The present invention discloses a method for thermally transferring an ink pattern to a recording medium, comprising the steps of preparing an ink sheet provided with a hot-melt and/or hot-sublimable ink layer and a transparent material sheet provided with a transparent hot-melt material layer, thermally producing an ink pattern on the transparent material layer of the transparent material sheet by heating the ink sheet with thermal head, and thermally transferring the ink pattern to the recording medium together with the transparent hot-melt material layer. And an another method comprising the steps of preparing an ink sheet having a transparent hot-melt material frame layer and a hot-melt and/or hot-sublimable ink frame layer, thermally transferring the transparent hot-melt material frame layer onto a surface of a platen roller, thermally producing an ink pattern on the transparent hot-melt material frame layer on the platen roller by heating the hot-melt and/or hot-sublimable ink frame layer with a thermal head, and thermally transferring the ink pattern together with the transparent hot-melt material frame layer onto a recording medium.
|
1. A method for thermally transferring an ink pattern to a recording medium, comprising the steps of:
preparing an ink sheet provided with a hot-melt and/or hot-sublimable ink layer thereon and a transparent material sheet provided with transparent hot-melt material layer thereon; thermally producing an ink pattern on said transparent hot-melt material layer of the transparent material sheet by heating said hot-melt and/or hot-sublimable ink layer with a thermal head; and thermally transferring the ink pattern produced on said transparent hot-melt material layer to the recording medium together with said transparent hot-melt material layer.
0. 2. A method for thermally transferring an ink pattern to a recording medium as defined in
|
1. Field of the Invention
The present invention relates to improvements of a thermal transferring printing method, and it particularly relates to a thermal transferring printing method suitable to a recording medium of which a surface has unevenness to print thereon.
2. Description of the Related Art
As is well known, a thermal transferring printing apparatus is used to print an ink pattern such as a picture or letters on a recording medium by thermally transferring hot-melt or hot-sublimable ink coated on an ink sheet to the recording medium by heating the ink sheet with a thermal head. However, it poses a problem that a recording medium having surface unevenness (rough surface) can not be employed in the apparatus because of degradation of printing quality due to an insufficient contact of the ink with the recessed portions of the unevenness of the recording medium.
As countermeasure of the insufficient contact, a hot-melt ink having high fluidity or a dot plate formed in accordance with the printing contents is employed as well as applying a large contact force with the thermal head. However, an acceptable result is not obtained yet.
In order to eliminate the above problem, there is proposed a thermal transferring printing method in "Japan Hardcopy '92", as shown in FIG. 1.
Referring to
In the above method, however, when using high fluidity ink, there are problems that the ink is liable to flow out from the printed ink pattern on the recording medium when the recording medium has a smooth surface in particular, and it is difficult to superpose many colors of ink on the recording medium at the same time. In addition, a printing of a picture having gradation is also difficult.
Accordingly, a general object of the present invention is to provide methods for transferring hot-melt ink to a recording medium in which the above disadvantages have been eliminated.
A specific object of the present invention is to provide a method for thermally transferring an ink pattern to a recording medium, comprising the steps of, preparing an ink sheet provided with a hot-melt and/or hot-sublimable ink layer thereon and a transparent material sheet provided with transparent hot-melt material layer thereon, thermally producing an ink pattern on the transparent hot-melt material layer of the transparent material sheet by heating the hot-melt and/or hot-sublimate ink layer with a thermal head, and thermally transferring the ink pattern produced on the transparent hot-melt material layer to the recording medium together with the transparent hot-melt material layer.
An another specific object of the present invention is to provide a method for thermally transferring hot-melt and/or hot-sublimable ink to a recording medium, comprising the steps of, preparing an ink sheet having at least a transparent hot-melt material frame layer and a hot-melt and/or hot-sublimable ink frame layer thereon, thermally transferring the transparent hot-melt material frame layer onto a surface of a platen roller, thermally producing an ink pattern on the transferred transparent hot-melt frame layer on the platen roller by heating the transparent hot-melt and/or hot-sublimable ink frame layer with a thermal head, and thermally transferring the ink pattern produced on the transparent hot-melt material layer to the recording medium together with the transparent hot-melt frame layer.
Other objects and further features of the present invention will be apparent from the following detailed description.
FIG. 6 and
Description will be given to an embodiment according to the present invention accompanying drawings.
Referring to
As shown in
FIG. 4 and
The transparent material sheet 8 is made by coating a hot-melt transparent material 8b on a base film 8a, for instance, made of polyester resin, as shown in FIG. 4.
For the material of the hot-melt transparent material 8b, such material as wax, for instance, paraffin wax, microcrystalline wax or carnauba wax is used as a major component and a small amount of oil, for instance, linseed oil or mineral oil is used as an additive. In order to have hot-sublimable material, cellulose-acetate-propionate resin and polyester resin may further be added to the above listed wax based material and used as the hot-melt transparent material 8b as well.
Next, the description is given to the method for transferring the hot-melt ink to the recording medium 10 in above thermal transferring printing apparatus referring to FIG. 4 and FIG. 5.
At first, the transparent material sheet 8 is placed stationary on the supporting stage 9 in such a manner that the layer of the transparent material 8b thereof faces upward, and the ink sheet 4 is superposed on the transparent material sheet 8 in such a manner that an ink frame 4a closely touches the transparent material 8b. Then, both of them are pressed by the thermal head 1 being heated as they are transported from an end of the supporting stage 9 to another end thereof, so that an ink pattern 4a is transferred to the transparent material 8a as shown in FIG. 4.
In order to obtain a color printing, the same operation is repeatedly performed with other color ink frames of the ink sheet 4 after taking-up the used one color ink frame of the ink sheet 4 by the first take-up reel 3 and returning the thermal head 1 to the initial position.
After a full color image is printed on the transparent material sheet 8, the transparent material sheet 8 carrying the full color image 4a is forwarded in the direction of arrow to the heating roller 13 by the second taking-up roller 6, during this movement, the transparent material sheet 8 and the recording medium 10 fed out of the third supply reel 12, are interposed together between the guide roller 11 and the heating roller 13 is heated. This causes the ink pattern 4a (full color) together with the layer of the transparent material 8b to contact closely with the recording medium 10 and to be heated together by the heating roller 13 so that the ink pattern 4a together with the layer of the transparent material 8b is thermally transferred to the recording medium 10 as shown in FIG. 5.
As mentioned in the foregoing, after the ink pattern is transferred to the surface of the transparent material sheet 8 with the thermal head 1, then the ink pattern is further transferred together with the layer of the transparent material 8b to the recording medium 10 by causing the layer of the transparent material 8b to be separated from the base film 8a and transferred on to the recording medium 10.
Thus, it will be understood that the printing quality according to the present invention is not affected by the unevenness of the surface of the recording medium 10.
Further, transparent material sheet which carries the ink pattern on the layer of the transparent material 8b, may be cut to a section of printed sheet so that such section may be used to print the carried pattern on a desired recording medium, for example, a recording medium having a predetermined configuration or a three dimensional configuration can be thermally printed by using such a cut section of printed sheet.
Next, the description is given to a further embodiment of the present invention accompanying
FIG. 6 and
Referring to FIG. 6 and
As shown in
The following is the description of the method for transferring the ink to the recording medium 26 in the above thermal transferring printing apparatus.
At first, the transparent material frame layer U on the ink sheet 24 is thermally transferred onto the platen roller 25 as shown in
Thus, the ink pattern 24a is printed on the recording medium 26 as shown in FIG. 11.
It should be noted that the recording medium 26 comprises a base 26b and a printing ink acceptable layer 26a on the base 26b for being easily printed.
Accordingly, it is possible to obtain a high printing quality for the recording medium 26 having an uneven surface without being affected by the unevenness, since the ink pattern is thermally transferred onto the transparent material frame layer U transferred preliminary on the platen roller 25, then to the recording medium 26, together with the transparent material frame U, i.e. not directly on the uneven surface.
As shown in
Further, in the prior art, an ink pattern printed on the recording medium with the sublimable ink in the thermal printing has to be overcoated subsequently with a protective transparent layer to prevent the sublimable ink pattern from sublimating. However, it should be noted that the method of the present invention requires no additional protective transparent layer because the layer of the transparent material 8b has a such function effect as a protection film.
Takanashi, Itsuo, Tanaka, Hideshi, Takahashi, Toshinori, Tada, Shigeaki
Patent | Priority | Assignee | Title |
7104713, | Oct 14 2004 | Seiko Instruments Inc | Printer for a heat-sensitive adhesive sheet |
7870824, | Apr 20 2005 | Zebra Technologies Corporation | Single-pass double-sided image transfer process and system |
9676179, | Apr 20 2005 | Zebra Technologies Corporation | Apparatus for reducing flash for thermal transfer printers |
Patent | Priority | Assignee | Title |
4503095, | Feb 13 1982 | FUJICOPIAN CO , LTD | Heat-sensitive color transfer recording media |
4527171, | Nov 22 1982 | Victor Company of Japan, Limited | Thermal transfer printing employing a binder |
4586834, | Sep 30 1983 | Kabushiki Kaisha Toshiba | Transfer apparatus for monochromatic or multi-color printing |
4588315, | Feb 13 1982 | Fuji Kagakushi Kogyo Co., Ltd. | Heat-sensitive color transfer recording media and printing process using the same |
4704615, | Jul 15 1985 | Victor Company of Japan, LTD | Thermal transfer printing apparatus |
4724025, | Aug 13 1984 | Olympus Optical Co., Ltd. | Transfer coating method |
4801473, | May 14 1987 | SPECTRA, INC | Method for preparing a hot melt ink transparency |
4873134, | Aug 10 1988 | SPECTRA, INC | Hot melt ink projection transparency |
4914079, | Oct 06 1986 | SEIKO EPSON CORPORATION, 4-1, 2-CHOME NISHISHINJUKU, SHINJUKU-KU, TOKYO-TO, JAPAN | Thermal transfer ink medium and method of printing |
5011570, | Nov 21 1988 | Konica Corporation | ID card, ID booklet, and manufacturing method thereof |
5060981, | Sep 19 1989 | Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY, ST PAUL, MN A CORP OF DELAWARE | Transparent overlay for protecting a document from tampering |
5120383, | Apr 14 1986 | Seiko Epson Corporation | Thermal transfer ink sheet and method of printing |
5147489, | Nov 02 1988 | Esselte Pendaflex Corporation | Coloured images |
GB2045688, | |||
JP46987, | |||
JP47690, | |||
JP70690, | |||
JP277466, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 20 2000 | Victor Company of Japan, Ltd. | (assignment on the face of the patent) | / | |||
Oct 01 2011 | Victor Company of Japan, LTD | JVC Kenwood Corporation | MERGER SEE DOCUMENT FOR DETAILS | 028002 | /0001 |
Date | Maintenance Fee Events |
Jun 16 2005 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 04 2005 | 4 years fee payment window open |
Dec 04 2005 | 6 months grace period start (w surcharge) |
Jun 04 2006 | patent expiry (for year 4) |
Jun 04 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 04 2009 | 8 years fee payment window open |
Dec 04 2009 | 6 months grace period start (w surcharge) |
Jun 04 2010 | patent expiry (for year 8) |
Jun 04 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 04 2013 | 12 years fee payment window open |
Dec 04 2013 | 6 months grace period start (w surcharge) |
Jun 04 2014 | patent expiry (for year 12) |
Jun 04 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |