A polyaxial orthopedic device for use with rod implant apparatus includes a screw having a curvate head, a two-piece interlocking coupling element which mounts about the curvate head, and a rod receiving cylindrical body member having a tapered socket into which both the screw and the interlocking coupling element are securely nested. The interlocking coupling element includes a socket portion which is slotted and tapered so that when it is radially compressed by being driven downwardly into the tapered socket in the cylindrical body it crush locks to the screw. The securing of the rod in the body member provides the necessary downward force onto the socket portion through a contact force on the top of the cap portion. Prior to the rod being inserted, therefore, the screw head remains polyaxially free with respect to the coupling element and the body. In a preferred embodiment, the cap portion and the socket portion are formed and coupled in such a way that when the cap portion is compressed toward the socket portion, there is an additional inward radial force applied by the cap portion to the socket portion, thereby enhancing the total locking force onto the head of the screw.
|
0. 18. An orthopedic fixation assembly for use with an orthopedic rod implantation apparatus, comprising:
a body comprising an axial bore extending therethrough and a channel extending perpendicularly to said axial bore at a top end of said body, said axial bore having a threaded portion at said top end of said body member and a chamber portion at a bottom end of said body member, said chamber portion defining an upper chamber portion and a bottom chamber portion, said bottom chamber portion including a nesting surface defining a nesting volume; a screw having a semi-spherical head, said semi-spherical head being located within said chamber portion of said body member; a coupling element comprising: a retaining portion having an inner surface which seats said semi-spherical head of said screw permitting angulation of said screw relative to said body, and an outer surface being seated within said nesting volume, said retaining portion further including a slot extending between said inner and outer surfaces, said slot rendering at least said outer surface of retaining portion to be deformable; and a cap portion moveably located within said upper chamber portion and over said semispherical head of said screw; and a locking nut having a threaded portion which is mateable with said threaded portion of said axial bore allowing a portion of said locking nut to advance into said axial bore; wherein when a rod is placed in said channel, advancement of said locking nut produces a downward force on the rod translating into a downward movement of at least said cap portion and said screw causing deformation of said outer surface of said retaining portion within said nesting surface resulting in a locking force applied by said retaining portion against said semi-spherical head causing said screw to be compression locked within said body.
0. 12. An orthopedic fixation assembly for securing an orthopedic rod implantation apparatus, comprising:
a cylindrical body including an axial bore extending therethrough, said body including a channel at a top end of said body, said axial bore defining a chamber portion at a bottom end of said body, said chamber portion having an upper chamber portion and a bottom chamber portion, said bottom chamber portion further including a retaining surface, and said top end of said body having a threading thereon; a screw having a semi-spherical head, said semi-spherical head is mounted within said bottom chamber portion of said axial bore of said body; a coupling assembly comprising: a retaining portion having an inner surface for seating said semi-spherical head of said screw, said retaining portion further including a slot formed therein, said slot rendering a volume of said retaining portion to be adjustable, said retaining portion further being shaped to seat in said retaining surface of said bottom chamber of said axial bore of said cylindrical body, such that advancement of semi-spherical head against said retaining portion causes said head of said screw to be compression locked thereagainst, a cap portion slidably located within said upper chamber portion and adapted for location between a rod and said top surface of said screw head; and a top locking nut, mateable with said threading of said body, wherein said semi-spherical head portion is freely rotational within said retaining portion prior to being compressed onto said retaining portion, and whereby when the rod is in said channel, downward movement of said top locking nut onto the rod results in a force upon said cap portion causing forcible advancement of the semi-spherical head of said screw thereby locking said screw, said coupling assembly and said body relative to one another.
1. A polyaxial screw and coupling element assembly for use with orthopedic rod implantation apparatus, comprising:
a screw having a semi-spherical head; a cylindrical body including an axial bore defining a bottom chamber portion at a bottom end thereof and a rod receiving channel at a top end thereof, said bottom chamber portion further defining a tapered lower portion and a constant diameter upper chamber portion, and said top end having a threading thereon; a two-piece interlocking coupling element including a socket portion having a semi-spherical interior volume for receiving therein the head of said screw, upper and lower sections, and vertical slots formed in said upper and lower sections, at least one of said slots rendering said interior volume expandable and contractable, said lower section having a tapered exterior surface for nesting in said tapered lower chamber portion of said cylindrical body such that forceable advancement of socket portion along the tapered lower chamber portion of the axial bore causes the at least one of said slots to narrow such that the semi-spherical interior volume contract, and a cap portion having an opening in a bottom thereof and an interior chamber extending upwardly therefrom for joining with, and slideably retaining therein, the upper section of said socket portion, said cap portion initially seating with a portion thereof extending into a bottom portion of said rod receiving channel; and a top locking nut, mateable with said threading, for locking a rod in said channel and for applying therethrough a downward force onto said cap portion, wherein said semi-spherical head portion is rotationally freely mounted within the semi-spherical interior volume of the socket portion prior to said socket portion being forceably advanced into the tapered lower chamber portion of the axial bore, and whereby downward compression of a rod in said channel portion of said body member, by said top locking nut, onto the cap portion causes the forceable advancement of the socket portion into the tapered lower chamber portion of the axial bore, and locks the screw, coupling element and body relative to one another. 7. An orthopaedic implant apparatus having a rod and a plurality of screw and coupling element assemblies, comprising:
at least one screw having a semi-spherical head; at least one cylindrical body including an axial bore defining a bottom chamber portion at a bottom end thereof and a rod receiving channel at a top end thereof, said bottom chamber portion further defining a tapered lower portion and a constant diameter upper chamber portion, and said top end having a threading thereon; at least one corresponding two-piece interlocking coupling element including a socket portion having a semi-spherical interior volume for receiving therein the head of said corresponding screw, upper and lower sections, and vertical slots formed in said upper and lower sections, at least one of said slots rendering said interior volume expandable and contractable, said lower section having a tapered exterior surface for nesting in said corresponding tapered lower chamber portion of said cylindrical body such that forceable advancement of socket portion along the tapered lower chamber portion of the axial bore causes the at least one of said slots to narrow such that the semi-spherical interior volume contract, and a cap portion having an opening in a bottom thereof and an interior chamber extending upwardly therefrom for joining with, and slideably retaining therein, the upper section of said socket portion, said cap portion initially seating with a portion thereof extending into a bottom portion of said rod receiving channel; and at least one corresponding top locking nut, mateable with said threading, for locking a rod in said channel and for applying therethrough a downward force onto said cap portion, wherein said semi-spherical head portion is rotationally freely mounted within the semi-spherical interior volume of the socket portion prior to said socket portion being forceably advanced into the tapered lower chamber portion of the axial bore, and whereby downward compression of a rod in said channel portion of said body member, by said top locking nut, onto the cap portion causes the forceable advancement of the socket portion into the tapered lower chamber portion of the axial bore, and locks the screw, coupling element and body relative to one another.
2. The polyaxial screw as set forth in
3. The polyaxial screw as set forth in
4. The polyaxial screw as set forth in
5. The assembly as set forth in
wherein said socket portion further comprises a substantially constant diameter upper section having an outwardly annular extending lip at an extreme end thereof, wherein said opening in the bottom of the cap portion comprises an inwardly directed annular lip, and wherein at least one of said vertical slots in the upper section of said socket portion renders the upper section thereof to be expandable and contractable such that the upper section of the socket portion may be forceably inserted into the opening in the bottom of the cap portion so that it may be retained in the interior chamber therein by mutual interference engagement of the inwardly directed annular lip of the cap portion and the outwardly extending annular lip of the socket portion. 6. The assembly as set forth in
8. The apparatus as set forth in
9. The apparatus as set forth in
10. The apparatus as set forth in
wherein said socket portion further comprises a substantially constant diameter upper section having an outwardly annular extending lip at an extreme end thereof, wherein said opening in the bottom of the cap portion comprises an inwardly directed annular lip, and wherein at least one of said vertical slots in the upper section of said socket portion renders the upper section thereof to be expandable and contractable such that the upper section of the socket portion may be forceably inserted into the opening in the bottom of the cap portion so that it may be retained in the interior chamber therein by mutual interference engagement of the inwardly directed annular lip of the cap portion and the outwardly extending annular lip of the socket portion.
11. The apparatus as set forth in
0. 13. The orthopedic fixation assembly set forth in
0. 14. The orthopedic fixation assembly set forth in
0. 15. The orthopedic fixation assembly set forth in
0. 16. The orthopedic fixation assembly set forth in
0. 17. The orthopedic fixation assembly set forth in
0. 19. The orthopedic fixation assembly of
0. 20. The orthopedic fixation assembly of
0. 21. The orthopedic fixation assembly of
0. 22. The orthopedic fixation assembly of
0. 23. The orthopedic fixation assembly set forth in
|
This application is a continuation-in-part of prior application U.S. Ser. No. 08/663,383, entitled "A Polyaxial Pedicle Screw", filed Jun. 13, 1996, now U.S. Pat. No. 5,669,911 and which, in turn, was a continuation-in-part of Ser. No. 08/421,087, filed Apr. 13,1995, now issued U.S. Pat. No. 5,520,690, entitled "An Anterior Spinal Polyaxial Locking Screw Plate Assembly".
1. Field of the Invention
This invention relates generally to a polyaxial screw and coupling apparatus for use with orthopedic fixation systems. More particularly, the present invention relates to a screw for insertion into spinal bone, and a coupling element polyaxially mounted thereto, via a two-piece interlocking coupling element having a socket portion and a threaded compression member, for coupling the screw to an orthopedic implantation structure, such as a rod, therein enhancing the efficacy of the implant assembly by providing freedom of angulation among the rod, screw and coupling element.
2. Description of the Prior Art
The bones and connective tissue of an adult human spinal column consists of more than 20 discrete bones coupled sequentially to one another by a tri-joint complex which consist of an anterior disc and the two posterior facet joints, the anterior discs of adjacent bones being cushioned by cartilage spacers referred to as intervertebral discs. These more than 20 bones are anatomically categorized as being members of one of four classifications: cervical, thoracic, lumbar, or sacral. The cervical portion of the spine, which comprises the top of the spine, up to the base of the skull, includes the first 7 vertebrae. The intermediate 12 bones are the thoracic vertebrae, and connect to the lower spine comprising the 5 lumbar vertebrae. The base of the spine is the sacral bones (including the coccyx). The component bones of the cervical spine are generally smaller than those of the thoracic and lumbar spine. For the purposes of this disclosure, however, the word spine shall refer only to the cervical region.
Referring now to
The spinal column of bones is highly complex in that it includes over twenty bones coupled to one another, housing and protecting critical elements of the nervous system having innumerable peripheral nerves and circulatory bodies in close proximity. In spite of these complexities, the spine is a highly flexible structure, capable of a high degree of curvature and twist in nearly every direction. Genetic or developmental irregularities, trauma, chronic stress, tumors, and disease, however, can result in spinal pathologies which either limit this range of motion, or which threaten the critical elements of the nervous system housed within the spinal column. A variety of systems have been disclosed in the art which achieve this immobilization by implanting artificial assemblies in or on the spinal column. These assemblies may be classified as anterior, posterior, or lateral implants. As the classifications suggest, lateral and anterior assemblies are coupled to the anterior portion of the spine, which is the sequence of vertebral bodies. Posterior implants generally comprise pairs of rods, which are aligned along the axis which the bones are to be disposed, and which are then attached to the spinal column by either hooks which couple to the lamina or attach to the transverse processes, or by screws which are inserted through the pedicles.
"Rod assemblies" generally comprise a plurality of such screws which are implanted through the posterior lateral surfaces of the laminae, through the pedicles, and into their respective vertebral bodies. The screws are provided with upper portions which comprise coupling elements, for receiving and securing an elongate rod therethrough. The rod extends along the axis of the spine, coupling to the plurality of screws via their coupling elements. The rigidity of the rod may be utilized to align the spine in conformance with a more desired shape.
It has been identified, however, that a considerable difficulty is associated with inserting screws along a misaligned curvature and simultaneously exactly positioning the coupling elements such that the rod receiving portions thereof are aligned so that the rod can be passed therethrough without distorting the screws. Attempts at achieving proper alignment with fixed screws is understood to require increased operating time, which is known to enhance many complications associated with surgery. Often surgical efforts with such fixed axes devices cannot be achieved, thereby rendering such instrumentation attempts entirely unsucessful.
The art contains a variety of attempts at providing instrumentation which permit a limited freedom with respect to angulation of the screw and the coupling element. These teachings, however, are generally complex, inadequately reliable, and lack long-term durability. These considerable drawbacks associated with prior art systems also include difficulty properly positioned the rod and coupling elements, and the tedious manipulation of the many small parts in the operative environment.
It is, therefore, the principal object of the present invention to provide a pedicle screw and coupling element assembly which provides a polyaxial freedom of implantation angulation with respect to rod reception.
In addition, it is an object of the present invention to provide such an assembly which comprises a reduced number of elements, and which correspondingly provides for expeditious implantation.
Accordingly it is also an object of the present invention to provide an assembly which is reliable, durable, and provides long term fixation support.
Other objects of the present invention not explicitly stated will be set forth and will be more clearly understood in conjunction with the descriptions of the preferred embodiments disclosed hereafter.
The preceding objects of the invention are achieved by the present invention which is a polyaxial locking screw and coupling element for use with rod stabilization and immobilization systems in the spine. More particularly, the polyaxial screw and coupling element assembly of the present invention comprises a bone screw having a head which is curvate in shape, for example semi-spherical, and a two-piece interlocking coupling element mounted thereto. This combination is mounted inside the bottom of an internal channel of a cylindrical body member.
More specifically, with respect to the cylindrical body member, the tubular body comprises a rod receiving channel formed in the upper portion thereof, with a threading formed on the remaining upper elements so that a rod securing nut and/or set screw may be threaded thereon once a rod has been placed in the channel. The body further includes an axial bore which includes extends from the rod receiving channel through to the bottom of the cylinder. The portion of the axial bore which is below the channel forms a receiving chamber, the upper portion thereof having a constant diameter, and the lower portion of the chamber being inwardly tapered. The inner surface of the upper portion of the chamber and/or the inner surface of the portion of the axial bore which is above the chamber may further include a threading.
The two-piece interlocking coupling element comprises and socket portion and a cap portion. The socket portion is designed with an interior semi-spherical volume, so that it may receive the semi-spherical head of a corresponding bone screw. The interior volume of the socket portion is open at both axial ends thereof. The exterior surface of the socket portion, at the bottom thereof, includes a first set of slots which extend upwardly from the opening so that the interior semi-spherical volume may be expanded or contracted by the application of a radial force. In addition, the exterior surface at the bottom is tapered so that it is narrower at the bottom than at a midpoint. This taper is designed to mate with and nest in the tapered lower portion of the socket portion of the axial bore of the body member.
The upper exterior surface of the socket portion comprises a second set of slots, directed axially along the element to the midpoint, such that the upper opening of the socket element may expand and contract in accordance with the application of a radial force thereon. The exterior surface of this upper section of the socket portion is not tapered and is narrower than the widest taper position of the bottom of the socket portion. The upper section, however, does further include an outwardly extending annular lip at the uppermost axial position. This upper section is designed to be inserted into, and joined with, the cap portion of the coupling element.
The cap portion has a generally cylindrical shape, having an open bottom. The open bottom is inwardly tapered, forming an inwardly extending annular lip, so that as the upper end of the socket portion is inserted, its upper slots are narrowed. Once axially inserted beyond this taper, the upper section of the socket portion expands outward over the inwardly extending annular lip. The inwardly extending annular lip engages the outwardly extending lip of the socket portion so as to prevent disengagement of the two pieces. The socket portion is then permitted to slide into the cap portion, until the larger diameter of the tapered lower portion of the socket contacts the entrance of the cap portion.
The exterior surface of the cap portion may be threaded, so that it may engage a threading of the upper portion of the socket portion and/or the inner surface of the axial bore which is above the socket portion. In addition, the top of the cap includes an opening so that a screw driving tool may directly engage the top of the screw.
The assembly of the entire device begins with the joining of the socket portion to the cap portion of the two-piece interlocking coupling element. This is achieved by the slideable interlocking mating of the two elements. Next, the semi-spherical head of the screw is inserted into the socket portion through the lower expandable opening in the taper portion. Once these parts have been assembled the screw and coupling element should be polyaxially rotateable relative to one another. The screw and coupling element are then inserted through the axial bore of the body (which may require the threading the cap portion of the coupling element along the threading on the inner surface of the axial bore and/or the threading of the cap along the threading of the upper portion of the chamber) until the socket portion nests in the tapered lower portion of the axial bore. If the upper portion of the chamber includes a threading it should not extend beyond the point of the initial nesting of the coupling element in the chamber. This is important because the cap portion must be able to move relative to the socket portion.
In this initial position, the top of the cap portion should rest above the bottom of the rod receiving channel so that a rod, when placed therein, seats directly onto the top of the cap. This direct contact provides the downward force necessary to compress the coupling element into the chamber so that the socket portion is compressed in the tapered portion and locks to the head of the screw.
In a preferred variation of this embodiment, the interior surface of the cap portion includes a slight narrowing taper so that as the cap is compressed downward by the rod, the upper slots of the socket portion are also narrowed, further increasing the crush locking effect on the head of the screw.
The implantation of this screw by a surgeon may proceed first by the assembly of the screw into its initial state. The shaft of the screw is then driven into the vertebral bone at the desired angulation. A rod is then introduced into the rod receiving channel, and the body is angulated into the most ideal position for receiving the rod. A nut and/or set screw is then used to secure the rod in the channel, and simultaneously to provide a sufficient downward translational force to cause the socket portion to be driven into the tapered portion of the chamber in the axial bore, and further to cause the cap portion to drive downwardly also (this further compression locking the screw head in the embodiment wherein the sliding of the cap portion toward the socket portion provides an additional compression on the top of the socket portion and therefore onto the head of the screw).
In a preferred variation, the locking nut comprises a cap nut which has a central post which is designed to provide additional structural support to the inner walls of the element at the top thereof, as well as providing a central seating pressure point for locking the rod in the channel. In either variation, the locking nut seats against the rod and prevents it from moving translationally, axially and rotationally.
Multiple screw assemblies are generally necessary to complete the full array of anchoring sites for the rod immobilization system, however, the screw assembly of the present invention is designed to be compatible with alternative rod systems so that, where necessary, the present invention may be employed to rectify the failures of other systems when the surgery may have already begun.
While the present invention will be described more fully hereinafter with reference to the accompanying drawings, in which particular embodiments and methods of implantation are shown, it is to be understood at the outset that persons skilled in the art may modify the invention herein described while achieving the functions and results of this invention. Accordingly, the descriptions which follow are to be understood as illustrative and exemplary of specific structures, aspects and features within the broad scope of the present invention and not as limiting of such broad scope.
Referring now to
The head portion 122 of the screw 120 comprises a semi-spherical shape, which has a recess 130 in it. It is understood that the semi-spherical shape is a section of a sphere, in the embodiment shown the section is greater in extent than a hemisphere, and it correspondingly exhibits an external contour which is equidistant from a center point of the head. In a preferred embodiment, the major cross-section of the semi-spherical head 122 (as shown in the two dimensional illustration of
The recess 130 defines a receiving locus for the application of a torque for driving the screw 120 into the bone. The specific shape of the recess 122 may be chosen to cooperate with any suitable screw-driving tool. For example, the recess 130 may comprise a slot for a screwdriver, a hexagonally shaped hole for receiving an allen wrench, or most preferably, a threading for a correspondingly threaded post. It is further preferable that the recess 130 be co-axial with the general elongate axis of the screw 120, and most particularly with respect to the shaft 126. Having the axes of the recess 130 and the shaft 126 co-linear facilitates step of inserting the screw 120 into the bone.
The semi-spherical head portion 122 is connected to the shaft 126 at a neck portion 124. While it is preferable that the diameter of the shaft 126 be less than the diameter of the semi-spherical head 122, it is also preferable that the neck 124 of the screw 120 be narrower than the widest portion of the shaft 126. This preferable dimension permits the screw to swing through a variety of angles while still being securely joined to the locking collar (as set forth more fully with respect to
Referring now to
The upper section 139 of the socket portion 132 has a generally constant diameter, which is less than the diameter at the uppermost position 137 of the taper of the lower section 131. A second set of vertical slots 141 are provided in this upper section 139 so that it may also expand and contract in accordance with radial forces applied thereto. In addition, the uppermost end of this upper section 139 comprises an outwardly extending annular lip 140.
The cap portion 142 of the coupling element comprises an opening 143 in the bottom thereof, having an inwardly tapered entrance surface conformation 144. As the upper section 139 of the socket portion 132 is inserted into the opening 143 in the cap portion 142, the taper 144 of the opening 143 provides an inwardly directed force which causes the upper section 139 to contract (causes the slots 141 to narrow). This tapered entrance 144 opens to form an annular lip 145 which is useful for engaging and retaining the annular lip 140 of the upper section 139 of the socket portion 132. The interior surface 146 of the cap portion has a constant diameter, therein permitting the inserted upper section 139 of the socket portion 132 to slide and rotate relative to the cap portion 142.
The exterior surface of the cap portion 142 comprises a threading 147 which is designed to engage threadings 211 disposed in the axial bore of the rod receiving body member (see FIG. 7). In addition, the cap portion 142 comprises an axial hole 148 through which a surgeon may insert a screw driving tool to access the head of the screw which is positioned in the interior volume 134 of the socket portion 132.
More particularly, with respect to the disposition of the head 122 of the screw 120 in the socket portion 132, and with reference to
Referring now to
The upper rod receiving channel portion 204 of the body 200 includes a channel 206 formed therein, having rounded bottom surfaces 207. The channel 206, in turn, divides the walls of the cylindrical body of the upper portion 204 into a pair of upwardly extending members 214a, 214b. As shown in the embodiment illustrated in
The upwardly extending members 214a, 214b further have, disposed thereon, a threading 216 (which may be provided on the inner and/or outer circumferential surfaces, but which is shown in
Referring now to the lower portion of the body, the chamber portion 202 can further be subdivided into a lower chamber portion 203 which includes an inwardly tapered surface, and an upper chamber portion 205 which has a constant diameter. The inwardly tapered portion 203 defines a nesting volume into which the socket portion 132 may nest. Prior to its being fully driven into this nesting volume, the socket portion 132 and the screw 120 disposed therein may be angulated relative to one another, and the screw 120 may be angulated relative to the body 200. Once driven fully into the tapered lower chamber portion 203, however, the taper of the axial bore 201 provides the necessary inwardly directed radial force to cause the socket portion 132 to crush lock to the head 122 of the screw 120.
The force which causes the socket portion 132 to be driven downwardly into the tapered lower chamber portion 203 is provided by the cap portion 142. More specifically, as stated above, when the initially assembled screw 120 and coupling element combination 132 and 142 (see
Referring now to
Referring now to
The shaft of the screw 120 is then inserted and driven downward into the vertebral bone at the desired angle. Once properly positioned, the body 200 is rotated into the ideal rod receiving position. The rod 250 is then inserted into the channel 206 and the top locling nut 185 is threaded onto the threading 216 and compresses the rod 250 to securely lock it in the channel 206. This downward force of the nut 185 and the rod 250 onto the cap portion 142 causes the cap portion to translate downward thus causing the socket portion 132 to translate downward in the tapered chamber 203 and contract to crush against the head 122 of the screw 120. The assembly is thereby fully locked in position.
Referring to
While there has been described and illustrated embodiments of a polyaxial screw and coupling element assembly for use with posterior spinal rod implantation apparatus, it will be apparent to those skilled in the art that variations and modifications are possible without deviating from the broad spirit and principle of the present invention. The present invention shall, therefore, be limited solely by the scope of the claims appended hereto.
Ralph, James D., Tatar, Stephen
Patent | Priority | Assignee | Title |
10028773, | Aug 09 2012 | Spine Craft, LLC | Systems, assemblies and methods for spinal derotation |
10039577, | Nov 23 2004 | Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces | |
10039578, | Dec 16 2003 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
10058354, | Jan 28 2013 | JACKSON, ROGER P | Pivotal bone anchor assembly with frictional shank head seating surfaces |
10064658, | Jun 04 2014 | JACKSON, ROGER P | Polyaxial bone anchor with insert guides |
10064660, | May 27 2005 | Pivotal bone anchor assembly with interference fit insert | |
10076361, | Feb 22 2005 | NuVasive, Inc | Polyaxial bone screw with spherical capture, compression and alignment and retention structures |
10085773, | Aug 09 2012 | SpineCraft, LLC | Staged locking of surgical screw assembly |
10098666, | May 27 2011 | DePuy Synthes Products, Inc. | Minimally invasive spinal fixation system including vertebral alignment features |
10105163, | Apr 15 2009 | DEPUY SYNTHES PRODUCTS, INC | Revision connector for spinal constructs |
10111757, | Oct 22 2012 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
10136923, | Jul 20 2007 | DePuy Synthes Products, Inc. | Polyaxial bone fixation element |
10149702, | Jan 12 2015 | IMDS LLC | Polyaxial screw and rod system |
10154859, | Sep 29 2008 | DePuy Synthes Products, Inc. | Polyaxial bottom-loading screw and rod assembly |
10182844, | Aug 30 2010 | Zimmer Spine, Inc. | Polyaxial pedicle screw |
10194951, | May 10 2005 | NuVasive, Inc | Polyaxial bone anchor with compound articulation and pop-on shank |
10206717, | Jul 09 2010 | Theken Spine, LLC | Apparatus and method for limiting a range of angular positions of a screw |
10213232, | Aug 09 2012 | SpineCraft, LLC | Systems, assemblies and methods for spinal derotation |
10245078, | May 27 2005 | Bone anchor receiver with symmetrical horizontally extending upper tool engaging grooves | |
10258382, | Jan 18 2007 | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord | |
10278739, | May 27 2005 | Pivotal bone anchor assembly having a rod-engaging insert manipulated into biased overlapping engagement wth a receiver internal surface | |
10299839, | Dec 16 2003 | Medos International Sárl | Percutaneous access devices and bone anchor assemblies |
10335200, | Sep 17 2007 | Pivotal bone anchor assembly with twist-in-place insert having alignment notches | |
10349983, | May 22 2003 | ALPHATEC MANUFACTURING, INC | Pivotal bone anchor assembly with biased bushing for pre-lock friction fit |
10357287, | Sep 05 2008 | DePuy Synthes Products, Inc. | Bone fixation assembly |
10363070, | Nov 02 2010 | JACKSON, ROGER P | Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers |
10383660, | May 01 2007 | Soft stabilization assemblies with pretensioned cords | |
10383735, | Jan 20 2006 | Zimmer, Inc. | Shoulder arthroplasty system |
10398565, | Apr 24 2014 | Choice Spine, LP | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
10405892, | Nov 03 2008 | DePuy Synthes Products, Inc. | Uni-planer bone fixation assembly |
10441325, | Apr 11 2006 | DePuy Synthes Products, Inc. | Minimally invasive fixation system |
10456173, | Nov 11 2009 | NuVasive, Inc. | Systems and methods for correcting spinal deformities |
10470801, | Jan 18 2007 | Dynamic spinal stabilization with rod-cord longitudinal connecting members | |
10485588, | Feb 27 2004 | NuVasive, Inc. | Spinal fixation tool attachment structure |
10499958, | May 27 2005 | Pivotal bone anchor assembly with receiver having radiused tool engaging grooves, pressure insert, and closure with splay resisting threads | |
10507043, | Oct 11 2017 | SeaSpine Orthopedics Corporation | Collet for a polyaxial screw assembly |
10517646, | Sep 14 2001 | STRYKER EUROPEAN HOLDINGS III, LLC | Stabilizing bone using spinal fixation devices and systems |
10543107, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
10548740, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
10561444, | Sep 17 2007 | Pivotal bone anchor assembly with twist-in-place insert having radially offset receiver engaging structures | |
10575961, | Sep 23 2011 | Spinal fixation devices and methods of use | |
10595908, | Nov 21 2005 | DePuy Sythes Products, Inc. | Polaxial bone anchors with increased angulation |
10603083, | Jul 09 2010 | Theken Spine, LLC; SeaSpine Orthopedics Corporation | Apparatus and method for limiting a range of angular positions of a screw |
10610380, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
10695105, | Aug 28 2012 | Spinal fixation devices and methods of use | |
10709479, | Sep 29 2008 | DePuy Synthes Products, Inc. | Polyaxial bottom-loading screw and rod assembly |
10722273, | May 27 2005 | Bone anchor assembly with twist-in-place pressure insert | |
10722276, | Mar 14 2013 | K2M, Inc. | Taper lock hook |
10729469, | Jan 09 2006 | Flexible spinal stabilization assembly with spacer having off-axis core member | |
10729471, | Nov 09 2009 | EBI, LLC | Multiplanar bone anchor system |
10744000, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
10779864, | May 27 2005 | Pivotal bone anchor assembly with receiving and locking members engageable by independent lock and release tooling | |
10792074, | Jan 22 2007 | Pivotal bone anchor assemly with twist-in-place friction fit insert | |
10857003, | Oct 14 2015 | Devices and methods for vertebral stabilization | |
10857004, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
10888360, | Apr 23 2010 | DePuy Synthes Products, Inc. | Minimally invasive instrument set, devices, and related methods |
10898234, | Jul 20 2007 | DePuy Synthes Products, Inc. | Polyaxial bone fixation element |
10918498, | Nov 24 2004 | Devices and methods for inter-vertebral orthopedic device placement | |
10925646, | Aug 30 2010 | Zimmer Spine, Inc. | Polyaxial pedicle screw |
10945766, | Aug 30 2010 | Zimmer Spine, Inc. | Polyaxial pedicle screw |
10945767, | Aug 09 2012 | SpineCraft, LLC | Systems, assemblies and methods for spinal derotation |
10945861, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
10952777, | Apr 09 2003 | Pivotal bone screw assembly with receiver having threaded open channel and lower opening | |
10973648, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
10993739, | May 20 2009 | DePuy Synthes Products, Inc. | Patient-mounted retraction |
11006978, | Jun 17 2009 | DePuy Synthes Products, Inc. | Revision connector for spinal constructs |
11006982, | Feb 22 2012 | Spinous process fixation devices and methods of use | |
11020152, | Apr 15 2009 | DEPUY SYNTHES PRODUCTS, INC | Revision connector for spinal constructs |
11058548, | Oct 25 2016 | Samy, Abdou | Devices and methods for vertebral bone realignment |
11129648, | Sep 12 2008 | DePuy Synthes Products, Inc. | Spinal stabilizing and guiding fixation system |
11134992, | Sep 05 2008 | DePuy Synthes Products, Inc. | Bone fixation assembly |
11147591, | Nov 10 2004 | Pivotal bone anchor receiver assembly with threaded closure | |
11147594, | Jul 09 2010 | Theken Spine, LLC; SeaSpine Orthopedics Corporation | Apparatus and method for limiting a range of angular positions of a screw |
11147597, | Sep 30 2005 | Dynamic spinal stabilization assemblies, tool set and method | |
11160581, | May 27 2005 | Pivotal bone anchor assembly with lock and release insert | |
11166751, | Aug 30 2010 | Zimmer Spine, Inc. | Polyaxial pedicle screw |
11173040, | Oct 22 2012 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
11179248, | Oct 02 2018 | Samy, Abdou | Devices and methods for spinal implantation |
11213324, | Jul 09 2010 | Theken Spine, LLC | Apparatus and method for limiting a range of angular positions of a screw |
11219474, | May 27 2005 | Pivotal bone anchor assembly with twist-in-place insert | |
11229457, | Jun 15 2009 | JACKSON, ROGER P | Pivotal bone anchor assembly with insert tool deployment |
11234745, | Jul 14 2005 | Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert | |
11246627, | Oct 05 2004 | Pivotal bone anchor assembly with receiver having threaded lower opening | |
11246718, | Oct 14 2015 | Devices and methods for vertebral stabilization | |
11253373, | Apr 24 2014 | Choice Spine, LLC | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
11259935, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
11291480, | Feb 27 2004 | Spinal fixation tool attachment structure | |
11298234, | Jan 20 2006 | Zimmer, Inc. | Shoulder arthroplasty system |
11324608, | Sep 23 2011 | Spinal fixation devices and methods of use | |
11357550, | Jul 20 2007 | DePuy Synthes Products, Inc. | Polyaxial bone fixation element |
11369484, | Feb 20 2013 | Flexuspine Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
11389213, | Apr 23 2010 | DePuy Synthes Products, Inc. | Minimally invasive instrument set, devices, and related methods |
11389214, | Nov 23 2004 | Spinal fixation tool set and method | |
11419642, | Dec 16 2003 | MEDOS INTERNATIONAL SARL | Percutaneous access devices and bone anchor assemblies |
11426216, | Dec 16 2003 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
11432850, | Nov 21 2005 | DePuy Synthes Products, Inc. | Polyaxial bone anchors with increased angulation |
11484348, | Nov 03 2008 | DePuy Synthes Products, Inc. | Uni-planer bone fixation assembly |
11490931, | Nov 11 2009 | NuVasive, Inc. | Systems and methods for correcting spinal deformities |
11517449, | Sep 23 2011 | Spinal fixation devices and methods of use | |
11559336, | Aug 28 2012 | Spinal fixation devices and methods of use | |
11583319, | Sep 17 2007 | Pivotal bone anchor assembly with twist-in-place insert | |
11612417, | Aug 20 2010 | K2M, Inc. | Spinal fixation system |
11648039, | Feb 27 2004 | Spinal fixation tool attachment structure | |
11684396, | Oct 05 2004 | Pivotal bone anchor assembly having a threaded shank head and a threaded receiver lower opening | |
11690652, | Aug 17 2022 | ZAVATION MEDICAL PRODUCTS LLC | Modular screw assembly |
11752008, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
11766341, | Feb 20 2013 | Tyler Fusion Technologies, LLC | Expandable fusion device for positioning between adjacent vertebral bodies |
11806051, | Nov 09 2009 | EBI, LLC | Multiplanar bone anchor system |
11812998, | Sep 05 2008 | DePuy Synthes Products, Inc. | Bone fixation assembly |
11819247, | Jul 20 2007 | DePuy Synthes Products, Inc. | Polyaxial bone fixation element |
11839413, | Feb 22 2012 | Spinous process fixation devices and methods of use | |
11890034, | Oct 11 2017 | SeaSpine Orthopedics Corporation | Collet for a polyaxial screw assembly |
11890037, | Sep 12 2008 | DePuy Synthes Products, Inc. | Spinal stabilizing and guiding fixation system |
6770075, | May 17 2001 | MEDICAL DEVICE ADVISORY DEVELOPMENT GROUP, LLC | Spinal fixation apparatus with enhanced axial support and methods for use |
6858030, | Jan 05 2001 | Stryker Spine | Pedicle screw assembly and methods therefor |
6945974, | Jul 07 2003 | AESCULAP INC | Spinal stabilization implant and method of application |
6945975, | Jul 07 2003 | AESCULAP INC | Bone fixation assembly and method of securement |
6979334, | Jul 07 2003 | AESCULAP INC | Bone fixation assembly and method of securement |
7090674, | Nov 03 2003 | Spinal, LLC | Bone fixation system with low profile fastener |
7163539, | Feb 27 2004 | CUSTOM SPINE ACQUISITION, INC | Biased angle polyaxial pedicle screw assembly |
7186255, | Aug 12 2004 | ATLAS SPINE, INC | Polyaxial screw |
7204853, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Artificial functional spinal unit assemblies |
7291151, | Jul 25 2003 | Traiber, S.A. | Vertebral fixation device for the treatment of spondylolisthesis |
7306606, | Dec 15 2004 | ORTHOPAEDIC INTERNATIONAL, INC | Multi-axial bone screw mechanism |
7311712, | Feb 26 2004 | AESCULAP IMPLANT SYSTEMS; AESCULAP IMPLANT SYSTEMS, INC | Polyaxial locking screw plate assembly |
7314467, | Apr 24 2002 | MEDICAL DEVICE ADVISORY DEVELOPMENT GROUP, LLC | Multi selective axis spinal fixation system |
7316714, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Artificial functional spinal unit assemblies |
7377923, | May 22 2003 | Alphatec Spine, Inc | Variable angle spinal screw assembly |
7410496, | Nov 22 2001 | BIO QUEST; DLP | Orthopedic implant consisting of a support structure provided with at least an orifice for passing through a fixing screw associated with a nut |
7419499, | Jul 07 2003 | Aesculap Inc. | Spinal stabilization implant and method of application |
7476239, | May 10 2005 | NuVasive, Inc | Polyaxial bone screw with compound articulation |
7588575, | Oct 21 2003 | Theken Spine, LLC | Extension for use with stabilization systems for internal structures |
7588588, | Oct 21 2003 | Theken Spine, LLC | System and method for stabilizing of internal structures |
7604655, | Oct 25 2004 | X-SPINE SYSTEMS, INC | Bone fixation system and method for using the same |
7618442, | Oct 21 2003 | Theken Spine, LLC | Implant assembly and method for use in an internal structure stabilization system |
7662172, | Oct 25 2004 | X-SPINE SYSTEMS, INC | Pedicle screw systems and methods of assembling/installing the same |
7662175, | Jun 18 2003 | Upload shank swivel head bone screw spinal implant | |
7674279, | Oct 13 2006 | LOAN ADMIN CO LLC | Bone plate |
7678137, | Jan 13 2004 | ST CLOUD CAPITAL PARTNERS III SBIC, LP | Pedicle screw constructs for spine fixation systems |
7686835, | Oct 04 2005 | X-SPINE SYSTEMS, INC | Pedicle screw system with provisional locking aspects |
7708778, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable articulating intervertebral implant with cam |
7717943, | Jul 29 2005 | X-spine Systems, Inc. | Capless multiaxial screw and spinal fixation assembly and method |
7722652, | Jan 27 2006 | Warsaw Orthopedic, Inc | Pivoting joints for spinal implants including designed resistance to motion and methods of use |
7736380, | Dec 21 2004 | RHAUSLER, INC | Cervical plate system |
7753958, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable intervertebral implant |
7763057, | Feb 27 2004 | CUSTOM SPINE ACQUISITION, INC | Biased angle polyaxial pedicle screw assembly |
7766915, | Feb 27 2004 | Dynamic fixation assemblies with inner core and outer coil-like member | |
7766945, | Aug 10 2004 | ZIMMER BIOMET SPINE, INC | Screw and rod fixation system |
7776067, | May 27 2005 | Polyaxial bone screw with shank articulation pressure insert and method | |
7785351, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Artificial functional spinal implant unit system and method for use |
7789896, | Feb 22 2005 | Polyaxial bone screw assembly | |
7794480, | Aug 05 2003 | FLEXUSPINE, INC | Artificial functional spinal unit system and method for use |
7794482, | Dec 24 2001 | Synthes USA, LLC | Device for osteosynthesis |
7799082, | Aug 05 2003 | FLEXUSPINE, INC | Artificial functional spinal unit system and method for use |
7819902, | Feb 27 2004 | CUSTOM SPINE ACQUISITION, INC | Medialised rod pedicle screw assembly |
7833252, | Jan 27 2006 | Warsaw Orthopedic, Inc. | Pivoting joints for spinal implants including designed resistance to motion and methods of use |
7854768, | Jan 20 2006 | ZIMMER, INC | Shoulder arthroplasty system |
7862588, | Feb 18 2005 | ABDOU, SAMY | Devices and methods for dynamic fixation of skeletal structure |
7862594, | Feb 27 2004 | CUSTOM SPINE ACQUISITION, INC | Polyaxial pedicle screw assembly |
7867258, | Oct 17 2006 | Warsaw Orthopedic, Inc. | Multi-axial bone attachment member |
7875065, | Nov 23 2004 | Polyaxial bone screw with multi-part shank retainer and pressure insert | |
7892257, | Feb 27 2004 | CUSTOM SPINE ACQUISITION, INC | Spring loaded, load sharing polyaxial pedicle screw assembly and method |
7896902, | Apr 05 2006 | Multi-axial double locking bone screw assembly | |
7901437, | Jan 26 2007 | Dynamic stabilization member with molded connection | |
7905907, | Nov 16 2004 | Theken Spine, LLC | Internal structure stabilization system for spanning three or more structures |
7909869, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Artificial spinal unit assemblies |
7942909, | Aug 13 2009 | Ortho Innovations, LLC | Thread-thru polyaxial pedicle screw system |
7942910, | May 16 2007 | Ortho Innovations, LLC | Polyaxial bone screw |
7942911, | May 16 2007 | Ortho Innovations, LLC | Polyaxial bone screw |
7947065, | Nov 14 2008 | Ortho Innovations, LLC | Locking polyaxial ball and socket fastener |
7951170, | May 31 2007 | Dynamic stabilization connecting member with pre-tensioned solid core | |
7951173, | May 16 2007 | Ortho Innovations, LLC | Pedicle screw implant system |
7955363, | Apr 18 2002 | AESCULAP IMPANT SYSTEMS, LLC; AESCULAP IMPLANT SYSTEMS, LLC | Screw and rod fixation assembly and device |
7959677, | Jan 19 2007 | FLEXUSPINE, INC | Artificial functional spinal unit system and method for use |
7967826, | Oct 08 2004 | Theken Spine, LLC | Connector transfer tool for internal structure stabilization systems |
7967850, | Jun 18 2003 | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly | |
8012177, | Feb 12 2007 | Dynamic stabilization assembly with frusto-conical connection | |
8012185, | Oct 25 2004 | X-SPINE SYSTEMS, INC | Pedicle screw systems and methods of assembling/installing the same |
8016866, | Oct 04 2005 | X-spine Systems, Inc. | Pedicle screw system with provisional locking aspects |
8048131, | Feb 26 2004 | AESCULAP IMPLANT SYSTEMS, LLC | Polyaxial locking screw plate assembly |
8052723, | Aug 05 2003 | FLEXUSPINE, INC | Dynamic posterior stabilization systems and methods of use |
8057519, | Jan 27 2006 | Warsaw Orthopedic, Inc. | Multi-axial screw assembly |
8062339, | Aug 27 2004 | ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC | Multi-axial connection system |
8066739, | Feb 27 2004 | NuVasive, Inc | Tool system for dynamic spinal implants |
8066745, | Jul 29 2005 | X-spine Systems, Inc. | Capless multiaxial screw and spinal fixation assembly and method |
8075603, | Nov 14 2008 | Ortho Innovations, LLC | Locking polyaxial ball and socket fastener |
8075628, | Apr 25 2002 | ZIMMER, INC | Modular bone implant, tools, and method |
8083776, | Jun 05 2006 | Traiber, S.A. | Vertebral fixation device and tool for assembling the device |
8092494, | Jan 13 2004 | ST CLOUD CAPITAL PARTNERS III SBIC, LP | Pedicle screw constructs for spine fixation systems |
8092500, | May 01 2007 | Dynamic stabilization connecting member with floating core, compression spacer and over-mold | |
8092502, | Apr 09 2003 | Polyaxial bone screw with uploaded threaded shank and method of assembly and use | |
8092504, | Oct 25 2004 | X-SPINE SYSTEMS, INC | Pedicle screw systems and methods of assembling/installing the same |
8097025, | Oct 25 2005 | X-SPINE SYSTEMS, INC | Pedicle screw system configured to receive a straight or curved rod |
8100915, | Feb 27 2004 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
8100946, | Nov 21 2005 | Synthes USA, LLC | Polyaxial bone anchors with increased angulation |
8100947, | May 25 2005 | K2M, INC | Low profile pedicle screw and rod assembly |
8100948, | May 25 2005 | K2M, INC | Low profile pedicle screw assembly |
8105368, | Sep 30 2005 | Dynamic stabilization connecting member with slitted core and outer sleeve | |
8118869, | Mar 08 2006 | FLEXUSPINE, INC | Dynamic interbody device |
8118870, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable articulating intervertebral implant with spacer |
8118871, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable articulating intervertebral implant |
8123785, | May 08 2008 | AESCULAP IMPLANT SYSTEMS, LLC | Minimally invasive spinal stabilization system |
8123810, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable intervertebral implant with wedged expansion member |
8128667, | Sep 06 2002 | Anti-splay medical implant closure with multi-surface removal aperture | |
8133262, | Apr 28 2006 | Depuy Spine, Inc | Large diameter bone anchor assembly |
8137386, | Aug 28 2003 | Polyaxial bone screw apparatus | |
8142481, | Oct 25 2004 | X-spine Systems, Inc. | Pedicle screw systems and methods of assembling/installing the same |
8147522, | Oct 25 2004 | X-spine Systems, Inc. | Bone fixation method |
8147550, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable articulating intervertebral implant with limited articulation |
8152810, | Nov 23 2004 | NuVasive, Inc | Spinal fixation tool set and method |
8157844, | Oct 22 2007 | FLEXUSPINE, INC | Dampener system for a posterior stabilization system with a variable length elongated member |
8157846, | Jul 24 2008 | INGENIUM, S A | Locking mechanism with two-piece washer |
8162948, | Feb 27 2004 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
8162994, | Oct 22 2007 | FLEXUSPINE, INC | Posterior stabilization system with isolated, dual dampener systems |
8167911, | Jul 20 2005 | ZIMMER BIOMET SPINE, INC | Apparatus for connecting a longitudinal member to a bone portion |
8172903, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable intervertebral implant with spacer |
8182514, | Oct 22 2007 | FLEXUSPINE, INC | Dampener system for a posterior stabilization system with a fixed length elongated member |
8187330, | Oct 22 2007 | FLEXUSPINE, INC | Dampener system for a posterior stabilization system with a variable length elongated member |
8197517, | May 08 2007 | Theken Spine, LLC | Frictional polyaxial screw assembly |
8197518, | May 16 2007 | Ortho Innovations, LLC | Thread-thru polyaxial pedicle screw system |
8211145, | Jul 07 2003 | Aesculap, Inc. | Spinal stabilization implant and method of application |
8241341, | Mar 20 2009 | LOAN ADMIN CO LLC | Pedicle screws and methods of using the same |
8257396, | Jun 18 2003 | Polyaxial bone screw with shank-retainer inset capture | |
8257398, | Jun 18 2003 | Polyaxial bone screw with cam capture | |
8257402, | Sep 06 2002 | Closure for rod receiving orthopedic implant having left handed thread removal | |
8257440, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Method of insertion of an expandable intervertebral implant |
8267965, | Oct 22 2007 | FLEXUSPINE, INC | Spinal stabilization systems with dynamic interbody devices |
8273089, | Nov 23 2004 | NuVasive, Inc | Spinal fixation tool set and method |
8273109, | Sep 06 2002 | Helical wound mechanically interlocking mating guide and advancement structure | |
8282673, | Sep 06 2002 | Anti-splay medical implant closure with multi-surface removal aperture | |
8292892, | May 13 2009 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
8292926, | Sep 30 2005 | Dynamic stabilization connecting member with elastic core and outer sleeve | |
8298265, | May 22 2003 | Alphatec Spine, Inc | Variable angle spinal screw assembly |
8308776, | Feb 18 2005 | Devices and methods for dynamic fixation of skeletal structure | |
8308782, | Nov 23 2004 | Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation | |
8353932, | Sep 30 2005 | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member | |
8361123, | Oct 16 2009 | Depuy Synthes Products, LLC | Bone anchor assemblies and methods of manufacturing and use thereof |
8361129, | Apr 28 2006 | Depuy Synthes Products, LLC | Large diameter bone anchor assembly |
8366745, | May 01 2007 | Dynamic stabilization assembly having pre-compressed spacers with differential displacements | |
8366747, | Oct 20 2004 | ZIMMER BIOMET SPINE, INC | Apparatus for connecting a longitudinal member to a bone portion |
8366753, | Jun 18 2003 | Polyaxial bone screw assembly with fixed retaining structure | |
8377067, | Feb 27 2004 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
8377098, | Jan 19 2007 | Tyler Fusion Technologies, LLC | Artificial functional spinal unit system and method for use |
8377100, | Dec 07 2000 | Closure for open-headed medical implant | |
8377102, | Jun 18 2003 | Polyaxial bone anchor with spline capture connection and lower pressure insert | |
8382806, | Jul 29 2005 | X-spine Systems, Inc. | Capless multiaxial screw and spinal fixation assembly and method |
8388660, | Aug 01 2006 | Devices and methods for superior fixation of orthopedic devices onto the vertebral column | |
8394133, | Feb 27 2004 | Dynamic fixation assemblies with inner core and outer coil-like member | |
8398682, | Jun 18 2003 | JACKSON, ROGER P AN INDIVIDUAL | Polyaxial bone screw assembly |
8398689, | Feb 18 2005 | Devices and methods for dynamic fixation of skeletal structure | |
8409255, | Apr 18 2002 | AESCULAP IMPLANT SYSTEMS, LLC | Screw and rod fixation assembly and device |
8409260, | Nov 10 2000 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone screw |
8425514, | Jun 25 2008 | WESTMARK MEDICAL, LLC | Spinal fixation device |
8439954, | Feb 27 2004 | CUSTOM SPINE ACQUISITION, INC | Spring-loaded, load sharing polyaxial pedicle screw assembly and method |
8444681, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
8449578, | Nov 09 2009 | ZIMMER BIOMET SPINE, INC | Multiplanar bone anchor system |
8465530, | Nov 14 2008 | Ortho Innovations, LLC | Locking polyaxial ball and socket fastener |
8475498, | Jan 18 2007 | Dynamic stabilization connecting member with cord connection | |
8491640, | Jul 02 2012 | Bone screw coupling assembly | |
8506599, | Feb 12 2007 | Dynamic stabilization assembly with frusto-conical connection | |
8506600, | Sep 14 2001 | STRYKER EUROPEAN HOLDINGS III, LLC | Methods for stabilizing bone using spinal fixation devices |
8506601, | Oct 14 2008 | PIONEER SURGICAL TECHNOLOGY, INC | Low profile dual locking fixation system and offset anchor member |
8523912, | Oct 22 2007 | Tyler Fusion Technologies, LLC | Posterior stabilization systems with shared, dual dampener systems |
8535318, | Apr 23 2010 | DEPUY SYNTHES PRODUCTS, INC | Minimally invasive instrument set, devices and related methods |
8540753, | Apr 09 2003 | Polyaxial bone screw with uploaded threaded shank and method of assembly and use | |
8545538, | Dec 19 2005 | Devices and methods for inter-vertebral orthopedic device placement | |
8556938, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
8591515, | Nov 23 2004 | Spinal fixation tool set and method | |
8591552, | Sep 06 2002 | Anti-splay medical implant closure with multi-surface removal aperture | |
8591560, | Sep 30 2005 | Dynamic stabilization connecting member with elastic core and outer sleeve | |
8597358, | Jan 19 2007 | Tyler Fusion Technologies, LLC | Dynamic interbody devices |
8603168, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Artificial functional spinal unit system and method for use |
8608805, | Sep 16 2005 | Zimmer GmbH | Insert and shell of a joint ball receptacle |
8613760, | Sep 30 2005 | Dynamic stabilization connecting member with slitted core and outer sleeve | |
8636740, | May 08 2008 | AESCULAP IMPLANT SYSTEMS, LLC | Minimally invasive spinal stabilization system |
8636769, | Jun 18 2003 | Polyaxial bone screw with shank-retainer insert capture | |
8636775, | May 22 2003 | Alphatec Spine, Inc | Variable angle spinal screw assembly |
8636778, | Feb 11 2009 | XTANT MEDICAL HOLDINGS, INC | Wide angulation coupling members for bone fixation system |
8647386, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable intervertebral implant system and method |
8652178, | Feb 27 2004 | CUSTOM SPINE ACQUISITION, INC | Polyaxial pedicle screw assembly and method |
8663298, | Jul 20 2007 | DEPUY SYNTHES PRODUCTS, INC | Polyaxial bone fixation element |
8679162, | Nov 21 2005 | Depuy Synthes Products, LLC | Polyaxial bone anchors with increased angulation |
8690951, | Nov 18 2005 | Zimmer, GmbH | Base platform for an artificial joint |
8696711, | Sep 30 2005 | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member | |
8696712, | Aug 03 2005 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone anchoring device |
8709051, | Aug 27 2004 | ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC | Multi-axial connection system |
8753398, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Method of inserting an expandable intervertebral implant without overdistraction |
8764806, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
8814911, | Jun 18 2003 | Polyaxial bone screw with cam connection and lock and release insert | |
8814913, | Sep 06 2002 | Helical guide and advancement flange with break-off extensions | |
8814919, | Oct 23 2007 | K2M, INC | Posterior pedicle screw having a taper lock |
8840652, | Nov 23 2004 | Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation | |
8845649, | Sep 24 2004 | Spinal fixation tool set and method for rod reduction and fastener insertion | |
8845696, | Feb 18 2005 | ZIMMER BIOMET SPINE, INC | Devices and methods for dynamic fixation of skeletal structure |
8845701, | Feb 18 2005 | ZIMMER BIOMET SPINE, INC | Devices and methods for dynamic fixation of skeletal structure |
8852239, | Feb 15 2013 | JACKSON, ROGER P | Sagittal angle screw with integral shank and receiver |
8870928, | Sep 06 2002 | Helical guide and advancement flange with radially loaded lip | |
8870930, | Sep 14 2001 | STRYKER EUROPEAN HOLDINGS III, LLC | Methods for stabilizing bone using spinal fixation devices |
8876868, | Sep 06 2002 | Helical guide and advancement flange with radially loaded lip | |
8876874, | Aug 21 2006 | Bone screw systems and methods of use | |
8882809, | Mar 20 2009 | LOAN ADMIN CO LLC | Pedicle screws and methods of using the same |
8882817, | Aug 20 2010 | K2M, INC | Spinal fixation system |
8888820, | Jun 28 2007 | SPINAL ELEMENTS, INC ; Amendia, Inc | Spinal stabilization device |
8894657, | Feb 27 2004 | NuVasive, Inc | Tool system for dynamic spinal implants |
8894692, | Jan 05 2001 | STRYKER EUROPEAN HOLDINGS III, LLC | Pedicle screw assembly and methods therefor |
8900272, | Feb 27 2004 | Dynamic fixation assemblies with inner core and outer coil-like member | |
8911477, | Oct 23 2007 | Dynamic stabilization member with end plate support and cable core extension | |
8911478, | Nov 21 2012 | JACKSON, ROGER P | Splay control closure for open bone anchor |
8911479, | Jan 10 2012 | JACKSON, ROGER P | Multi-start closures for open implants |
8926670, | Jun 18 2003 | Polyaxial bone screw assembly | |
8926672, | Nov 10 2004 | JACKSON, ROGER P | Splay control closure for open bone anchor |
8932332, | May 08 2008 | AESCULAP IMPLANT SYSTEMS, LLC | Minimally invasive spinal stabilization system |
8936623, | Jun 18 2003 | Polyaxial bone screw assembly | |
8940022, | Jan 19 2007 | FLEXUSPINE, INC | Artificial functional spinal unit system and method for use |
8940051, | Mar 25 2011 | Tyler Fusion Technologies, LLC | Interbody device insertion systems and methods |
8940054, | Jan 20 2006 | Zimmer Technology, Inc. | Shoulder arthroplasty system |
8945194, | Nov 10 2000 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone screw |
8951290, | Aug 27 2004 | ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC | Multi-axial connection system |
8979898, | Feb 20 2013 | K2M, INC | Iliosacral polyaxial screw |
8979904, | May 01 2007 | JACKSON, ROGER P | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
8986349, | Nov 11 2009 | NuVasive, Inc | Systems and methods for correcting spinal deformities |
8998959, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
8998960, | Nov 10 2004 | Polyaxial bone screw with helically wound capture connection | |
8998961, | Feb 26 2009 | ZIMMER BIOMET SPINE, INC | Spinal rod connector and methods |
9011495, | Nov 09 2009 | EBI, LLC | Multiplanar bone anchor system |
9034022, | Aug 09 2012 | SpineCraft, LLC | Locking force augmentation features for surgical screw assembly |
9044272, | Nov 09 2009 | ZIMMER BIOMET SPINE, INC | Multiplanar bone anchor system |
9050139, | Feb 27 2004 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
9050148, | Feb 27 2004 | NuVasive, Inc | Spinal fixation tool attachment structure |
9055978, | Feb 27 2004 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
9066811, | Jan 19 2007 | Tyler Fusion Technologies, LLC | Artificial functional spinal unit system and method for use |
9084634, | Jul 09 2010 | Theken Spine, LLC | Uniplanar screw |
9101404, | Jan 26 2007 | Dynamic stabilization connecting member with molded connection | |
9144444, | Jun 18 2003 | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly | |
9155581, | Aug 09 2012 | SpineCraft, LLC | Staged locking of surgical screw assembly |
9161782, | Oct 16 2009 | DePuy Synthes Products, Inc. | Bone anchor assemblies and methods of manufacturing and use thereof |
9168069, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer |
9179957, | Aug 09 2012 | SpineCraft, LLC | Systems, assemblies and methods for spinal derotation |
9198695, | Aug 30 2010 | ZIMMER BIOMET SPINE, INC | Polyaxial pedicle screw |
9211150, | Nov 23 2004 | NuVasive, Inc | Spinal fixation tool set and method |
9216039, | Feb 27 2004 | NuVasive, Inc | Dynamic spinal stabilization assemblies, tool set and method |
9216041, | Jun 15 2009 | JACKSON, ROGER P | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
9241739, | Sep 12 2008 | DEPUY SYNTHES PRODUCTS, INC | Spinal stabilizing and guiding fixation system |
9254151, | Mar 20 2009 | LOAN ADMIN CO LLC | Pedicle screws and methods of using the same |
9282998, | Sep 05 2008 | DEPUY SYNTHES PRODUCTS, INC | Bone fixation assembly |
9283075, | Jan 20 2006 | Zimmer, Inc. | Shoulder arthroplasty system |
9308027, | May 27 2005 | Polyaxial bone screw with shank articulation pressure insert and method | |
9314274, | May 27 2011 | DEPUY SYNTHES PRODUCTS, INC | Minimally invasive spinal fixation system including vertebral alignment features |
9320545, | Nov 23 2004 | Polyaxial bone screw with multi-part shank retainer and pressure insert | |
9320546, | Sep 29 2008 | DEPUY SYNTHES PRODUCTS, INC | Polyaxial bottom-loading screw and rod assembly |
9320617, | Oct 22 2012 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
9326796, | Nov 03 2008 | DEPUY SYNTHES PRODUCTS, INC | Uni-planer bone fixation assembly |
9345464, | Dec 07 2009 | Stryker European Operations Limited | Devices and methods for minimally invasive spinal stablization and instrumentation |
9364262, | Jul 02 2012 | SPECTRUM SPINE IP HOLDINGS, LLC | Bone screw coupling assembly |
9375236, | Aug 27 2004 | ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC | Multi-axial connection system |
9393047, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock |
9393049, | Aug 20 2010 | K2M, INC | Spinal fixation system |
9402663, | Apr 23 2010 | DePuy Synthes Products, Inc. | Minimally invasive instrument set, devices and related methods |
9414863, | Feb 22 2005 | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures | |
9439681, | Jul 20 2007 | DePuy Synthes Products, Inc. | Polyaxial bone fixation element |
9439683, | Jan 26 2007 | Dynamic stabilization member with molded connection | |
9451989, | Jan 18 2007 | Dynamic stabilization members with elastic and inelastic sections | |
9451993, | Jan 09 2014 | JACKSON, ROGER P | Bi-radial pop-on cervical bone anchor |
9453526, | Apr 30 2013 | DEGEN MEDICAL, INC | Bottom-loading anchor assembly |
9456853, | May 27 2005 | Polyaxial bone screw with shank articulation pressure insert and method | |
9480500, | Aug 09 2012 | SpineCraft, LLC | Systems, assemblies and methods for spinal derotation |
9480517, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
9492288, | Feb 20 2013 | Tyler Fusion Technologies, LLC | Expandable fusion device for positioning between adjacent vertebral bodies |
9498262, | Apr 11 2006 | DEPUY SYNTHES PRODUCTS, INC | Minimally invasive fixation system |
9504496, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
9504497, | Feb 20 2013 | K2M, Inc. | Iliosacral polyaxial screw |
9504498, | Nov 21 2005 | DEPUY SYNTHES PRODUCTS, INC | Polyaxial bone anchors with increased angulation |
9510862, | Jun 17 2009 | DEPUY SYNTHES PRODUCTS, INC | Revision connector for spinal constructs |
9510863, | Jul 02 2012 | SPECTRUM SPINE IP HOLDINGS, LLC | Bone screw coupling assembly |
9510880, | Aug 13 2013 | ZIMMER, INC | Polyaxial locking mechanism |
9517144, | Apr 24 2014 | Choice Spine, LP | Limited profile intervertebral implant with incorporated fastening mechanism |
9522021, | Nov 23 2004 | JACKSON, ROGER P | Polyaxial bone anchor with retainer with notch for mono-axial motion |
9526627, | Nov 17 2011 | Choice Spine, LP | Expandable interbody device system and method |
9532815, | Feb 27 2004 | NuVasive, Inc | Spinal fixation tool set and method |
9566092, | Oct 29 2013 | JACKSON, ROGER P | Cervical bone anchor with collet retainer and outer locking sleeve |
9566093, | Nov 10 2000 | Biedermann Technologies GmbH & Co. KG | Bone screw |
9572598, | Aug 09 2012 | SpineCraft, LLC | Uniplanar surgical screw assembly |
9579124, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable articulating intervertebral implant with limited articulation |
9597119, | Jun 04 2014 | JACKSON, ROGER P | Polyaxial bone anchor with polymer sleeve |
9615862, | Nov 20 2015 | Spinal LLC | Modular head inserter |
9629669, | Nov 23 2004 | NuVasive, Inc | Spinal fixation tool set and method |
9636146, | Jan 10 2012 | JACKSON, ROGER P | Multi-start closures for open implants |
9636148, | Aug 30 2010 | ZIMMER BIOMET SPINE, INC | Polyaxial pedicle screw |
9636151, | Feb 27 2004 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
9649135, | Nov 27 2013 | Spinal LLC | Bottom loading low profile fixation system |
9649142, | Mar 10 2015 | Spinal LLC | Modular head assembly |
9655650, | Jun 28 2007 | SPINAL ELEMENTS, INC ; Amendia, Inc | Spinal stabilization device |
9662143, | Feb 27 2004 | Dynamic fixation assemblies with inner core and outer coil-like member | |
9662144, | Sep 14 2001 | STRYKER EUROPEAN HOLDINGS III, LLC | Stabilizing bone using spinal fixation devices and systems |
9662151, | Feb 27 2004 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
9668771, | Jun 15 2009 | Soft stabilization assemblies with off-set connector | |
9668776, | Aug 09 2012 | SpineCraft, LLC | Systems, assemblies and methods for spinal derotation |
9675389, | Dec 07 2009 | Stryker European Operations Limited | Devices and methods for minimally invasive spinal stabilization and instrumentation |
9707014, | Jul 09 2010 | Theken Spine, LLC | Apparatus and method for limiting a range of angular positions of a screw |
9717533, | Dec 12 2013 | JACKSON, ROGER P | Bone anchor closure pivot-splay control flange form guide and advancement structure |
9717534, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock |
9743957, | Nov 10 2004 | Polyaxial bone screw with shank articulation pressure insert and method | |
9763701, | Nov 09 2009 | ZIMMER BIOMET SPINE, INC | Multiplanar bone anchor system |
9770265, | Nov 21 2012 | JACKSON, ROGER P | Splay control closure for open bone anchor |
9770334, | Jan 20 2006 | Zimmer, Inc. | Shoulder arthroplasty system |
9788866, | May 27 2005 | Polyaxial bone screw with shank articulation pressure insert and method | |
9801665, | May 27 2005 | Polyaxial bone screw with shank articulation pressure insert and method | |
9808281, | May 20 2009 | DEPUY SYNTHES PRODUCTS, INC | Patient-mounted retraction |
9848918, | Nov 21 2005 | DePuy Synthes Products, Inc. | Polyaxial bone anchors with increased angulation |
9861393, | Aug 09 2012 | SpineCraft, LLC | Systems, assemblies and methods for spinal derotation |
9867643, | Aug 13 2013 | Zimmer, Inc. | Polyaxial locking mechanism |
9867714, | Sep 23 2011 | Spinal fixation devices and methods of use | |
9872710, | Sep 05 2008 | DePuy Synthes Products, Inc. | Bone fixation assembly |
9901458, | Sep 23 2011 | Spinal fixation devices and methods of use | |
9907574, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features |
9918745, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
9918751, | Feb 27 2004 | NuVasive, Inc | Tool system for dynamic spinal implants |
9974571, | Sep 12 2008 | DePuy Synthes Products, Inc. | Spinal stabilizing and guiding fixation system |
9980753, | Jun 15 2009 | JACKSON, ROGER P | pivotal anchor with snap-in-place insert having rotation blocking extensions |
D592946, | Jul 25 2007 | LOAN ADMIN CO LLC | Locking rivet head |
RE42867, | Nov 03 2003 | Spinal, LLC | Bone fixation system with low profile fastener |
RE42932, | Jan 05 2001 | STRYKER EUROPEAN HOLDINGS III, LLC | Pedicle screw assembly and methods therefor |
RE46115, | Sep 19 2005 | ZIMMER BIOMET SPINE, INC | Bone screw apparatus, system and method |
RE46431, | Jun 18 2003 | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly | |
RE47551, | Feb 22 2005 | NuVasive, Inc | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
Patent | Priority | Assignee | Title |
5207678, | Jul 20 1989 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Pedicle screw and receiver member therefore |
5443467, | Feb 18 1994 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone screw |
5520690, | Apr 13 1995 | Warsaw Orthopedic, Inc | Anterior spinal polyaxial locking screw plate assembly |
5607426, | Apr 13 1995 | Warsaw Orthopedic, Inc | Threaded polyaxial locking screw plate assembly |
5669911, | Nov 13 1995 | Warsaw Orthopedic, Inc | Polyaxial pedicle screw |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 30 2001 | Fastenetix, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 11 2002 | M283: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jul 14 2004 | ASPN: Payor Number Assigned. |
Aug 30 2006 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 16 2005 | 4 years fee payment window open |
Oct 16 2005 | 6 months grace period start (w surcharge) |
Apr 16 2006 | patent expiry (for year 4) |
Apr 16 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 16 2009 | 8 years fee payment window open |
Oct 16 2009 | 6 months grace period start (w surcharge) |
Apr 16 2010 | patent expiry (for year 8) |
Apr 16 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 16 2013 | 12 years fee payment window open |
Oct 16 2013 | 6 months grace period start (w surcharge) |
Apr 16 2014 | patent expiry (for year 12) |
Apr 16 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |