present design. The specific choice of shaft features, such as thread pitch, shaft diameter to thread diameter ratio, and overall shaft shape, should be made be the physician with respect to the conditions of the individual patient's bone, however, this invention is compatible with a wide variety of shaft designs.

The head portion 122 of the screw 120 comprises a semi-spherical shape, which has a recess 130 in it. It is understood that the semi-spherical shape is a section of a sphere, in the embodiment shown the section is greater in extent than a hemisphere, and it correspondingly exhibits an external contour which is equidistant from a center point of the head. In a preferred embodiment, the major cross-section of the semi-spherical head 122 (as shown in the two dimensional illustration of FIG. 4) includes at least 270 degrees of a circle.

The recess 130 defines a receiving locus for the application of a torque for driving the screw 120 into the bone. The specific shape of the recess 122 may be chosen to cooperate with any suitable screw-driving tool. For example, the recess 130 may comprise a slot for a screwdriver, a hexagonally shaped hole for receiving an allen wrench, or most preferably, a threading for a correspondingly threaded post. It is further preferable that the recess 130 be co-axial with the general elongate axis of the screw 120, and most particularly with respect to the shaft 126. Having the axes of the recess 130 and the shaft 126 co-linear facilitates step of inserting the screw 120 into the bone.

The semi-spherical head portion 122 is connected to the shaft 126 at a neck portion 124. While it is preferable that the diameter of the shaft 126 be less than the diameter of the semi-spherical head 122, it is also preferable that the neck 124 of the screw 120 be narrower than the widest portion of the shaft 126. This preferable dimension permits the screw to swing through a variety of angles while still being securely joined to the locking collar (as set forth more fully with respect to FIGS. 5, 8-9).

Referring now to FIG. 5, the two elements which form the two-piece interlocking coupling element of the present invention are shown in a side cross-section view. Phantom lines show the interior structure of the elements along the diametrical cross section. With specific reference to the socket portion 132, the coupling element comprises a roughly cylindrical shape having an interior volume 134 in which the semi-spherical head 122 of the screw 120 is disposed. The interior volume 134 is open at the top 136 of the socket portion 132 and at the bottom thereof 138. The lower section 131 of the socket portion 132 comprises a set of slots 133 which extend vertically from the bottom 138 of the socket portion 132 to a position above the maximum diameter of the semi-spherical interior volume 134. These slots 133 permit the interior volume to expand and contract in accordance with the application of a radial force thereon. The external surface 135 of the lower section 131 of the socket portion 132 is tapered such that the narrowest part of the lower section 131 is at the bottom 138.

The upper section 139 of the socket portion 132 has a generally constant diameter, which is less than the diameter at the uppermost position 137 of the taper of the lower section 131. A second set of vertical slots 141 are provided in this upper section 139 so that it may also expand and contract in accordance with radial forces applied thereto. In addition, the uppermost end of this upper section 139 comprises an outwardly extending annular lip 140.

The cap portion 142 of the coupling element comprises an opening 143 in the bottom thereof, having an inwardly tapered entrance surface conformation 144. As the upper section 139 of the socket portion 132 is inserted into the opening 143 in the cap portion 142, the taper 144 of the opening 143 provides an inwardly directed force which causes the upper section 139 to contract (causes the slots 141 to narrow). This tapered entrance 144 opens to form an annular lip 145 which is useful for engaging and retaining the annular lip 140 of the upper section 139 of the socket portion 132. The interior surface 146 of the cap portion has a constant diameter, therein permitting the inserted upper section 139 of the socket portion 132 to slide and rotate relative to the cap portion 142.

The exterior surface of the cap portion 142 comprises a threading 147 which is designed to engage threadings 211 disposed in the axial bore of the rod receiving body member (see FIG. 7). In addition, the cap portion 142 comprises an axial hole 148 through which a surgeon may insert a screw driving tool to access the head of the screw which is positioned in the interior volume 134 of the socket portion 132.

More particularly, with respect to the disposition of the head 122 of the screw 120 in the socket portion 132, and with reference to FIG. 6, a partially assembled screw 120 and coupling element is shown in a side cross-section view. The top 136 of the socket portion 132 is inserted into the opening in the cap portion 142 until the annular lip 140 of the socket 132 seats into the cap 142. The screw 120 is loosely held within the socket 132, which is, in turn, loosely retained within the cap 142.

Referring now to FIG. 7, the rod receiving body member 200 of the present invention is shown in a side view, wherein critical features of the interior of the element are shown in phantom. The body member 200, which comprises a generally cylindrical tubular body having an axial bore 201 extending therethrough, may be conceptually separated into a chamber portion 202 at the bottom of the axial bore 201, and an upper rod receiving channel portion 204, each of which shall be described more fully hereinbelow.

The upper rod receiving channel portion 204 of the body 200 includes a channel 206 formed therein, having rounded bottom surfaces 207. The channel 206, in turn, divides the walls of the cylindrical body of the upper portion 204 into a pair of upwardly extending members 214a, 214b. As shown in the embodiment illustrated in FIG. 7, the vertical distance from the top 208 of the channel to the curvate bottom 207 thereof, is larger than the diameter of the rod which is to be provided therein. This distance is necessarily larger than the diameter of the rod (see FIGS. 9 and 10) so that the rod may be fully nested in the channel 206. In addition, the depth of the bottom curvate surface 207 of the channel is such that the cap portion 142 of the two-piece interlocking coupling element initially seats above the curvate bottom 207 of the body 200.

The upwardly extending members 214a, 214b further have, disposed thereon, a threading 216 (which may be provided on the inner and/or outer circumferential surfaces, but which is shown in FIGS. 7, 9 and 10 as being on the inner circumferential surface). This threading 216 is ideally suited for receiving a top locking nut (see FIG. 8).

Referring now to the lower portion of the body, the chamber portion 202 can further be subdivided into a lower chamber portion 203 which includes an inwardly tapered surface, and an upper chamber portion 205 which has a constant diameter. The inwardly tapered portion 203 defines a nesting volume into which the socket portion 132 may nest. Prior to its being fully driven into this nesting volume, the socket portion 132 and the screw 120 disposed therein may be angulated relative to one another, and the screw 120 may be angulated relative to the body 200. Once driven fully into the tapered lower chamber portion 203, however, the taper of the axial bore 201 provides the necessary inwardly directed radial force to cause the socket portion 132 to crush lock to the head 122 of the screw 120.

The force which causes the socket portion 132 to be driven downwardly into the tapered lower chamber portion 203 is provided by the cap portion 142. More specifically, as stated above, when the initially assembled screw 120 and coupling element combination 132 and 142 (see FIG. 6) is advanced into the bottom of the axial bore 201 of the body 200, and the socket portion 132 nests in the lower chamber portion 203, the top of the cap portion 142 is positioned to receive the rod (see FIGS. 9 and 10) directly thereon. The locking of the rod in the channel 206 of the body 200 causes the cap portion 142 to be forced downwardly onto the socket portion 132, which in turn drives the socket portion 132 into the tapered lower chamber portion 203 and causes it of compression lock to the head 122 of the screw 120.

Referring now to FIG. 8, a top locking nut 185 is shown in side cross-section view. The nut 185 comprises post portion 186 and a flange portion 187, each of which is rotafionally free, relative to the other. The post portion 186 includes a threading 188 thereon, for engaging and advancing along a threading 216 on the inner surface of the upwardly extending members 214a, 214b of the upper portion 204 of the body 200. The bottom surface 189 of the flange portion 187 (which does not rotate relative to the body as the post portion 186 is rotationally advanced) is intended to seat against the top surface of the rod 250.

Referring now to FIG. 9, in which the fully assembled and body member 200, screw 120, coupling element portions 132 and 142, rod 250 and locking nut 185 are shown in side cross-section views, the implantation of this embodiment is described. First, the screw 120 and the two portions 132 and 142 of the coupling element are assembled into their initial association (see FIG. 6). The combination of the screw 120 and the two coupling element portions 132 and 142 are then advanced down the axial bore 201 of the body 200 until the socket portion 132 nests in the lower chamber 203 and the top of the cap portion 142 seats above the bottom 207 of the channel 206. (This insertion of the subassembly of the screw 120 and coupling element portions 132 and 142 into the axial bore 201 of the body 200 may require the threaded advance of the cap portion 142 along the interior threads 216 of the body.)

The shaft of the screw 120 is then inserted and driven downward into the vertebral bone at the desired angle. Once properly positioned, the body 200 is rotated into the ideal rod receiving position. The rod 250 is then inserted into the channel 206 and the top locling nut 185 is threaded onto the threading 216 and compresses the rod 250 to securely lock it in the channel 206. This downward force of the nut 185 and the rod 250 onto the cap portion 142 causes the cap portion to translate downward thus causing the socket portion 132 to translate downward in the tapered chamber 203 and contract to crush against the head 122 of the screw 120. The assembly is thereby fully locked in position.

Referring to FIG. 10, a variation of the above device is shown in a similar cross-section view. In this embodiment, the inner surface 146' of the cap portion 142 is tapered inwardly in the vertical direction so that the downward translation of the cap portion 142 causes the annular lip 140 of the socket portion 132 to be compressed inwardly. This causes the slots 141 of the upper section 139 of the socket portion 132 to narrow. This may be utilized to further clamp the interior volume 134 against the head 122 of the screw 120.

While there has been described and illustrated embodiments of a polyaxial screw and coupling element assembly for use with posterior spinal rod implantation apparatus, it will be apparent to those skilled in the art that variations and modifications are possible without deviating from the broad spirit and principle of the present invention. The present invention shall, therefore, be limited solely by the scope of the claims appended hereto.

Ralph, James D., Tatar, Stephen

Patent Priority Assignee Title
10028773, Aug 09 2012 Spine Craft, LLC Systems, assemblies and methods for spinal derotation
10039577, Nov 23 2004 Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
10039578, Dec 16 2003 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
10058354, Jan 28 2013 JACKSON, ROGER P Pivotal bone anchor assembly with frictional shank head seating surfaces
10064658, Jun 04 2014 JACKSON, ROGER P Polyaxial bone anchor with insert guides
10064660, May 27 2005 Pivotal bone anchor assembly with interference fit insert
10076361, Feb 22 2005 NuVasive, Inc Polyaxial bone screw with spherical capture, compression and alignment and retention structures
10085773, Aug 09 2012 SpineCraft, LLC Staged locking of surgical screw assembly
10098666, May 27 2011 DePuy Synthes Products, Inc. Minimally invasive spinal fixation system including vertebral alignment features
10105163, Apr 15 2009 DEPUY SYNTHES PRODUCTS, INC Revision connector for spinal constructs
10111757, Oct 22 2012 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
10136923, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
10149702, Jan 12 2015 IMDS LLC Polyaxial screw and rod system
10154859, Sep 29 2008 DePuy Synthes Products, Inc. Polyaxial bottom-loading screw and rod assembly
10182844, Aug 30 2010 Zimmer Spine, Inc. Polyaxial pedicle screw
10194951, May 10 2005 NuVasive, Inc Polyaxial bone anchor with compound articulation and pop-on shank
10206717, Jul 09 2010 Theken Spine, LLC Apparatus and method for limiting a range of angular positions of a screw
10213232, Aug 09 2012 SpineCraft, LLC Systems, assemblies and methods for spinal derotation
10245078, May 27 2005 Bone anchor receiver with symmetrical horizontally extending upper tool engaging grooves
10258382, Jan 18 2007 Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
10278739, May 27 2005 Pivotal bone anchor assembly having a rod-engaging insert manipulated into biased overlapping engagement wth a receiver internal surface
10299839, Dec 16 2003 Medos International Sárl Percutaneous access devices and bone anchor assemblies
10335200, Sep 17 2007 Pivotal bone anchor assembly with twist-in-place insert having alignment notches
10349983, May 22 2003 ALPHATEC MANUFACTURING, INC Pivotal bone anchor assembly with biased bushing for pre-lock friction fit
10357287, Sep 05 2008 DePuy Synthes Products, Inc. Bone fixation assembly
10363070, Nov 02 2010 JACKSON, ROGER P Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers
10383660, May 01 2007 Soft stabilization assemblies with pretensioned cords
10383735, Jan 20 2006 Zimmer, Inc. Shoulder arthroplasty system
10398565, Apr 24 2014 Choice Spine, LP Limited profile intervertebral implant with incorporated fastening and locking mechanism
10405892, Nov 03 2008 DePuy Synthes Products, Inc. Uni-planer bone fixation assembly
10441325, Apr 11 2006 DePuy Synthes Products, Inc. Minimally invasive fixation system
10456173, Nov 11 2009 NuVasive, Inc. Systems and methods for correcting spinal deformities
10470801, Jan 18 2007 Dynamic spinal stabilization with rod-cord longitudinal connecting members
10485588, Feb 27 2004 NuVasive, Inc. Spinal fixation tool attachment structure
10499958, May 27 2005 Pivotal bone anchor assembly with receiver having radiused tool engaging grooves, pressure insert, and closure with splay resisting threads
10507043, Oct 11 2017 SeaSpine Orthopedics Corporation Collet for a polyaxial screw assembly
10517646, Sep 14 2001 STRYKER EUROPEAN HOLDINGS III, LLC Stabilizing bone using spinal fixation devices and systems
10543107, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
10548740, Oct 25 2016 Devices and methods for vertebral bone realignment
10561444, Sep 17 2007 Pivotal bone anchor assembly with twist-in-place insert having radially offset receiver engaging structures
10575961, Sep 23 2011 Spinal fixation devices and methods of use
10595908, Nov 21 2005 DePuy Sythes Products, Inc. Polaxial bone anchors with increased angulation
10603083, Jul 09 2010 Theken Spine, LLC; SeaSpine Orthopedics Corporation Apparatus and method for limiting a range of angular positions of a screw
10610380, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
10695105, Aug 28 2012 Spinal fixation devices and methods of use
10709479, Sep 29 2008 DePuy Synthes Products, Inc. Polyaxial bottom-loading screw and rod assembly
10722273, May 27 2005 Bone anchor assembly with twist-in-place pressure insert
10722276, Mar 14 2013 K2M, Inc. Taper lock hook
10729469, Jan 09 2006 Flexible spinal stabilization assembly with spacer having off-axis core member
10729471, Nov 09 2009 EBI, LLC Multiplanar bone anchor system
10744000, Oct 25 2016 Devices and methods for vertebral bone realignment
10779864, May 27 2005 Pivotal bone anchor assembly with receiving and locking members engageable by independent lock and release tooling
10792074, Jan 22 2007 Pivotal bone anchor assemly with twist-in-place friction fit insert
10857003, Oct 14 2015 Devices and methods for vertebral stabilization
10857004, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
10888360, Apr 23 2010 DePuy Synthes Products, Inc. Minimally invasive instrument set, devices, and related methods
10898234, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
10918498, Nov 24 2004 Devices and methods for inter-vertebral orthopedic device placement
10925646, Aug 30 2010 Zimmer Spine, Inc. Polyaxial pedicle screw
10945766, Aug 30 2010 Zimmer Spine, Inc. Polyaxial pedicle screw
10945767, Aug 09 2012 SpineCraft, LLC Systems, assemblies and methods for spinal derotation
10945861, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
10952777, Apr 09 2003 Pivotal bone screw assembly with receiver having threaded open channel and lower opening
10973648, Oct 25 2016 Devices and methods for vertebral bone realignment
10993739, May 20 2009 DePuy Synthes Products, Inc. Patient-mounted retraction
11006978, Jun 17 2009 DePuy Synthes Products, Inc. Revision connector for spinal constructs
11006982, Feb 22 2012 Spinous process fixation devices and methods of use
11020152, Apr 15 2009 DEPUY SYNTHES PRODUCTS, INC Revision connector for spinal constructs
11058548, Oct 25 2016 Samy, Abdou Devices and methods for vertebral bone realignment
11129648, Sep 12 2008 DePuy Synthes Products, Inc. Spinal stabilizing and guiding fixation system
11134992, Sep 05 2008 DePuy Synthes Products, Inc. Bone fixation assembly
11147591, Nov 10 2004 Pivotal bone anchor receiver assembly with threaded closure
11147594, Jul 09 2010 Theken Spine, LLC; SeaSpine Orthopedics Corporation Apparatus and method for limiting a range of angular positions of a screw
11147597, Sep 30 2005 Dynamic spinal stabilization assemblies, tool set and method
11160581, May 27 2005 Pivotal bone anchor assembly with lock and release insert
11166751, Aug 30 2010 Zimmer Spine, Inc. Polyaxial pedicle screw
11173040, Oct 22 2012 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
11179248, Oct 02 2018 Samy, Abdou Devices and methods for spinal implantation
11213324, Jul 09 2010 Theken Spine, LLC Apparatus and method for limiting a range of angular positions of a screw
11219474, May 27 2005 Pivotal bone anchor assembly with twist-in-place insert
11229457, Jun 15 2009 JACKSON, ROGER P Pivotal bone anchor assembly with insert tool deployment
11234745, Jul 14 2005 Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert
11246627, Oct 05 2004 Pivotal bone anchor assembly with receiver having threaded lower opening
11246718, Oct 14 2015 Devices and methods for vertebral stabilization
11253373, Apr 24 2014 Choice Spine, LLC Limited profile intervertebral implant with incorporated fastening and locking mechanism
11259935, Oct 25 2016 Devices and methods for vertebral bone realignment
11291480, Feb 27 2004 Spinal fixation tool attachment structure
11298234, Jan 20 2006 Zimmer, Inc. Shoulder arthroplasty system
11324608, Sep 23 2011 Spinal fixation devices and methods of use
11357550, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
11369484, Feb 20 2013 Flexuspine Inc. Expandable fusion device for positioning between adjacent vertebral bodies
11389213, Apr 23 2010 DePuy Synthes Products, Inc. Minimally invasive instrument set, devices, and related methods
11389214, Nov 23 2004 Spinal fixation tool set and method
11419642, Dec 16 2003 MEDOS INTERNATIONAL SARL Percutaneous access devices and bone anchor assemblies
11426216, Dec 16 2003 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
11432850, Nov 21 2005 DePuy Synthes Products, Inc. Polyaxial bone anchors with increased angulation
11484348, Nov 03 2008 DePuy Synthes Products, Inc. Uni-planer bone fixation assembly
11490931, Nov 11 2009 NuVasive, Inc. Systems and methods for correcting spinal deformities
11517449, Sep 23 2011 Spinal fixation devices and methods of use
11559336, Aug 28 2012 Spinal fixation devices and methods of use
11583319, Sep 17 2007 Pivotal bone anchor assembly with twist-in-place insert
11612417, Aug 20 2010 K2M, Inc. Spinal fixation system
11648039, Feb 27 2004 Spinal fixation tool attachment structure
11684396, Oct 05 2004 Pivotal bone anchor assembly having a threaded shank head and a threaded receiver lower opening
11690652, Aug 17 2022 ZAVATION MEDICAL PRODUCTS LLC Modular screw assembly
11752008, Oct 25 2016 Devices and methods for vertebral bone realignment
11766341, Feb 20 2013 Tyler Fusion Technologies, LLC Expandable fusion device for positioning between adjacent vertebral bodies
11806051, Nov 09 2009 EBI, LLC Multiplanar bone anchor system
11812998, Sep 05 2008 DePuy Synthes Products, Inc. Bone fixation assembly
11819247, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
11839413, Feb 22 2012 Spinous process fixation devices and methods of use
11890034, Oct 11 2017 SeaSpine Orthopedics Corporation Collet for a polyaxial screw assembly
11890037, Sep 12 2008 DePuy Synthes Products, Inc. Spinal stabilizing and guiding fixation system
6770075, May 17 2001 MEDICAL DEVICE ADVISORY DEVELOPMENT GROUP, LLC Spinal fixation apparatus with enhanced axial support and methods for use
6858030, Jan 05 2001 Stryker Spine Pedicle screw assembly and methods therefor
6945974, Jul 07 2003 AESCULAP INC Spinal stabilization implant and method of application
6945975, Jul 07 2003 AESCULAP INC Bone fixation assembly and method of securement
6979334, Jul 07 2003 AESCULAP INC Bone fixation assembly and method of securement
7090674, Nov 03 2003 Spinal, LLC Bone fixation system with low profile fastener
7163539, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Biased angle polyaxial pedicle screw assembly
7186255, Aug 12 2004 ATLAS SPINE, INC Polyaxial screw
7204853, Aug 05 2003 Tyler Fusion Technologies, LLC Artificial functional spinal unit assemblies
7291151, Jul 25 2003 Traiber, S.A. Vertebral fixation device for the treatment of spondylolisthesis
7306606, Dec 15 2004 ORTHOPAEDIC INTERNATIONAL, INC Multi-axial bone screw mechanism
7311712, Feb 26 2004 AESCULAP IMPLANT SYSTEMS; AESCULAP IMPLANT SYSTEMS, INC Polyaxial locking screw plate assembly
7314467, Apr 24 2002 MEDICAL DEVICE ADVISORY DEVELOPMENT GROUP, LLC Multi selective axis spinal fixation system
7316714, Aug 05 2003 Tyler Fusion Technologies, LLC Artificial functional spinal unit assemblies
7377923, May 22 2003 Alphatec Spine, Inc Variable angle spinal screw assembly
7410496, Nov 22 2001 BIO QUEST; DLP Orthopedic implant consisting of a support structure provided with at least an orifice for passing through a fixing screw associated with a nut
7419499, Jul 07 2003 Aesculap Inc. Spinal stabilization implant and method of application
7476239, May 10 2005 NuVasive, Inc Polyaxial bone screw with compound articulation
7588575, Oct 21 2003 Theken Spine, LLC Extension for use with stabilization systems for internal structures
7588588, Oct 21 2003 Theken Spine, LLC System and method for stabilizing of internal structures
7604655, Oct 25 2004 X-SPINE SYSTEMS, INC Bone fixation system and method for using the same
7618442, Oct 21 2003 Theken Spine, LLC Implant assembly and method for use in an internal structure stabilization system
7662172, Oct 25 2004 X-SPINE SYSTEMS, INC Pedicle screw systems and methods of assembling/installing the same
7662175, Jun 18 2003 Upload shank swivel head bone screw spinal implant
7674279, Oct 13 2006 LOAN ADMIN CO LLC Bone plate
7678137, Jan 13 2004 ST CLOUD CAPITAL PARTNERS III SBIC, LP Pedicle screw constructs for spine fixation systems
7686835, Oct 04 2005 X-SPINE SYSTEMS, INC Pedicle screw system with provisional locking aspects
7708778, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable articulating intervertebral implant with cam
7717943, Jul 29 2005 X-spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
7722652, Jan 27 2006 Warsaw Orthopedic, Inc Pivoting joints for spinal implants including designed resistance to motion and methods of use
7736380, Dec 21 2004 RHAUSLER, INC Cervical plate system
7753958, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable intervertebral implant
7763057, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Biased angle polyaxial pedicle screw assembly
7766915, Feb 27 2004 Dynamic fixation assemblies with inner core and outer coil-like member
7766945, Aug 10 2004 ZIMMER BIOMET SPINE, INC Screw and rod fixation system
7776067, May 27 2005 Polyaxial bone screw with shank articulation pressure insert and method
7785351, Aug 05 2003 Tyler Fusion Technologies, LLC Artificial functional spinal implant unit system and method for use
7789896, Feb 22 2005 Polyaxial bone screw assembly
7794480, Aug 05 2003 FLEXUSPINE, INC Artificial functional spinal unit system and method for use
7794482, Dec 24 2001 Synthes USA, LLC Device for osteosynthesis
7799082, Aug 05 2003 FLEXUSPINE, INC Artificial functional spinal unit system and method for use
7819902, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Medialised rod pedicle screw assembly
7833252, Jan 27 2006 Warsaw Orthopedic, Inc. Pivoting joints for spinal implants including designed resistance to motion and methods of use
7854768, Jan 20 2006 ZIMMER, INC Shoulder arthroplasty system
7862588, Feb 18 2005 ABDOU, SAMY Devices and methods for dynamic fixation of skeletal structure
7862594, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Polyaxial pedicle screw assembly
7867258, Oct 17 2006 Warsaw Orthopedic, Inc. Multi-axial bone attachment member
7875065, Nov 23 2004 Polyaxial bone screw with multi-part shank retainer and pressure insert
7892257, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Spring loaded, load sharing polyaxial pedicle screw assembly and method
7896902, Apr 05 2006 Multi-axial double locking bone screw assembly
7901437, Jan 26 2007 Dynamic stabilization member with molded connection
7905907, Nov 16 2004 Theken Spine, LLC Internal structure stabilization system for spanning three or more structures
7909869, Aug 05 2003 Tyler Fusion Technologies, LLC Artificial spinal unit assemblies
7942909, Aug 13 2009 Ortho Innovations, LLC Thread-thru polyaxial pedicle screw system
7942910, May 16 2007 Ortho Innovations, LLC Polyaxial bone screw
7942911, May 16 2007 Ortho Innovations, LLC Polyaxial bone screw
7947065, Nov 14 2008 Ortho Innovations, LLC Locking polyaxial ball and socket fastener
7951170, May 31 2007 Dynamic stabilization connecting member with pre-tensioned solid core
7951173, May 16 2007 Ortho Innovations, LLC Pedicle screw implant system
7955363, Apr 18 2002 AESCULAP IMPANT SYSTEMS, LLC; AESCULAP IMPLANT SYSTEMS, LLC Screw and rod fixation assembly and device
7959677, Jan 19 2007 FLEXUSPINE, INC Artificial functional spinal unit system and method for use
7967826, Oct 08 2004 Theken Spine, LLC Connector transfer tool for internal structure stabilization systems
7967850, Jun 18 2003 Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
8012177, Feb 12 2007 Dynamic stabilization assembly with frusto-conical connection
8012185, Oct 25 2004 X-SPINE SYSTEMS, INC Pedicle screw systems and methods of assembling/installing the same
8016866, Oct 04 2005 X-spine Systems, Inc. Pedicle screw system with provisional locking aspects
8048131, Feb 26 2004 AESCULAP IMPLANT SYSTEMS, LLC Polyaxial locking screw plate assembly
8052723, Aug 05 2003 FLEXUSPINE, INC Dynamic posterior stabilization systems and methods of use
8057519, Jan 27 2006 Warsaw Orthopedic, Inc. Multi-axial screw assembly
8062339, Aug 27 2004 ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC Multi-axial connection system
8066739, Feb 27 2004 NuVasive, Inc Tool system for dynamic spinal implants
8066745, Jul 29 2005 X-spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
8075603, Nov 14 2008 Ortho Innovations, LLC Locking polyaxial ball and socket fastener
8075628, Apr 25 2002 ZIMMER, INC Modular bone implant, tools, and method
8083776, Jun 05 2006 Traiber, S.A. Vertebral fixation device and tool for assembling the device
8092494, Jan 13 2004 ST CLOUD CAPITAL PARTNERS III SBIC, LP Pedicle screw constructs for spine fixation systems
8092500, May 01 2007 Dynamic stabilization connecting member with floating core, compression spacer and over-mold
8092502, Apr 09 2003 Polyaxial bone screw with uploaded threaded shank and method of assembly and use
8092504, Oct 25 2004 X-SPINE SYSTEMS, INC Pedicle screw systems and methods of assembling/installing the same
8097025, Oct 25 2005 X-SPINE SYSTEMS, INC Pedicle screw system configured to receive a straight or curved rod
8100915, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
8100946, Nov 21 2005 Synthes USA, LLC Polyaxial bone anchors with increased angulation
8100947, May 25 2005 K2M, INC Low profile pedicle screw and rod assembly
8100948, May 25 2005 K2M, INC Low profile pedicle screw assembly
8105368, Sep 30 2005 Dynamic stabilization connecting member with slitted core and outer sleeve
8118869, Mar 08 2006 FLEXUSPINE, INC Dynamic interbody device
8118870, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable articulating intervertebral implant with spacer
8118871, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable articulating intervertebral implant
8123785, May 08 2008 AESCULAP IMPLANT SYSTEMS, LLC Minimally invasive spinal stabilization system
8123810, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable intervertebral implant with wedged expansion member
8128667, Sep 06 2002 Anti-splay medical implant closure with multi-surface removal aperture
8133262, Apr 28 2006 Depuy Spine, Inc Large diameter bone anchor assembly
8137386, Aug 28 2003 Polyaxial bone screw apparatus
8142481, Oct 25 2004 X-spine Systems, Inc. Pedicle screw systems and methods of assembling/installing the same
8147522, Oct 25 2004 X-spine Systems, Inc. Bone fixation method
8147550, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable articulating intervertebral implant with limited articulation
8152810, Nov 23 2004 NuVasive, Inc Spinal fixation tool set and method
8157844, Oct 22 2007 FLEXUSPINE, INC Dampener system for a posterior stabilization system with a variable length elongated member
8157846, Jul 24 2008 INGENIUM, S A Locking mechanism with two-piece washer
8162948, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
8162994, Oct 22 2007 FLEXUSPINE, INC Posterior stabilization system with isolated, dual dampener systems
8167911, Jul 20 2005 ZIMMER BIOMET SPINE, INC Apparatus for connecting a longitudinal member to a bone portion
8172903, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable intervertebral implant with spacer
8182514, Oct 22 2007 FLEXUSPINE, INC Dampener system for a posterior stabilization system with a fixed length elongated member
8187330, Oct 22 2007 FLEXUSPINE, INC Dampener system for a posterior stabilization system with a variable length elongated member
8197517, May 08 2007 Theken Spine, LLC Frictional polyaxial screw assembly
8197518, May 16 2007 Ortho Innovations, LLC Thread-thru polyaxial pedicle screw system
8211145, Jul 07 2003 Aesculap, Inc. Spinal stabilization implant and method of application
8241341, Mar 20 2009 LOAN ADMIN CO LLC Pedicle screws and methods of using the same
8257396, Jun 18 2003 Polyaxial bone screw with shank-retainer inset capture
8257398, Jun 18 2003 Polyaxial bone screw with cam capture
8257402, Sep 06 2002 Closure for rod receiving orthopedic implant having left handed thread removal
8257440, Aug 05 2003 Tyler Fusion Technologies, LLC Method of insertion of an expandable intervertebral implant
8267965, Oct 22 2007 FLEXUSPINE, INC Spinal stabilization systems with dynamic interbody devices
8273089, Nov 23 2004 NuVasive, Inc Spinal fixation tool set and method
8273109, Sep 06 2002 Helical wound mechanically interlocking mating guide and advancement structure
8282673, Sep 06 2002 Anti-splay medical implant closure with multi-surface removal aperture
8292892, May 13 2009 NuVasive, Inc Orthopedic implant rod reduction tool set and method
8292926, Sep 30 2005 Dynamic stabilization connecting member with elastic core and outer sleeve
8298265, May 22 2003 Alphatec Spine, Inc Variable angle spinal screw assembly
8308776, Feb 18 2005 Devices and methods for dynamic fixation of skeletal structure
8308782, Nov 23 2004 Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
8353932, Sep 30 2005 Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
8361123, Oct 16 2009 Depuy Synthes Products, LLC Bone anchor assemblies and methods of manufacturing and use thereof
8361129, Apr 28 2006 Depuy Synthes Products, LLC Large diameter bone anchor assembly
8366745, May 01 2007 Dynamic stabilization assembly having pre-compressed spacers with differential displacements
8366747, Oct 20 2004 ZIMMER BIOMET SPINE, INC Apparatus for connecting a longitudinal member to a bone portion
8366753, Jun 18 2003 Polyaxial bone screw assembly with fixed retaining structure
8377067, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
8377098, Jan 19 2007 Tyler Fusion Technologies, LLC Artificial functional spinal unit system and method for use
8377100, Dec 07 2000 Closure for open-headed medical implant
8377102, Jun 18 2003 Polyaxial bone anchor with spline capture connection and lower pressure insert
8382806, Jul 29 2005 X-spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
8388660, Aug 01 2006 Devices and methods for superior fixation of orthopedic devices onto the vertebral column
8394133, Feb 27 2004 Dynamic fixation assemblies with inner core and outer coil-like member
8398682, Jun 18 2003 JACKSON, ROGER P AN INDIVIDUAL Polyaxial bone screw assembly
8398689, Feb 18 2005 Devices and methods for dynamic fixation of skeletal structure
8409255, Apr 18 2002 AESCULAP IMPLANT SYSTEMS, LLC Screw and rod fixation assembly and device
8409260, Nov 10 2000 BIEDERMANN TECHNOLOGIES GMBH & CO KG Bone screw
8425514, Jun 25 2008 WESTMARK MEDICAL, LLC Spinal fixation device
8439954, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Spring-loaded, load sharing polyaxial pedicle screw assembly and method
8444681, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
8449578, Nov 09 2009 ZIMMER BIOMET SPINE, INC Multiplanar bone anchor system
8465530, Nov 14 2008 Ortho Innovations, LLC Locking polyaxial ball and socket fastener
8475498, Jan 18 2007 Dynamic stabilization connecting member with cord connection
8491640, Jul 02 2012 Bone screw coupling assembly
8506599, Feb 12 2007 Dynamic stabilization assembly with frusto-conical connection
8506600, Sep 14 2001 STRYKER EUROPEAN HOLDINGS III, LLC Methods for stabilizing bone using spinal fixation devices
8506601, Oct 14 2008 PIONEER SURGICAL TECHNOLOGY, INC Low profile dual locking fixation system and offset anchor member
8523912, Oct 22 2007 Tyler Fusion Technologies, LLC Posterior stabilization systems with shared, dual dampener systems
8535318, Apr 23 2010 DEPUY SYNTHES PRODUCTS, INC Minimally invasive instrument set, devices and related methods
8540753, Apr 09 2003 Polyaxial bone screw with uploaded threaded shank and method of assembly and use
8545538, Dec 19 2005 Devices and methods for inter-vertebral orthopedic device placement
8556938, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
8591515, Nov 23 2004 Spinal fixation tool set and method
8591552, Sep 06 2002 Anti-splay medical implant closure with multi-surface removal aperture
8591560, Sep 30 2005 Dynamic stabilization connecting member with elastic core and outer sleeve
8597358, Jan 19 2007 Tyler Fusion Technologies, LLC Dynamic interbody devices
8603168, Aug 05 2003 Tyler Fusion Technologies, LLC Artificial functional spinal unit system and method for use
8608805, Sep 16 2005 Zimmer GmbH Insert and shell of a joint ball receptacle
8613760, Sep 30 2005 Dynamic stabilization connecting member with slitted core and outer sleeve
8636740, May 08 2008 AESCULAP IMPLANT SYSTEMS, LLC Minimally invasive spinal stabilization system
8636769, Jun 18 2003 Polyaxial bone screw with shank-retainer insert capture
8636775, May 22 2003 Alphatec Spine, Inc Variable angle spinal screw assembly
8636778, Feb 11 2009 XTANT MEDICAL HOLDINGS, INC Wide angulation coupling members for bone fixation system
8647386, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable intervertebral implant system and method
8652178, Feb 27 2004 CUSTOM SPINE ACQUISITION, INC Polyaxial pedicle screw assembly and method
8663298, Jul 20 2007 DEPUY SYNTHES PRODUCTS, INC Polyaxial bone fixation element
8679162, Nov 21 2005 Depuy Synthes Products, LLC Polyaxial bone anchors with increased angulation
8690951, Nov 18 2005 Zimmer, GmbH Base platform for an artificial joint
8696711, Sep 30 2005 Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
8696712, Aug 03 2005 BIEDERMANN TECHNOLOGIES GMBH & CO KG Bone anchoring device
8709051, Aug 27 2004 ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC Multi-axial connection system
8753398, Aug 05 2003 Tyler Fusion Technologies, LLC Method of inserting an expandable intervertebral implant without overdistraction
8764806, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
8814911, Jun 18 2003 Polyaxial bone screw with cam connection and lock and release insert
8814913, Sep 06 2002 Helical guide and advancement flange with break-off extensions
8814919, Oct 23 2007 K2M, INC Posterior pedicle screw having a taper lock
8840652, Nov 23 2004 Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
8845649, Sep 24 2004 Spinal fixation tool set and method for rod reduction and fastener insertion
8845696, Feb 18 2005 ZIMMER BIOMET SPINE, INC Devices and methods for dynamic fixation of skeletal structure
8845701, Feb 18 2005 ZIMMER BIOMET SPINE, INC Devices and methods for dynamic fixation of skeletal structure
8852239, Feb 15 2013 JACKSON, ROGER P Sagittal angle screw with integral shank and receiver
8870928, Sep 06 2002 Helical guide and advancement flange with radially loaded lip
8870930, Sep 14 2001 STRYKER EUROPEAN HOLDINGS III, LLC Methods for stabilizing bone using spinal fixation devices
8876868, Sep 06 2002 Helical guide and advancement flange with radially loaded lip
8876874, Aug 21 2006 Bone screw systems and methods of use
8882809, Mar 20 2009 LOAN ADMIN CO LLC Pedicle screws and methods of using the same
8882817, Aug 20 2010 K2M, INC Spinal fixation system
8888820, Jun 28 2007 SPINAL ELEMENTS, INC ; Amendia, Inc Spinal stabilization device
8894657, Feb 27 2004 NuVasive, Inc Tool system for dynamic spinal implants
8894692, Jan 05 2001 STRYKER EUROPEAN HOLDINGS III, LLC Pedicle screw assembly and methods therefor
8900272, Feb 27 2004 Dynamic fixation assemblies with inner core and outer coil-like member
8911477, Oct 23 2007 Dynamic stabilization member with end plate support and cable core extension
8911478, Nov 21 2012 JACKSON, ROGER P Splay control closure for open bone anchor
8911479, Jan 10 2012 JACKSON, ROGER P Multi-start closures for open implants
8926670, Jun 18 2003 Polyaxial bone screw assembly
8926672, Nov 10 2004 JACKSON, ROGER P Splay control closure for open bone anchor
8932332, May 08 2008 AESCULAP IMPLANT SYSTEMS, LLC Minimally invasive spinal stabilization system
8936623, Jun 18 2003 Polyaxial bone screw assembly
8940022, Jan 19 2007 FLEXUSPINE, INC Artificial functional spinal unit system and method for use
8940051, Mar 25 2011 Tyler Fusion Technologies, LLC Interbody device insertion systems and methods
8940054, Jan 20 2006 Zimmer Technology, Inc. Shoulder arthroplasty system
8945194, Nov 10 2000 BIEDERMANN TECHNOLOGIES GMBH & CO KG Bone screw
8951290, Aug 27 2004 ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC Multi-axial connection system
8979898, Feb 20 2013 K2M, INC Iliosacral polyaxial screw
8979904, May 01 2007 JACKSON, ROGER P Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control
8986349, Nov 11 2009 NuVasive, Inc Systems and methods for correcting spinal deformities
8998959, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
8998960, Nov 10 2004 Polyaxial bone screw with helically wound capture connection
8998961, Feb 26 2009 ZIMMER BIOMET SPINE, INC Spinal rod connector and methods
9011495, Nov 09 2009 EBI, LLC Multiplanar bone anchor system
9034022, Aug 09 2012 SpineCraft, LLC Locking force augmentation features for surgical screw assembly
9044272, Nov 09 2009 ZIMMER BIOMET SPINE, INC Multiplanar bone anchor system
9050139, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
9050148, Feb 27 2004 NuVasive, Inc Spinal fixation tool attachment structure
9055978, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
9066811, Jan 19 2007 Tyler Fusion Technologies, LLC Artificial functional spinal unit system and method for use
9084634, Jul 09 2010 Theken Spine, LLC Uniplanar screw
9101404, Jan 26 2007 Dynamic stabilization connecting member with molded connection
9144444, Jun 18 2003 Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
9155581, Aug 09 2012 SpineCraft, LLC Staged locking of surgical screw assembly
9161782, Oct 16 2009 DePuy Synthes Products, Inc. Bone anchor assemblies and methods of manufacturing and use thereof
9168069, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
9179957, Aug 09 2012 SpineCraft, LLC Systems, assemblies and methods for spinal derotation
9198695, Aug 30 2010 ZIMMER BIOMET SPINE, INC Polyaxial pedicle screw
9211150, Nov 23 2004 NuVasive, Inc Spinal fixation tool set and method
9216039, Feb 27 2004 NuVasive, Inc Dynamic spinal stabilization assemblies, tool set and method
9216041, Jun 15 2009 JACKSON, ROGER P Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
9241739, Sep 12 2008 DEPUY SYNTHES PRODUCTS, INC Spinal stabilizing and guiding fixation system
9254151, Mar 20 2009 LOAN ADMIN CO LLC Pedicle screws and methods of using the same
9282998, Sep 05 2008 DEPUY SYNTHES PRODUCTS, INC Bone fixation assembly
9283075, Jan 20 2006 Zimmer, Inc. Shoulder arthroplasty system
9308027, May 27 2005 Polyaxial bone screw with shank articulation pressure insert and method
9314274, May 27 2011 DEPUY SYNTHES PRODUCTS, INC Minimally invasive spinal fixation system including vertebral alignment features
9320545, Nov 23 2004 Polyaxial bone screw with multi-part shank retainer and pressure insert
9320546, Sep 29 2008 DEPUY SYNTHES PRODUCTS, INC Polyaxial bottom-loading screw and rod assembly
9320617, Oct 22 2012 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
9326796, Nov 03 2008 DEPUY SYNTHES PRODUCTS, INC Uni-planer bone fixation assembly
9345464, Dec 07 2009 Stryker European Operations Limited Devices and methods for minimally invasive spinal stablization and instrumentation
9364262, Jul 02 2012 SPECTRUM SPINE IP HOLDINGS, LLC Bone screw coupling assembly
9375236, Aug 27 2004 ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC Multi-axial connection system
9393047, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
9393049, Aug 20 2010 K2M, INC Spinal fixation system
9402663, Apr 23 2010 DePuy Synthes Products, Inc. Minimally invasive instrument set, devices and related methods
9414863, Feb 22 2005 Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures
9439681, Jul 20 2007 DePuy Synthes Products, Inc. Polyaxial bone fixation element
9439683, Jan 26 2007 Dynamic stabilization member with molded connection
9451989, Jan 18 2007 Dynamic stabilization members with elastic and inelastic sections
9451993, Jan 09 2014 JACKSON, ROGER P Bi-radial pop-on cervical bone anchor
9453526, Apr 30 2013 DEGEN MEDICAL, INC Bottom-loading anchor assembly
9456853, May 27 2005 Polyaxial bone screw with shank articulation pressure insert and method
9480500, Aug 09 2012 SpineCraft, LLC Systems, assemblies and methods for spinal derotation
9480517, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock
9492288, Feb 20 2013 Tyler Fusion Technologies, LLC Expandable fusion device for positioning between adjacent vertebral bodies
9498262, Apr 11 2006 DEPUY SYNTHES PRODUCTS, INC Minimally invasive fixation system
9504496, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
9504497, Feb 20 2013 K2M, Inc. Iliosacral polyaxial screw
9504498, Nov 21 2005 DEPUY SYNTHES PRODUCTS, INC Polyaxial bone anchors with increased angulation
9510862, Jun 17 2009 DEPUY SYNTHES PRODUCTS, INC Revision connector for spinal constructs
9510863, Jul 02 2012 SPECTRUM SPINE IP HOLDINGS, LLC Bone screw coupling assembly
9510880, Aug 13 2013 ZIMMER, INC Polyaxial locking mechanism
9517144, Apr 24 2014 Choice Spine, LP Limited profile intervertebral implant with incorporated fastening mechanism
9522021, Nov 23 2004 JACKSON, ROGER P Polyaxial bone anchor with retainer with notch for mono-axial motion
9526627, Nov 17 2011 Choice Spine, LP Expandable interbody device system and method
9532815, Feb 27 2004 NuVasive, Inc Spinal fixation tool set and method
9566092, Oct 29 2013 JACKSON, ROGER P Cervical bone anchor with collet retainer and outer locking sleeve
9566093, Nov 10 2000 Biedermann Technologies GmbH & Co. KG Bone screw
9572598, Aug 09 2012 SpineCraft, LLC Uniplanar surgical screw assembly
9579124, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable articulating intervertebral implant with limited articulation
9597119, Jun 04 2014 JACKSON, ROGER P Polyaxial bone anchor with polymer sleeve
9615862, Nov 20 2015 Spinal LLC Modular head inserter
9629669, Nov 23 2004 NuVasive, Inc Spinal fixation tool set and method
9636146, Jan 10 2012 JACKSON, ROGER P Multi-start closures for open implants
9636148, Aug 30 2010 ZIMMER BIOMET SPINE, INC Polyaxial pedicle screw
9636151, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
9649135, Nov 27 2013 Spinal LLC Bottom loading low profile fixation system
9649142, Mar 10 2015 Spinal LLC Modular head assembly
9655650, Jun 28 2007 SPINAL ELEMENTS, INC ; Amendia, Inc Spinal stabilization device
9662143, Feb 27 2004 Dynamic fixation assemblies with inner core and outer coil-like member
9662144, Sep 14 2001 STRYKER EUROPEAN HOLDINGS III, LLC Stabilizing bone using spinal fixation devices and systems
9662151, Feb 27 2004 NuVasive, Inc Orthopedic implant rod reduction tool set and method
9668771, Jun 15 2009 Soft stabilization assemblies with off-set connector
9668776, Aug 09 2012 SpineCraft, LLC Systems, assemblies and methods for spinal derotation
9675389, Dec 07 2009 Stryker European Operations Limited Devices and methods for minimally invasive spinal stabilization and instrumentation
9707014, Jul 09 2010 Theken Spine, LLC Apparatus and method for limiting a range of angular positions of a screw
9717533, Dec 12 2013 JACKSON, ROGER P Bone anchor closure pivot-splay control flange form guide and advancement structure
9717534, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
9743957, Nov 10 2004 Polyaxial bone screw with shank articulation pressure insert and method
9763701, Nov 09 2009 ZIMMER BIOMET SPINE, INC Multiplanar bone anchor system
9770265, Nov 21 2012 JACKSON, ROGER P Splay control closure for open bone anchor
9770334, Jan 20 2006 Zimmer, Inc. Shoulder arthroplasty system
9788866, May 27 2005 Polyaxial bone screw with shank articulation pressure insert and method
9801665, May 27 2005 Polyaxial bone screw with shank articulation pressure insert and method
9808281, May 20 2009 DEPUY SYNTHES PRODUCTS, INC Patient-mounted retraction
9848918, Nov 21 2005 DePuy Synthes Products, Inc. Polyaxial bone anchors with increased angulation
9861393, Aug 09 2012 SpineCraft, LLC Systems, assemblies and methods for spinal derotation
9867643, Aug 13 2013 Zimmer, Inc. Polyaxial locking mechanism
9867714, Sep 23 2011 Spinal fixation devices and methods of use
9872710, Sep 05 2008 DePuy Synthes Products, Inc. Bone fixation assembly
9901458, Sep 23 2011 Spinal fixation devices and methods of use
9907574, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
9918745, Jun 15 2009 JACKSON, ROGER P Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
9918751, Feb 27 2004 NuVasive, Inc Tool system for dynamic spinal implants
9974571, Sep 12 2008 DePuy Synthes Products, Inc. Spinal stabilizing and guiding fixation system
9980753, Jun 15 2009 JACKSON, ROGER P pivotal anchor with snap-in-place insert having rotation blocking extensions
D592946, Jul 25 2007 LOAN ADMIN CO LLC Locking rivet head
RE42867, Nov 03 2003 Spinal, LLC Bone fixation system with low profile fastener
RE42932, Jan 05 2001 STRYKER EUROPEAN HOLDINGS III, LLC Pedicle screw assembly and methods therefor
RE46115, Sep 19 2005 ZIMMER BIOMET SPINE, INC Bone screw apparatus, system and method
RE46431, Jun 18 2003 Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
RE47551, Feb 22 2005 NuVasive, Inc Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures
Patent Priority Assignee Title
5207678, Jul 20 1989 BIEDERMANN TECHNOLOGIES GMBH & CO KG Pedicle screw and receiver member therefore
5443467, Feb 18 1994 BIEDERMANN TECHNOLOGIES GMBH & CO KG Bone screw
5520690, Apr 13 1995 Warsaw Orthopedic, Inc Anterior spinal polyaxial locking screw plate assembly
5607426, Apr 13 1995 Warsaw Orthopedic, Inc Threaded polyaxial locking screw plate assembly
5669911, Nov 13 1995 Warsaw Orthopedic, Inc Polyaxial pedicle screw
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 30 2001Fastenetix, LLC(assignment on the face of the patent)
Date Maintenance Fee Events
Apr 11 2002M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jul 14 2004ASPN: Payor Number Assigned.
Aug 30 2006M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Apr 16 20054 years fee payment window open
Oct 16 20056 months grace period start (w surcharge)
Apr 16 2006patent expiry (for year 4)
Apr 16 20082 years to revive unintentionally abandoned end. (for year 4)
Apr 16 20098 years fee payment window open
Oct 16 20096 months grace period start (w surcharge)
Apr 16 2010patent expiry (for year 8)
Apr 16 20122 years to revive unintentionally abandoned end. (for year 8)
Apr 16 201312 years fee payment window open
Oct 16 20136 months grace period start (w surcharge)
Apr 16 2014patent expiry (for year 12)
Apr 16 20162 years to revive unintentionally abandoned end. (for year 12)