A filler neck closure assembly for a vehicle fuel tank filler neck, comprising: a housing configured to be mounted in the filler neck and formed to include a sealing surface and a pressure-relief valve positioned to lie in the housing and provided with a nozzle-receiving portion and a sealing portion, wherein the nozzle-receiving portion is formed to include a nozzle-receiving opening sized to receive a pump nozzle during refueling of the fuel tank and the sealing portion is movable with the nozzle portion and relative to the housing between a closure-sealing position sealingly engaging the sealing surface and a pressure-relief position away from the sealing surface to define an opening to vent fuel vapor from the fuel tank when tank pressure exceeds a predetermined maximum pressure. The housing is formed to include a passageway containing the pressure-relief valve therein and defines an annular space around the pressure-relief valve, between the pressure-relief valve and the housing, and with a coiled compression spring positioned in the annular space, the pressure-relief valve including an axially outwardly extending annular guide wall adjacent to the annular space which defines a radially inner side of the annular space, the housing further including a radially inwardly extending annular lip wherein the guide wall slidingly engages the lip of the housing to radially guide the pressure-relief valve during movement of the pressure-relief valve between the closure-sealing position and the pressure-relief position.
|
0. 80. A self-closing cap adapted to be mounted onto a filler neck of a fuel tank of an automotive vehicle, comprising:
a closure ring having an annular body and means for detachably mounting the periphery of said annular body around a peripheral edge of a filler neck, and a closure flap assembly including a circular member having an opening for receiving a nozzle, a closure flap, means for pivotally mounting an edge of said closure flap over said opening, and means for permanently affixing said circular member to said annular body such that the orientation of said pivotal mounting means is angularly adjustable relative to said annular body, and a cover means detachably mountable over said closure flap assembly.
0. 66. A self-closing cap adapted to be mounted onto a filler neck of a fuel tank of an automotive vehicle wherein said neck includes a restrictive flap pivotally connected thereto, comprising:
a closure ring having an annular body and means for detachably mounting the periphery of said annular body around a peripheral edge of a filler neck, a closure flap assembly including a circular member having an opening for receiving a nozzle, a closure flap, means for pivotally mounting an edge of said closure flap over said opening, and means for affixing said circular member to said annular body such that the orientation of said pivotal mounting means is adjustable relative to a pivotal connection between said restrictive flap and said neck, and a cover means detachably mountable over said closure flap assembly.
58. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
a housing configured to be received by the filler neck, a sealing gasket positioned to lie between the housing and the filler neck, the sealing gasket being subject to damage due to overtightening of the closure assembly on the filler neck, an outer shell rotatably connected to the housing, the outer shell being formed to include a nozzle-receiving opening, and a torque-override mechanism for providing a torque-limited connection between the outer shell and the housing to protect the gasket from over tightening of the closure assembly on the filler neck resulting from the application of torque above a predetermined maximum torque on the outer shell, the torque-override mechanism including drive teeth appended to the outer shell.
44. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
a housing configured to mount in the filler neck and formed to include an interior region and a sealing surface, a pressure-relief valve positioned to lie in the interior region of the housing, the pressure-relief valve being movable relative to the housing between a closure-sealing position sealingly engaging the sealing surface and a pressure-relief position away from the sealing surface to define an opening therebetween to vent fuel vapor from the fuel tank when tank pressure exceeds a predetermined maximum pressure, and an outer shell mounted on the housing for rotation about an axis passing through the interior region formed in the housing, the outer shell including a side wall and a front wall cooperating with the side wall to define an enclosed space receiving an axially outer portion of the pressure-relief valve when the pressure-relief valve is in the pressure-relief position.
0. 73. A self-closing cap for attachment to the fuel filler neck of a vehicle that is particularly adapted for use with an automatic filling machine, said neck having a restrictive flap within its inner diameter that is connected thereto by a pivotal connection, comprising:
a closure ring having an annular body and means for detachably mounting the periphery of said annular body around the periphery of a filler neck, a closure flap assembly including a circular member having an opening, a closure flap, means for pivotally mounting said closure flap over said opening, and means for affixing said circular member at a selected position with respect to the periphery of said annular body of said closure ring after said ring has been mounted around the periphery of said filler neck such that the orientation of said pivotal mounting means is angularly adjustable relative to said annular body to a position substantially 180°C opposite from said pivotal connection of said restrictive flap, and a cover means detachably mountable over said closure flap assembly.
1. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
a closure for closing the filler neck, the closure including a housing formed to include an interior region for receiving fuel vapor in the filler neck and a vent aperture for discharging fuel vapor from the interior region, closure retainer apparatus appended to the housing and configured to engage the filler neck when the housing is installed in the filler neck to block removal of the closure from the filler neck, a seal member engaging the housing and lying in a position to engage the filler neck to establish a sealed connection between the housing and the filler neck when the housing is installed in the filler neck, and a movable tank pressure control assembly mounted for movement in the interior region of the housing between a filler neck-closing position blocking discharge of fuel vapor in the filler neck through the vent aperture and a filler neck-venting position allowing discharge of fuel vapor in the filler neck through the vent aperture, the movable tank pressure control assembly including a nozzle-receiving opening and a door mechanism normally closing the nozzle-receiving opening.
38. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
a housing configured to mount in the filler neck, the housing being formed to include an interior region having an outlet in fluid communication with the filler neck and a vent aperture for discharging fuel vapor extant in the interior region from the housing, an outer shell rotatably coupled to the housing, a pressure-relief valve movable relative to the housing between a closed position partitioning the interior region to define an inner chamber communicating with the outlet and an outer chamber communicating with the vent aperture and blocking the flow of fuel vapor from the inner chamber to the outer chamber and a pressure-relief position allowing the flow of fuel vapor from the inner chamber to the outer chamber to vent fuel vapor from the fuel tank through the interior region of the housing and the vent aperture formed in the housing when tank pressure exceeds a predetermined maximum pressure, and a spline interposed between the outer shell and the housing, the spline imparting rotational movement from the outer shell to the pressure-relief valve to rotate the pressure-relief valve relative to the housing in response to rotational movement of the outer shell relative to the housing, the spline blocking independent rotational movement of the outer shell relative to the pressure-relief valve.
56. A filler neck closure assembly for a vehicle fuel tank filler neck, the filler neck closure assembly comprising
a housing configured to mount in the filler neck, a closure portion mounted in the housing and having an aperture for receiving a nozzle to introduce fuel into the filler neck, a plate, means for supporting the plate for movement relative to the closure portion between a closed position blocking the flow of air through the aperture means and an open position allowing the flow of air through the aperture means when the tank pressure is less than a predetermined minimum pressure, the supporting means being appended to the closure portion, a spring lying in the housing and yieldably biasing the plate against the closure portion, the spring having a spring constant such that the plate sealingly engages the closure portion when the tank pressure is above the predetermined minimum pressure and such that the plate disengages from the closure portion when tank pressure is below the predetermined minimum pressure to form an opening therebetween allowing the flow of air through the aperture means, through the opening, and into the fuel tank, the closure portion being formed to include a spline, and an outer shell rotatably connected to the housing and formed to include a spline-receiving space positioned to receive the spline so that the closure portion rotates relative to the housing with the outer shell as the outer shell rotates relative to the housing.
36. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
a housing configured to mount in the filler neck and formed to include a sealing surface, and a pressure-relief valve positioned to lie in the housing, the pressure-relief valve including a nozzle-receiving portion and a sealing portion, the nozzle-receiving portion being formed to include a nozzle-receiving opening sized to receive a pump nozzle during refueling of the fuel tank, the sealing portion being movable relative to the housing between a closure-sealing position sealingly engaging the sealing surface and a pressure-relief position away from the sealing surface to define an opening therebetween to vent fuel vapor from the fuel tank when tank pressure exceeds a predetermined maximum pressure, the nozzle-receiving portion moving axially with the sealing portion during movement of the sealing portion between the closure-sealing position and the pressure-relief position, wherein the housing is formed to include a radially inwardly extending lip appended to an axially outer portion of the housing, the filler neck closure further comprises a spring engaging the lip of the housing mad and the pressure-relief valve to yieldably bias the pressure-relief valve toward the closure-sealing position, an outer shell adjacent to an axial outer end of the housing, and a radially outwardly extending flange appended to the housing and interconnecting the outer shell and the housing, the flange including a frangible section configured to fracture in response to an impact to the outer shell leaving the housing intact to seal the filler neck, the flange being appended to the housing axially adjacent to the lip.
57. A filler neck closure assembly for a vehicle fuel tank filler neck, the filler neck closure assembly comprising
a housing configured to mount in the filler neck, a closure portion mounted in the housing and having aperture means for receiving a nozzle to introduce fuel into the filler neck, a plate, means for supporting the plate for movement relative to the closure portion between a closed position blocking the flow of air through the aperture means and an open position allowing the flow of air through the aperture means when the tank pressure is less than a predetermined minimum pressure, the supporting means being appended to the closure portion, a spring lying in the housing and yieldably biasing the plate against the closure portion, the spring having a spring constant such that the plate sealingly engages the closure portion when the tank pressure is above the predetermined minimum pressure and such that the plate disengages from the closure portion when tank pressure is blow the predetermined minimum pressure to form an opening therebetween allowing the flow of air through the aperture Weans, through the opening, and into the fuel tank, the closure portion being mounted for movement relative to the housing between a closed position blocking the flow of fuel vapor between the housing and the closure portion and an open position allowing the flow of fuel vapor between the closure portion and the housing when the tank pressure is above a predetermined maximum pressure, and a compression spring yieldably biasing the closure portion toward the closed position, the compression spring having a first end engaging the closure portion, a second end engaging the housing, and the compression spring being positioned to lie axially outward of the spring yieldably biasing the plate against the closure portion.
33. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
a housing configured to mount in the filler neck and formed to include a sealing surface, and a pressure-relief valve positioned to lie in the housing, the pressure-relief valve including a nozzle-receiving portion and a sealing portion, the nozzle-receiving portion being formed to include a nozzle-receiving opening sized to receive a pump nozzle during refueling of the fuel tank the sealing portion being movable relative to the housing between a closure-sealing position sealingly engaging the sealing surface and a pressure-relief position away from the sealing surface to define an opening therebetween to vent fuel vapor from the fuel tank when tank pressure exceeds a predetermined maximum pressure, the nozzle-receiving portion moving axially with the sealing portion during movement of the sealing portion between the closure-sealing position and the pressure-relief position, and wherein the housing is formed to include a passageway extending therethrough and containing the pressure-relief valve therein, the housing and the pressure-relief valve cooperate to define an annular space around the pressure-relief valve and between the pressure-relief valve and the housing, and a coiled compression spring is positioned in the annular space, the pressure-relief valve includes an axially outwardly extending annular guide wall adjacent to the annular space and the guide wall defines a radially inner side of the annular space, the housing further includes a radially inwardly extending annular lip appended to the housing and the guide wall slidingly engages the lip of the housing to radially guide the pressure-relief valve during movement of the pressure-relief valve between the closure-sealing position and the pressure-relief position.
34. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
a housing configured to mount in the filler neck and formed to include a sealing surface, a pressure-relief valve positioned to lie in the housing, the pressure-relief valve including a nozzle-receiving portion and a sealing portion, the nozzle-receiving portion being formed to include a nozzle-receiving opening sized to receive a pump nozzle during refueling of the fuel tank, the sealing portion being movable relative to the housing between a closure-sealing position sealingly engaging the sealing surface and a pressure-relief position away from the sealing surface to define an opening therebetween to vent fuel vapor from the fuel tank when the tank pressure exceeds a predetermined maximum pressure, the nozzle-receiving portion moving axially with the sealing portion during movement of the sealing portion between the closure-sealing position and the pressure-relief position, the housing being formed to include a passageway extending therethrough and containing the pressure-relief valve therein, the pressure-relief valve including an axially outwardly extending annular guide wall, the housing and the pressure-relief valve cooperating to define an annular space around the annular guide wall of the pressure-relief valve and between the annular guide wall and the housing the annular guide wall being adjacent to the annular space to dating define a radially inner side of the annular space, a coiled compression spring positioned to lie in the annular space and surround the annular guide wall between the sealing portion of the pressure-relief valve and the annular lip of the housing, and an outer shell rotatably connected to the housing, the outer shall shell including a plurality of axially inwardly directed drive teeth, the housing further including a plurality of driven teeth and means for biasing the driven teeth axially outwardly, the driven teeth being configured to engage the drive teeth to provide a torque-limited connection between the outer shell and the housing when the outer shell is rotated in a closure-advancing direction.
2. The assembly of
3. The assembly of
4. The assembly of
5. The assembly of
6. The assembly of
7. The assembly of
8. The assembly of
9. The assembly of
10. The assembly of
11. The assembly of
12. The assembly of
13. The assembly of
14. The assembly of
15. The assembly of
16. The assembly of
17. The assembly of
18. The assembly of
19. The assembly of
20. The assembly of
21. The assembly of
22. The assembly of
23. The assembly of
24. The assembly of
25. The assembly of
26. The assembly of
27. The assembly of
28. The assembly of
29. The assembly of
30. The assembly of
32. The assembly of
35. The assembly of
37. The assembly of
39. The assembly of
40. The assembly of
41. The assembly of
42. The assembly of
43. The assembly of
45. The assembly of
46. The assembly of
47. The assembly of
48. The assembly of
49. The assembly of
50. The assembly of
51. The assembly of
52. The assembly of
53. The assembly of
54. The assembly of
55. The assembly of
59. The assembly of
60. The assembly of
61. The assembly of
62. The assembly of
63. The assembly of
64. The assembly of
65. The assembly of
0. 67. The self-closing cap as defined in
0. 68. The self-closing cap as defined in
0. 69. The self-closing cap as defined in
0. 70. The self-closing cap as defined in
0. 71. The self-closing cap as defined in
0. 72. The self-closing cap as defined in
0. 74. The self-closing cap as defined in
0. 75. The self-closing cap as defined in
0. 76. The self-closing cap as defined in
0. 77. The self-closing cap as defined in
0. 78. The self-closing cap as defined in
0. 79. The self-closing cap as defined in
|
The present invention relates to a closure assembly for a tank filler neck, and particularly to a capless closure assembly for a vehicle fuel tank filler neck that operates to close the filler neck automatically as soon as a fuel-dispensing pump nozzle is removed from the filler neck following refueling of the tank. More particularly, the present invention relates to a filler neck closure assembly that cooperates with a fuel-dispensing pump nozzle, which may be connected to a robotic refueling system, to provide an automatic opening and closing mechanism for the filler neck and that functions automatically to vent excess tank pressure and relieve unwanted tank vacuum after refueling is completed.
A removable fuel cap with a sealing gasket is typically used to close the open end of a fuel tank filler neck. After an attendant fills the fuel tank and withdraws the pump nozzle from the filler neck, the fuel cap is attached to the filler neck so that the sealing gasket forms a seal between the fuel cap and the filler neck. Thus, the fuel cap closes the open end of the filler neck to block discharge of liquid fuel and fuel vapor from the fuel tank through the filler neck. Additionally, some fuel caps are provided with pressure-relief and vacuum-relief valves to permit some controlled venting of fuel vapors in the filler neck while the fuel cap is mounted on the filler neck.
It has been observed that fuel caps are often lost or damaged over time and, as a result, the open end of the filler neck might not be closed and sealed in accordance with original equipment specifications during operations of the vehicle. Accordingly, a filler neck configured to "open" automatically as a fuel-dispensing pump nozzle is inserted into the filler neck during refueling and "close" automatically once the pump nozzle is withdrawn from the filler neck without requiring an attendant to reattach a fuel cap to the filler neck would be an improvement over many conventional capped filler neck systems.
A closure assembly 10 in accordance with the present invention for a filler neck 12 of a vehicle fuel tank 14 is compatible for use both when vehicle fuel tank 14 is refueled by an attendant (not shown) and when vehicle fuel tank 14 is refueled using a robotic refueling system 16 (shown diagrammatically in FIG. 1). In addition, closure assembly 10 functions to vent excess fuel vapor pressure from vehicle fuel tank 14 when tank pressure is too high and allow air into vehicle fuel tank 14 when tank pressure is too low.
Illustrative robotic refueling system 16 is operable within a refueling zone 18 illustratively shown by an area indicated by dashed lines in FIG. 1. When a vehicle 22 enter refueling zone 18 for refueling, a vehicle detector 20 having an external nozzle-positioning sensor 28 determines the position of vehicle 22 within refueling zone 18. Vehicle detector 20 also determines the approximate location of closure assembly 10.
Once robotic refueling system 16 determines the approximate location of closure assembly 10, a pump nozzle assembly 82 appended to a pump nozzle conveyor 25 advances to the approximate location of closure assembly 10 as shown in
An exploded perspective view of closure assembly 10 of
It will be understood that the pressure in fuel tank 14 could increase or decrease after filling due to changes, for example, in fuel temperature. As shown best in
Pressure-relief valve subassembly 40 includes a closure portion including a seal plate 132 having a nozzle-receiving portion 133 and a sealing portion 135. Seal plate 132 is biased inwardly by a compression spring or coiled compression spring 140 so that sealing portion 135 sealingly engages an O-ring or annular seal or O-ring seal 138. O-ring 138 is trapped between inner body 34 and sealing portion 135 to establish a seal therebetween so that pressure-relief valve subassembly 40. O-ring 138, and inner body 34 cooperate to block the flow of air into fuel tank 14 and the flow of liquid fuel and fuel vapor out of fuel tank 14 between sealing portion 135 and inner body 34 when the tank pressure is below the predetermined maximum tank pressure.
Sealing portion 135 of pressure-relief valve subassembly 40 is movable relative to housing 35 and causes nozzle-receiving portion 133 to move along with sealing or filler neck-closing or closed portion 135 between an axially inward closure-sealing position shown in
An axially inwardly extending upstanding annular seal-receiving wall 137 is appended to seal plate 132 adjacent to inner nozzle-receiving opening 154 as shown in
As shown in
In addition to providing a path for the flow of ambient air through filler neck 12 and into vehicle fuel tank 14, inner nozzle-receiving opening 154 also receives pump nozzle 24 of vapor recovery nozzle assembly 82 as shown in
Pump nozzle 24 engages flapper door 180 when pump nozzle 24 advances into closure assembly 10 and acts against torsion spring 200 to move flapper door 180 to a fully open position shown in
Pump nozzle 24 can engage out shell 30 when moving to penetrate closure assembly 10. Outer shell 30 includes a cylindrical side wall 52 that is formed in the shape of a truncated right circular cylinder as shown in
Outer shell 30 further includes front wall 70 appended to outer edge 58 of cylindrical side wall 52 as shown in
Nozzle-guiding surface 76 is shaped so that nozzle-guiding surface 76 is generally flat between short side 62 and edge 72 and is generally S-shaped between long side 64 and edge 72, as shown in
Outer nozzle-receiving opening 74 is generally circular, as shown in
Outer body 32 is appended to outer shell 30. Outer body 32 includes a cylindrical side wall 106 having an axially outer edge 108 defining an inlet 104, shown best in
A radially outwardly extending annular flange 100 is appended to cylindrical side wall 106 of outer body 32 at edge 108. Cylindrical side wall 52 of outer shell 30 is formed to include a plurality of snaps 94 having snap inner walls 98 and being positioned along a radially inner surface 96 of cylindrical side wall 52 as shown in
Inner body 34 is formed to include a second cylindrical side wall 114 arranged to define an outer opening 118, an outlet 120 opposite outer opening 118, and a second interior region 116 therebetween in fluid communication with outer opening 118 and outlet 120. Inner body 34 is connected to outer body 32, and second cylindrical side wall 114 of inner body 34 cooperates with cylindrical side wall 106 of outer body 32 to define valve-receiving space 36 having a central axis 37 coincident with central axis 56 of outer shell 30 as shown in FIG. 4.
Inner body 34 includes a radially outwardly extending annular lip 122 appended to second cylindrical side wall 114 adjacent to outer opening 118. Lip 122 includes an axially outwardly facing first sealing surface 124 and an axially inwardly facing second sealing surface 126. Outer body 32 includes radially inwardly extending annular ledges 128 appended to inner edge 109 as shown in
Filler neck 12 includes a cylindrical wall 13 that defines an interior region 15. In preferred embodiments, base 44 is received by interior region 15. In addition, base 44 includes a cylindrical side wall 206 that defines a closure-receiving space 210 as shown in
Base 44 may also include an unleaded discriminator 205 as shown, for example, in
It is also within the scope of the invention as presently perceived to either mount closure assembly 10 directly in interior region 15 of filler neck 12 without interposing base 44 between closure assembly 10 and filler neck 12, or to mount closure assembly 10 in base 44 which in turn is received by interior region 15 of filler neck 12 as shown in
Cylindrical side wall 206 of base 44 is provided with thread-engaging grooves 208 and is formed to include an axially outwardly-facing mouth 212 and an axially inner edge 213. Unleaded discriminator 205 is appended to edge 213 and is formed to include nozzle-directing opening 214 as shown in FIG. 4. Nozzle-directing opening 214 and mouth 212 are in fluid communication with closure-receiving space 210.
Second cylindrical side wall 114 of inner body 34 is formed to include threads 216 that are received by thread-engaging grooves 208 when closure assembly 10 is received in closure-receiving space 210. Gasket 46 is positioned to lie between mouth 212 and second sealing surface 126 of annular lip 122 as shown in
Tank pressure control subassembly 38 includes pressure-relief valve subassembly 40 which is positioned to lie within valve-receiving space 36 formed by outer body 32 and inner body 34 of housing 35 as shown in
Compression spring 140 is positioned inside of a compression spring-receiving space 141 of valve-receiving space 36, as shown best in
Seal plate 132 of pressure-relief valve subassembly 40 includes an upstanding annular guide wall 148 appended to outwardly-facing surface 142 as shown in
Axially outwardly-facing nozzle-directing ribs 150 are appended to outwardly-facing surface 142 of nozzle-receiving portion 133 as shown in
Nozzle-receiving portion 133 of seal plate 132 includes inner nozzle-receiving opening 154 and axially inwardly directed upstanding annular seal-receiving wall 137 appended to axially inwardly-facing surface 144 of seal plate 132 as shown in FIG. 4. Seal-receiving wall 137 encircles inner nozzle-receiving opening 154. In addition, axially inwardly directed arcuate retainer-engaging walls (not shown) are appended to seal plate 132 and are positioned to lie radially outward of seal-receiving wall 137. Retainer-engaging walls are formed to include lug-receiving openings (not shown).
Annular valve seat 134 is received by seal-receiving wall 137 as shown in FIG. 4. Annual valve seat 134 includes an axially inwardly facing annular flapper door-seating surface 156, an axially outwardly facing annular seal plate-engaging wall 158, and a wall-engaging portion 160 therebetween. Flapper door-seating surface 156, wall-engaging portion 160, and seal plate-engaging wall 158 cooperate to define an annular groove 162. A retainer 136 is received in groove 162 and cooperates with seal-receiving wall 137 to retain annular valve seat 134 against seal-receiving wall 137 are shown in FIG. 4. Radially outwardly directed lugs 139 are appended to retainer 136 as shown in FIG. 3 and are received by lug-receiving openings (not shown) to hold retainer 136 against seal plate 132.
Flapper door 180 is pivotably appended to seal plate 132 of pressure-relief valve subassembly 40 as shown in
Flapper door 180 includes a circular plate 194 appended to arms 182. Circular plate 194 includes a circumferential sealing surface 196 that engages flapper door-seating surface 156 when flapper door 180 is in a sealing position as shown, for example, in FIG. 4. Circular plate 194 also includes a raised axially outwardly directed nozzle-engaging surface 198. Nozzle-engaging surface 198 engages pump nozzle 24 when pump nozzle 24 penetrates closure assembly 10.
Flapper door 180 is yieldably urged against annular valve seat 134 by torsion spring 200 to prevent the flow of air into or fuel vapor out of vehicle fuel tank 14 between the flapper door 180 and annular valve seat 134 when tank pressure is above the predetermined minimum tank pressure. Torsion spring 200 is coiled about pivot shaft 192 and includes a first end 187 engaging one arm 186 of seal plate 132 and a second end 189 engaging an inwardly directed surface 202 of flapper door 180. Torsion spring 200 has a spring constant designed to yieldably urge the flapper door 180 outwardly against annular valve seat 134.
Torsion spring 200 is specifically selected to have a spring constant such that circular plate 194 of flapper door 180 sealingly engages annular valve seat 134 when the tank pressure is above the predetermined minimum pressure and such that circular plate 194 disengages from annular valve seat 134 when tank pressure is below the predetermined minimum pressure to form an opening therebetween. Torsion spring 200 is positioned to lie in housing 35 and is formed to include a central axis 201 arranged to lie along a line that is perpendicular to central axis 37 of housing 35.
Closure assembly 10 is positioned in filler neck 12 of vehicle fuel tank 14 to receive pump nozzle 23 as shown in
A standard pump nozzle assembly 81 can include a collar 83 mounted to pump nozzle 23 as shown in FIG. 5. Collar 83 can be formed to include an axially outer wall 85. Front wall 70 of outer shell 30 is formed to include a latching portion 71 adjacent to outer nozzle-receiving opening 74, as shown in FIG. 5. Latching portion 71 is positioned to engage outer wall 85 of collar 83 after pump nozzle 23 is inserted into closure assembly 10 to prevent pump nozzle 23 from inadvertently sliding axially outward out of closure assembly 10. Once refueling is complete, pump nozzle 23 is released from closure assembly 10 by lifting pump nozzle 23 to move collar 83 to a position that is radially inward of latching portion 71 and moving pump nozzle 23 axially outwardly and away from closure assembly 10.
Pump nozzle 24 of vapor recovery nozzle assembly 82 is connected to boot 80 as shown in FIG. 6. Front wall 70 of outer shell 30 is contoured to provide boot-seating surface 78 so that boot 80 can seat against front wall 70 to minimize the escape of fuel vapor between boot 80 and boot-seating surface 78 during refueling of vehicle fuel tank 14.
Typically, vapor recovery pump nozzle assembly 82 further includes a catch 91 having an axially outwardly-facing outer wall 92. Catch 91 is typically connected to pump nozzle 24 as shown in FIG. 6. Outer wall 92 engages latching portion 71 after pump nozzle 24 is inserted into closure assembly 10 to prevent pump nozzle 24 from sliding axially outwardly out of closure assembly 10 during refueling of fuel tank 14. Once refueling is complete, pump nozzle 24 is released from closure assembly 10 by lifting pump nozzle 24 to move outer wall 92 to a position that is radially inward of latching portion 71 and moving pump nozzle 24 axially outwardly and away from closure assembly 10.
When either an attendant or a robotic refueling system 16 prepares to refuel vehicle 22, pump nozzle 24 is directed toward closure assembly 10. Front wall 70 of outer shell 30 is contoured to provide a funnel-like nozzle-guiding surface 76 arranged to direct advancing pump nozzle 24 toward outer nozzle-receiving opening 74. After passing through nozzle-receiving opening 74, a tip 232 of advancing pump nozzle 24 engages nozzle-engaging surface 198 of flapper door 180.
Camming engagement of pump nozzle 24 and nozzle-engaging surface 198 caused by the advancement of pump nozzle 24 causes tip 232 to act against torsion spring 200 to force flapper door 180 into the fully open refueling position shown in FIG. 5. In addition, torsion spring 200 acts through flapper door 180 to bias pump nozzle 24 downwardly thereby directing pump nozzle 24 toward nozzle-directing opening 214 of base 44. Pump nozzle 24 continues to advance until tip 232 penetrates nozzle-directing opening 214 and, for vapor recovery pump nozzle assembly 82, until boot 80 engages boot-seating surface 78 as shown in FIG. 6.
Nozzle-directing opening 214 of base 44 is formed to include a third central axis 234 that is typically spaced apart from a central axis 215 of filler neck 12 as shown in FIG. 4. Central axis 215 of filler neck 12 is typically coincident with central axis 56 of outer shell 30 and first central axis 84 of outer nozzle-receiving opening 74 of outer shell 30. Third central axis 234 is typically spaced apart from first central axis 84 of outer nozzle-receiving opening 74 as illustrated in FIG. 4.
In addition, inner nozzle-receiving opening 154 of seal plate 132 is formed to include a second central axis 236. Second central axis 236 is also typically spaced-apart from first central axis 84 of outer nozzle-receiving opening 74. Second central axis 236 is positioned so that inner nozzle-receiving opening 154 receives advancing pump nozzle 24 from outer nozzle-receiving opening 74 and then guides advancing pump nozzle 24 to nozzle-directing opening 214 of base 44 as shown in
Inner nozzle-receiving opening 154 is sized and second central axis 236 of inner nozzle-receiving opening 54 is spaced apart from first central axis 84 so that sufficient overlap of outer nozzle-receiving opening 74 and inner nozzle-receiving opening 154 is present in an axial direction to permit pump nozzle 24 to be received by both first nozzle-receiving opening 74 and inner nozzle-receiving opening 154. Likewise, nozzle-directing opening 214 is sized and third central axis 234 is spaced apart from first central axis 84 and second central axis 236 so that sufficient overlap of outer and inner nozzle-receiving openings 74, 154 and nozzle-directing opening 214 is present in an axial direction to permit pump nozzle 24 to be received by all three of outer and inner nozzle-receiving openings 74, 154 and nozzle-directing opening 214 as shown in
In operation, when vehicle 22 is not being refueled, pressure-relief valve subassembly 40 permits fuel vapor from the vehicle fuel tank 14, designated by arrows 238 of
Seal plate 132 is urged outwardly away from O-ring 138 in response to pressure against flapper door 180 and seal plate 132 in excess of a predetermined superatmospheric pressure. Movement of seal plate 132 away from O-ring 138 opens the vent passageway allowing for the discharge of fuel vapor 238 from the vehicle fuel tank 14, through outlet 120 into closure assembly 10, between O-ring 138 and seal plate 132, and out of venting windows 110 of outer body 32 as shown in FIG. 7. Once sufficient fuel vapor 238 has been discharged from vehicle fuel tank 14 to lower the pressure in vehicle fuel tank 14 below the predetermined maximum tank pressure, compression spring 140 yieldably urges annular lip 146 of seal plate 132 inwardly against O-ring 138.
In addition, vacuum-relief valve subassembly 42 permits ambient air from the atmosphere outside the closure assembly 10, designated by arrows 240 of
In its sealing position, flapper door 180 provides a seal between sealing surface 196 and flapper door-seating surface 156. Once the pressure in vehicle fuel tank 14 decreases below the predetermined subatmospheric pressure, flapper door 180 is drawn inwardly, pivoting away from annular valve seat 134 and allowing the flow of ambient air 240 from outside of the vehicle fuel tank 14, through inlet 104 and into valve-receiving space 36, through inner nozzle-receiving opening 154, through outlet 120, and into vehicle fuel tank 14 as shown in FIG. 8. Once sufficient ambient air 240 has entered vehicle fuel tank 14 to raise the pressure in vehicle fuel tank 14 above the predetermined minimum tank pressure, torsion spring 200 yieldably urges flapper door 180 against annular valve seat 134.
Installation of closure assembly 10 into closure-receiving space 210 illustrates in
Outer shell 30 also includes a plurality of inclined drive teeth 86 spaced equally about the circumference of ratchet side 88 of front wall 70 of outer shell 30 to serve as engaging means for propelling flange 100 about axis of rotation 56 through engagement with driven teeth 222 as shown in
A person wishing to install closure assembly 10 in base 44 at a time of vehicle manufacture or repair grasps outer shell 30 and applies torque thereto in a clockwise closure-advancing direction designated by arrow 242 in FIG. 3. Torque is transmitted to flange 100 by the engagement of drive teeth 86 against driven teeth 222. Resilient fingers 220 bias driven teeth 222 toward front wall 70, thus biasing driven teeth 222 against drive teeth 86 to establish a torque-transmitting connection. Closure-advancing torque transmitted to outer shell 30 by engagement of inclined faces 228 of drive teeth 86 and inclined faces 224 of driven teeth 222, as shown in
As the installer continues to apply torque in closure-advancing direction 242, threads 216 of inner body 34 interlock with thread-engaging grooves 208 formed on base 44 so that closure assembly 10 advances to a tight seated position in base 44 in which annular gasket 46 is trapped between the mouth 212 of base 44 and sealing surface 126 of inner body 34 to establish a seal between the inner body 34 and base 44 as shown in FIG. 9. Note, however, that outer shell 30 may by oriented in a position other than the preferred orientation when closure assembly 10 achieves the tight seated position in base 44 as shown in
Advantageously, closure assembly 10 is designed to accommodate additional closure-advancing torque which an installer might apply. When closure assembly 10 is advanced to a tight seated position, inner body 34 is no longer able to rotate with respect to base 44. Thus, closure-advancing torque applied to outer shell 30 and transmitted to flange 100 in the above-described manner cannot be further transmitted to inner body 34. Therefore, each additional increment of closure-advancing torque applied to outer shell 30 translates to an additional increment of engaging force applied by drive teeth 86 to driven teeth 222. Since the torque cannot be translated into rotational motion, it builds up in outer shell 30 to the point at which the torque overcomes the frictional forces between drive teeth 86 and driven teeth 222. Resilient fingers 220 flex so that driven teeth 222 can move relative to drive teeth 86 out of interdental pockets 87 along inclined faces 224, 228, as shown in FIG. 11.
Owing to the relative angles of inclined faces 228, 224 of drive teeth 86 and driven teeth 222, respectively, the movement of drive teeth 86 relative to driven teeth 222 biases resilient fingers 220 axially inwardly. Continued application of torque will cause each driven tooth 222 to move from its original interdental pocket 87 to the adjacent interdental pocket 87, at which point each resilient finger 220 will bias each driven tooth 222 axially outwardly so that each driven tooth 222 is presented for driving engagement with an adjacent drive tooth 86.
If additional closure-advancing torque is applied to outer shell 30 driven teeth 222 will continue to move relative to drive teeth 86 as above-described with a characteristic "clicking" noise. That is, outer shell 30 will essentially rotate freely with respect to flange 100 and will thus absorb excess torque while maintaining the seal between inner body 34 and base 44 intact.
The torque-overriding connection prevents over tightening of inner body 34 in base 44, thereby ensuring that gasket 46 sealingly engages both second sealing surface 126 and mouth 212. It also allows for the rotation of outer shell 30 after installation of closure assembly 10 into filler neck 12 to adjust the orientation of outer shell 30 so that the short side 62 is positioned generally below long side 64 as shown in
Although in preferred embodiments first central axis 84 of outer nozzle-receiving opening 74 is coincident with central axis 56 of outer shell 30, second central axis 236 of inner nozzle-receiving opening 154 is spaced-apart from central axis 56 of outer shell 30. Improper orientation of second central axis 236 of inner nozzle-receiving opening 154 could make it difficult for a user to insert pump nozzle 24 into closure assembly 10. Advantageously, closure assembly 10 is configured to orient pressure-relief valve subassembly 40 thereby orienting inner nozzle-receiving opening 154 when the user orients outer shell 30.
Outer shell 30 is provided with two axially-inwardly directed lugs 248 appended to ratchet side 88 of front wall 70 as shown in
Two axially outwardly directed splines 252 are appended to seal plate 132 adjacent to guide wall 148 as shown in
Although it should not frequently be necessary to remove closure assembly 10 from closure-receiving space 210, a torque-transmitting connection can be established in a closure-removal direction represented by arrow 244 in
A second embodiment of a closure assembly 310 including a second embodiment of a tank pressure control subassembly 338 is shown in
Pressure-relief valve subassembly 340 includes an annular seal plate 332 formed to include a nozzle-receiving portion 33 and a sealing portion 335. Seal plate 332 is biased inwardly by a compression spring 140 so that sealing portion 335 sealingly engages an O-ring 138. O-ring 138 is trapped between the first sealing surface 124 of inner body 34 and sealing portion 335 to establish a seal therebetween so that pressure-relief valve subassembly 340. O-ring 138, and inner body 34 cooperate to block the flow of air into fuel tank 14 and the flow of fuel vapor out of fuel tank 14 between sealing portions 335 and inner body 34 when the tank pressure is below the predetermined maximum tank pressure.
Sealing portion 335 of pressure-relief valve subassembly 340 is movable relative to housing 35 and causes nozzle-receiving portion 333 to move along with sealing portion 335 between an axially inward closure-sealing position shown in
Vacuum-relief valve subassembly 342 includes an annular valve seat 134 mounted in inner nozzle-receiving opening 354 and an annular door seal-retainer sleeve 356 engaging annular valve seat 134 and positioned to lie in inner nozzle-receiving opening 354 as shown in
Flapper door 180 of vacuum-relief subassembly 342 is biased axially outwardly by torsion spring 200 to a sealing position shown in
Seal plate 332 of pressure-relief valve subassembly 340 includes an upstanding annular guide wall 348 appended to an outwardly-facing surface 336 as shown in FIG. 14. Guide wall 348 slidably engages lip 145 and is positioned to lie inside of inlet 104 defined by lip 145 to guide the radial movement of pressure relief valve subassembly 340 during axial outward and inward movement of pressure-relief valve subassembly 340 between the closure-sealing position shown in FIG. 14 and the pressure-relief position shown in FIG. 15.
Nozzle-receiving portion 333 of seal plate 332 includes a radially inwardly extending ledge 350 having an inner edge 352 defining inner nozzle-receiving opening 354 as shown in FIG. 14. Annular valve seat 134 is inserted into inner nozzle-receiving opening 354 so that ledge 350 is received in groove 162 of annular valve seat 134. A door seal-retainer sleeve 356 is inserted in inner nozzle-receiving opening 354 and cooperates with ledge 350 to retain annular valve seat 134 against inner edge 352 as shown in
Door seal-retainer sleeve 356 includes an axially inner annular wall 364 engaging wall-engaging portion 160 of annular valve seat 134 as shown in FIG. 14. Door seal-retainer sleeve 356 further includes an axially outer annular wall 366 engaging seal plate-engaging wall 158 of annular valve seat 134. Outer annular wall 366 is formed to include axially inwardly opening notches 368 that engage axially outwardly directed tabs 370 formed in outwardly facing surface 336 of seal plate 332. Notches 368 cooperate with tabs 370 and inner annular wall 164 of seal plate 332 cooperates with wall-engaging portion 160 of annular valve seat 134 to retain door seal-retainer sleeve 356 in snap-fit engagement with seal plate 332, thereby retaining annular valve seat 134 against inner edge 352 of seal plate 332 as shown in FIG. 14.
Outer annular wall 366 of door seal-retainer sleeve 356 is formed to further include a funnel-shaped top surface 372 surrounding inner nozzle-receiving opening 354 as shown in FIG. 14. As pump nozzle 24 advances from outer nozzle-receiving opening 74 toward inner nozzle-receiving opening 354 it may engage top surface 372. The funnel-like shape of top surface 372 acts to radially direct pump nozzle 24 toward inner nozzle-receiving opening 354 as pump nozzle 24 advances into closure assembly 10 when pump nozzle 24 enters closure assembly 10 to refuel vehicle fuel tank 14.
Flapper door 180 is pivotably appended to seal plate 332 of pressure-relief valve subassembly 40 as shown in
Flapper door 180 is yieldably urged against annular valve seat 134 by torsion spring 200 to prevent the flow of air into or fuel vapor out of vehicle fuel tank 14 between the flapper door 180 and annular valve seat 134 when tank pressure is above the predetermined minimum tank pressure. Torsion spring 200 is coiled about pivot shaft 192 and includes a first end 187 engaging one arm 386 of seal plate 332 and a second end 189 engaging an inwardly directed surface 202 of flapper door 180. Torsion spring 200 has a spring constant designed to yieldably urge the flapper door 180 outwardly against annular valve seat 134.
Advantageously, in both closure assembly 10 and closure assembly 310, flange 100 is configured to enhance separation of flange 100 from edge 108 of outer body 32 if closure assembly 10 is subjected to an impact greater than a predetermined magnitude, represented by arrow 258 and arrow 259, both of which represent impacts that could cause flange 100 to separate from housing 35 as shown in FIG. 17. Flange 100 is formed to include a frangible section 254 arranged to enhance breakage of closure assembly 10 at frangible section 254, shown in
Separation of flange 100 from outer body 32 at frangible section 254 will result in the separation of outer shell 30 and flange 100 from closure assembly 10 along fracture line 255 as shown in FIG. 17. Pressure-relief valve subassembly 40, vacuum-relief valve subassembly 42, annular slip 145 of outer body 32, and annular lip 122 of inner body 34 will not be affected by removal of flange 100. Compression spring 140 will continue to act against annular lip 146 of seal plate 132 to urge surface 144 against O-ring 138 to provide a seal preventing the flow of fuel vapor out of vehicle fuel tank 14, and torsion spring 200 will still act against inwardly-facing surface 202 of flapper door 180 to urge sealing surface 196 into sealing engagement against annular valve seat 156 to prevent the flow of ambient air into vehicle fuel tank 14. This construction is intended to maximize the likelihood that filler neck 12 will remain sealed even if closure assembly 10 is subjected to an impact that causes separation of outer shell 30 and flange 100 from outer body 32.
Certain robotic refueling systems 16 use filler neck detector 26 to determine the location of closure assembly 10. Filler neck detector 26 can use computer vision and recognition technology to determine the location of closure assembly 10, in which case external nozzle-positioning sensor 28 would include a camera positioned to view closure assembly 10 from in front of front wall 70 as shown in FIG. 18. To accommodate filler neck detector 26, outer shell 30 is made from a material having a light color and flapper door 180 is made from a material having a contrasting dark color. This provides closure assembly 10 with a "bulls-eye" appearance from the vantage point of the camera as shown in
Although the preferred outer shell 30 and flapper door 180 present a generally "bulls-eye" pattern for detection by computer vision and recognition technology, it is within the scope of the invention as presently perceived to provide any pattern of contrasting shades, either a light pattern on a dark background or a dark pattern on a light background, as seen from a front elevation view of closure assembly 10. It is important that the contrast is sufficient to permit a computer vision and recognition system to distinguish the pattern from the background. It is, therefore, within the scope of the invention as presently perceived to provide a pattern of nearly any shape or a pattern including several shapes such as stripes, dots, dashes, arrows, or any combination of these or other contrasting designs that can be provided on or near the face of closure assembly 10 and detected by filler neck detector 26.
Outer shell 30 can be made from a material having a dark color and flapper door 180 can be made from a material having a contrasting light color. This configuration was not chosen for the preferred embodiment because flapper door 180 may darken with use-related contact and wear and may, as a result, eventually fail to provide the desired contrast.
Closure assembly 10 can be mounted on a vehicle 22 having a fuel door 260 and a dust cover 262 mounted on fuel door 260 as shown in FIG. 19. Dust cover 262 has an axially inwardly-facing surface 264 engaging boot-seating surface 78 of outer shell 30. Dust cover 262 is connected to fuel door 260 and is positioned to move away from outer shell 30 when fuel door 260 swings to an opened position. Dust cover 262 is typically made from an open cell foam pad, through any material that can be mounted on fuel door 260 to cover outer shell 30 and reduce the amount of dust that collects in closure assembly 10 can be used.
Although the invention has been described in detail with reference to preferred embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
Patent | Priority | Assignee | Title |
10000117, | Jan 22 2016 | STANT USA CORP | Filler neck closure assembly |
10226996, | Aug 04 2014 | STANT USA CORP | Filler neck closure assembly |
10500948, | Oct 09 2015 | NIFCO INC | Fuel filling device |
10933739, | Jan 17 2018 | Toyota Jidosha Kabushiki Kaisha | Receptacle cap and vehicle |
11148524, | Jan 17 2018 | Toyota Jidosha Kabushiki Kaisha | Receptacle cap and vehicle |
11387592, | Mar 15 2018 | Bayerische Motoren Werke Aktiengesellschaft | Charging connection element of a vehicle |
12085216, | Feb 17 2022 | Arctic Cat Inc. | Multi-use fuel filler tube |
6691750, | Nov 04 2002 | STANT USA CORP | Floating nozzle collar for capless filler neck |
6705481, | Mar 20 1998 | Temtec Fahrzeutechnick | Actuatable fuel tank closure having guide pipe |
6761192, | Sep 19 2002 | Swiftflo, LLC | Assembly for automatic vehicle fueling |
6874529, | Aug 17 2000 | ALFMELER PRAZISION AG, BAUGRUPPEN UND SYSTEMLOSUNGEN | Level limit valve |
6945290, | Jun 10 2004 | Eaton Corporation | Check valve for use in filler tube vapor recirculation system and method of making same |
7163037, | Jan 21 2005 | Eaton Corporation | Guiding movement of capless filler neck closure |
7530375, | Jun 28 2006 | Ford Global Technologies, LLC | Fuel filler nozzle for automotive vehicle |
7624889, | Jan 20 2006 | Bemis Manufacturing Company | Locking cap |
7726363, | Jan 20 2006 | Eaton Corporation | Filler tube assembly for a fuel vapor recirculation system |
7950425, | Jan 19 2004 | ITW AUTOMOTIVE PRODUCTS GMBH & CO KG | Filler neck to fill fuel into a vehicle tank |
8074334, | Jan 20 2006 | Bemis Manufacturing Company | Modular ratchet cap |
8303599, | Jan 30 2006 | STRYKER EUROPEAN HOLDINGS III, LLC | Syringe |
8511353, | Mar 31 2010 | Toyoda Gosei Co., Ltd. | Fuel tank opening and closing device |
8539993, | Mar 31 2010 | Toyoda Gosei Co., Ltd. | Fuel tank opening and closing device |
8555937, | Sep 11 2008 | HONDA MOTOR CO , LTD | Structure for fuel filling opening of automobile |
8714213, | Jan 27 2010 | Ford Global Technologies, LLC | Tank filler neck |
9067489, | Oct 09 2007 | Toyota Jidosha Kabushiki Kaisha | System and method of preventing inadvertent check engine telltale |
9340105, | Sep 27 2011 | Toyoda Gosei Co., Ltd. | Fuel tank opening-closing device |
9415679, | Mar 22 2013 | STANT USA CORP | Fuel-dispensing nozzle inhibitor |
9610836, | Sep 05 2012 | Ford Global Technologies, LLC | Venting system for a diesel exhaust fluid filler pipe |
9873322, | Sep 16 2015 | STANT USA CORP | Closure assembly for fuel tank filler neck |
9908402, | Aug 04 2014 | STANT USA CORP | Filler neck closure assembly |
9976661, | May 03 2016 | KOHLER CO | Breather valve |
Patent | Priority | Assignee | Title |
3477611, | |||
3527268, | |||
3642036, | |||
3820680, | |||
3831801, | |||
3911977, | |||
3938564, | Jan 06 1975 | Kaiser Aerospace and Electronics Corporation | Quick-release fuel coupling for racing cars |
4000633, | Sep 08 1975 | STANT MANUFACTURING, INC | Locking gas cap with torque override feature |
4091959, | Feb 03 1977 | GASSUP, INC | Gas cap |
4177931, | Oct 04 1978 | STANT MANUFACTURING, INC | Breakaway gas cap |
4280346, | May 21 1979 | STANT MANUFACTURING, INC | Torque override threaded locking cap |
4294375, | Dec 04 1978 | Blau KG Fabrik fur Kraftfahrzeugteile | Vehicle fuel tank sealing cap |
4312649, | Jan 09 1979 | RELIANCE COMM TEC CORPORATION | Fuel vapor arresting means for motorcycle engine fuel system |
4424839, | Jan 22 1980 | Honda Giken Kogyo Kabushiki Kaisha | Inlet for a fuel tank |
4498493, | Jun 24 1981 | STANT MANUFACTURING, INC | Pressure valve assembly for a fuel tank filler neck cap |
4651889, | Mar 23 1984 | Toyota Jidosha Kabushiki Kaisha | Fuel tank nozzle having a dual purpose valve |
4676390, | Jul 22 1986 | STANT MANUFACTURING, INC | Pressure-release fuel cap |
4678097, | Jul 09 1986 | EMPAK, INC | Breakaway gas gap |
4702386, | Jun 06 1986 | Vernay Laboratories, Inc. | Fuel filler pipe seal |
4714172, | Dec 23 1986 | GT Development Corporation | Vapor recovery systems |
4741369, | Feb 12 1987 | Chrysler Motors Corporation | Inletting device for fuel tank |
4747508, | Mar 09 1987 | General Motors Corporation | Fuel tank venting |
4762247, | Jan 30 1986 | Temtec Fahrzeugtechnik Entwicklungsgesellschaft mbH | Orifice ring for a filling cap |
4765504, | Aug 31 1987 | General Motors Corporation | Vapor venting valve for vehicle fuel system |
4765505, | Jul 22 1986 | STANT MANUFACTURING, INC | Delayed actuation fuel cap |
4816045, | Mar 31 1986 | STANT MANUFACTURING, INC | Vapor recovery system |
4881578, | Nov 02 1988 | General Motors Corporation | Combination filler pipe and vapor control means |
4883103, | Mar 31 1986 | STANT MANUFACTURING, INC | Filler neck sealing assembly |
4946060, | Jul 31 1989 | General Motors Corporation | Seal assembly for vehicle filler neck |
4966299, | Jul 11 1989 | Chrysler Corporation | Fuel assembly having a vapor vent with a hinged float valve |
4986439, | Jun 09 1989 | MECROM OTT AND HOLEY OHG | Cap for the filler neck of liquid containers |
5042678, | Jul 20 1990 | Fuel tank filler tube closure assembly | |
5056570, | Mar 26 1990 | STANT USA CORP | Capless vehicle refueling system |
5110003, | Jun 28 1990 | STANT USA CORP | Torque-override cap |
5195566, | May 01 1991 | SKS KONTAKTTECHNIK GMBH | Cap for the filler neck of liquid containers |
5234039, | Jul 16 1991 | Keeper Company, Ltd. | Sealing device for fuel supply port of fuel tank for use in vehicles |
5238034, | May 10 1989 | Autofill Patent AB | Apparatus for the automatic fuelling of automotive vehicle |
5242075, | Feb 05 1991 | SKS KONTAKTTECHNIK GMBH | Self-closing cap for the filler neck of the oil pan of an engine |
5271438, | Jun 22 1992 | STANT USA CORP | Capless vehicle refueling system with moving fill passageway |
5322100, | Jan 27 1993 | INERGY AUTOMOTIVE SYSTEMS RESEARCH SOCIETE ANONYME | Fuel filler module |
5393195, | May 02 1990 | Autofill Patent AB | Method and arrangement for automatically refueling automotive vehicles |
5449086, | Oct 18 1993 | STANT USA CORP | Delayed actuation fuel cap |
5509569, | Dec 24 1993 | OM Corporation | Airtight filler neck cap |
5547099, | Jan 31 1995 | Cover assembly for permitting access into a container without removal therefrom | |
5720328, | Jul 31 1996 | SKS KONTAKTTECHNIK GMBH | Self-closing gas cap for automatic filling machines |
CA2102645, | |||
DE4218287, | |||
DE4242243, | |||
DE4243883, | |||
EP265829, | |||
WO9405592, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 24 1999 | Stant Manufacturing Inc. | (assignment on the face of the patent) | / | |||
Jun 18 2008 | Standard-Thomson Corporation | GMAC COMMERICAL FINANCE LLC, AS AGENT | SECURITY AGREEMENT | 021158 | /0232 | |
Jun 18 2008 | Stant Corporation | GMAC COMMERICAL FINANCE LLC, AS AGENT | SECURITY AGREEMENT | 021158 | /0232 | |
Jun 18 2008 | STANT MANUFACTURING INC | GMAC COMMERICAL FINANCE LLC, AS AGENT | SECURITY AGREEMENT | 021158 | /0232 | |
Oct 27 2009 | STANT USA CORP | GMAC COMMERICAL FINANCE LLC, AS AGENT | SECURITY AGREEMENT | 023498 | /0035 | |
Oct 27 2009 | STANT MANUFACTURING INC | STANT USA CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023471 | /0086 | |
Oct 27 2009 | GMAC COMMERICAL FINANCE LLC, AS AGENT | STANDARD-THOMSON | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 023498 | /0499 | |
Oct 27 2009 | GMAC COMMERICAL FINANCE LLC, AS AGENT | STANT MANUFACTURING INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 023498 | /0499 | |
Oct 27 2009 | GMAC COMMERICAL FINANCE LLC, AS AGENT | Stant Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 023498 | /0499 | |
May 14 2014 | ALLY COMMERCIAL FINANCE LLC FORMERLY KNOWN AS GMAC COMMERCIAL FINANCE LLC | STANT USA CORP | RELEASE OF GRANT OF A SECURITY INTEREST -- PATENTS | 032982 | /0598 | |
May 14 2014 | STANT USA CORP | CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGENT | GRANT OF A SECURITY INTEREST -- PATENTS | 032972 | /0152 |
Date | Maintenance Fee Events |
Sep 30 2005 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 30 2009 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 02 2005 | 4 years fee payment window open |
Jan 02 2006 | 6 months grace period start (w surcharge) |
Jul 02 2006 | patent expiry (for year 4) |
Jul 02 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 02 2009 | 8 years fee payment window open |
Jan 02 2010 | 6 months grace period start (w surcharge) |
Jul 02 2010 | patent expiry (for year 8) |
Jul 02 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 02 2013 | 12 years fee payment window open |
Jan 02 2014 | 6 months grace period start (w surcharge) |
Jul 02 2014 | patent expiry (for year 12) |
Jul 02 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |