The invention relates to a method in mobile radio systems in which the responsibility for transmitting message information to a mobile station is handed over from a first base station transmitter to a second base station transmitter. In this method, the same radio channel is used, if possible, before and after the handover for transmitting message information to the mobile station. If the same radio channel can be utilized, the handover takes place without the mobile station being informed beforehand of the handover by a special signal or order or the like. In digital mobile ratio systems with digital transmission of message information by digital modulation of the radio signals, the transmission is preferably started from a second base station transmitter before the transmission is terminated from a first base station transmitter. During a certain transmission time substantially the same message information is transmitted to the mobile station from both the first and second base station transmitters.
|
0. 1. In a mobile radio communication system comprising base stations and mobile stations and a plurality of radio channels for transmitting control information and message information between base stations and mobile stations, said base stations and mobile stations including radio transmitters and radio receivers for a plurality of radio channels, a method for handing over the responsibility for transmitting message information to a mobile station from at least one first base station transmitter to at least one second base station transmitter, comprising the steps of:
before handing over the responsibility carrying out a test in the stationary part of the system to see whether after the handover the second base station transmitter can use the same radio channel for transmitting message information to the mobile as the radio channel used by the first base station transmitter before handover; and if the test result is positive then using the same radio channel after the handover as before for transmitting message information to the mobile.
0. 4. In a mobile radio communication system comprising base stations and mobile stations having radio transmitters and radio receivers for transmitting control information and message information therebetween, a method for handing over the responsibility for transmitting message information to a mobile station from at least one first base station transmitter to at least one second base station transmitter comprising the steps of:
starting the transmission of message information to the mobile station from the second base station transmitter before terminating the transmission of message information to the mobile station from the first base station transmitter; and transmitting substantially the same message information during a transition period from both the first base station transmitter and the second base station transmitter.
0. 7. In a mobile radio communication system comprising base stations and mobile stations having radio transmitters and radio receivers for transmitting control information and message information therebetween, a method for handing over the responsibility for transmitting message information to a mobile station from at least one first base station transmitter to at least one second base station transmitter comprising the steps of:
determining whether the second base station can use a same radio channel as said first base station for transmitting message information; starting the transmission of message information to the mobile station from the second base station transmitter before terminating the transmission of message information to the mobile station from the first base station transmitter; and transmitting substantially the same message information during a transition period from both the first base station transmitter and the second base station transmitter.
0. 11. In a mobile radio communication system comprising base stations and mobile stations having radio transmitters and radio receivers for transmitting control information and message information therebetween, a method for handing over the responsibility for transmitting message information to a mobile station from at least one first base station transmitter to at least one second base station transmitter comprising the steps of:
evaluating interference associated with a radio channel over which message information can be transmitted by said second base station; selectively starting the transmission of message information to the mobile station from the second base station transmitter on said radio channel before terminating the transmission of message information to the mobile station from the first base station transmitter; and transmitting substantially the same message information during a transition period from both the first base station transmitter and the second base station transmitter.
0. 2. A method according to
executing handover without first informing the mobile of the handover.
0. 3. A method according to
starting the transmission of message information to the mobile station from the second base station transmitter before terminating the transmission of message information to the mobile station from the first base station transmitter; and transmitting substantially the same message information during a transition period from both the first base station transmitter and the second base station transmitter.
0. 5. A method according to
before handing over the responsibility, carrying out a test in the stationary part of the system to see whether after the handover the second base station transmitter can use the same radio channel for transmitting message information to the mobile as the radio channel used by the first base station transmitter before handover; and when the radio transmission conditions and remaining radio communication in the system permit, then using the same radio channel after the handover as before for transmitting message information to the mobile.
0. 6. A method according to
executing the handover without first informing the mobile station of the handover.
0. 8. The method of
determining whether said second base station already uses said same radio channel resource.
0. 9. The method of
evaluating interference associated with usage of said same radio channel by said second base station.
0. 10. The method of
0. 12. The method of
|
A method in accordance with the invention is particularly suitable for a mobile radio system where at least two base station transmitters are simultaneously responsible for transmitting message information to at least certain mobile stations. It seems therefore to be suitable to describe an embodiment of a method in accordance with the invention in connection with such a system.
A cellular mobile radio system illustrated in
The mobiles may move within and between the cells of the system. The base transmitters are assigned to the cells so that there is at least one base transmitter for each cell, for transmitting signals to the mobiles of the cell.
There is no completely fixed channel allocation for all cells and base stations in the entire system. At least for some base stations and cells there is allowed some freedom in the selection of radio channels. Thus the channel allocation in the system is some kind of dynamic or adaptive channel allocation meaning that at least some channels are a common resource to at least some neighbour bases/cells. Somewhat simplified, there is illustrated in
For each cell C1-C24 there is an ordinary base transmitter BS1-BS24. For contiguous cells these transmitters are conventionally co-located in groups of three. For example, the base transmitter BS1 for the cell C1 is co-located with the base transmitter BS3 for the cell C3 and with the base transmitter BS5 for the cell C5. Correspondingly, the base transmitter BS14 for the cell C14 is co-located with the base transmitter BS16 for the cell C16 and with the base transmitter BS18 for the cell C18. These co-located ordinary base station transmitters are situated in the boundary regions between the cells to which they are assigned. For example, the ordinary base transmitters BS2, BS4 and BS6 are co-located in the boundary areas between the cells C2, C4 and C6.
Further to the ordinary base transmitters BS1-BS24 the system includes a number of extra base transmitters for certain of the cells. Cells C6, C7, C10, C11, C13, C14, C19 and C20 each has one extra base station transmitter. For each of the cells C15, C18 and C22 there are two extra base transmitters. Of the extra base transmitters XS6, XS7, XS10, XS11, XS13, XS15A, XS15B, XS18A, XS18B, XS19, XS20 and XS22A are co-located in groups with three extra base transmitters in each group in a similar manner as the ordinary base transmitters. Accordingly, for example, the extra base transmitter XS15B for the cell C15 is co-located with the extra base transmitter XS19 for the cell C19 and the extra base transmitter XS18A for the cell C18. On the other hand, neither the extra base transmitter XS14 for the cell C14 nor the extra base transmitter XS22B for the cell C22 are co-located with any other base transmitter, but are situated approximately at the centre of the cell with which they are associated. An extra base transmitter does not need to differ technically from an ordinary base transmitter. For a given cell an extra base transmitter can thus have technical equipment of the same type as an ordinary base transmitter for the same cell. In principle, it can also function in the same way as the ordinary one. If there are two identical base station transmitters for a given cell, either of them may be respectively regarded as ordinary or extra in certain cases.
The extra base transmitter or transmitters for a given cell transmit radio signals which are substantially the same as those sent by the ordinary base transmitter of the cell. The signals are digitally modulated with selective digital message information to the individual mobiles in the cell. The radio signals may also be digitally modulated with general control information common to all mobiles concerned. A mobile in a cell for which there is one or more extra base transmitter can therefore receive, at least in certain cases, corresponding radio signals from more than one base transmitter approximately simultaneously within the same frequency range. Depending on the mutual, relative positions in the cell of the mobiles and bases as well as the transmission times and propagation paths of the radio signals from the base transmitters to the mobile stations, corresponding signals from different base transmitters can be received without, or with a given time shift at the mobile. The greater the distance between the base transmitters associated with the cell, the greater in general can be the time shift. When the ordinary base station transmitters and the extra base station transmitters are situated according to
In
Both transceivers in the base Bm are alike. Each such transceiver contains a line and control unit 5A or 5B, transmitter means 6A or 6B, receiver means 7A or 7B, a transmission-reception filter 8A or 8B and an antenna 9A or 9B.
The base Bn differs partly from base Bm, primarily due to its central line and control unit 10 being situated in juxtaposition with one of its transceivers Bna. Accordingly, no cable with associated line units corresponding to Lm Lma, Lmb, 4A-5B is needed for the transceiver Bna, but only for the other transceiver Bnb. In addition, no transmission or reception time shifting means is included in any central unit in Bn, but the corresponding means 2A, 2B, 3A and 3B are respectively included in transceivers Bna and Bnb.
The mobiles MS1 and MS2 are mutually alike. Each mobile includes sound sensing means 11, encoding means 12, transmitting means 13, transmit-receive switch 14, reception means 15, equaliser and decoding means 16, sound reproducing means 17, control means 18 and means 19 for feeding in and out or presentation of digital information.
Apart from the bases having two transceiver units at a distance from each other, and having controllable transmission and reception time shifting means, the mobile radio system in
Message information e.g. speech or data that the mobile radio exchange forwards towards a mobile in the cell Cm, e.g. the MS1, is transmitted from the mobile radio exchange via the cable Lm to the line and control unit 1. From here the information is transferred via the transmission time shifting means 2A, line unit 4A, cable Lma and line and control unit 5A to the transmitting means 6A. The transmitting means 6A transmits, via the transmission-reception filter 8A and antenna 9A, radio signals with digital modulation in correspondance with the message information from the mobile radio exchange.
The message information from the mobile radio exchange is also transferred from the line and control unit 1 via the transmission time shifting means 2B, line unit 4B, cable Lmb and line and control unit 5B to the transmission means 6B in the transceiver Bmb. The transmission means 6B transmits, via the transmission reception filter 8B and antenna 9B, radio signals with digital modulation in correspondance with the information from the mobile radio exchange.
Depending on the delay in transferring the message information to the transmission means 6A and the corresponding delay in transferring to the transmission means 6B the radio signals can be transmitted from the antenna 9A of the transceiver unit Bma substantially without time shifting, or time shifted in relation to the transmission of corresponding radio signals from the antenna 9B of the other transceiver Bmb.
The radio signals from the antenna 9A i Bma arrive at a given mobile in the cell Cm, e.g. the mobile MS1, with or without time shift in relation to corresponding radio signals from the antenna 9B in Bmb. The possible time shift on arrival at the mobile depends partly on possible time shifting at transmission from the antennas and partly on possible difference in propagation time for the radio waves from the antennas. The transmission time shifting means 2A and 2B have a variable delay and can be controlled by the line and control unit 1, such that the signals are transmitted from the antenna 9A in Bma time-shifted more or less before or after corresponding signals from the antenna 9B in Bmb. In the preferred embodiment according to
In principle, there are at least two conceivable methods of determining how the line and control unit 1 shall control the delay in the transmission time shifting means 2A and 2B. One method is to estimate in the fixed part of the mobile radio system the time shift between the mobiles radio signals at one of the mobile radio system the time shift between the mobiles radio signals at one of the transceivers Bma and corresponding radio signals at the other transceiver Bmb. There is thus obtained an estimation of the differences in propagation time to the mobile, these differences depending on the position of the mobile. Remaining differences in delay are related to the fixed part of the mobile radio system, e.g. differences in length of the cables Lma and Lmb and are not dependent on the position of the mobile. In the embodiment according to
It is conceivable per se, but hardly to be preferred, to combine both methods for controlling the transmission time shift in a mobile radio system according to FIG. 2.
Measuring the difference in arrival time or time shifting for corresponding radio signals can be performed in a conventional way, e.g. with the aid of correlation. In the cases where the radio signals conventionally contain predetermined synchronising patterns (words), the time difference between the appearance of these in different signals can be measured using conventional methods. A mobile control means 18 and/or a base line and control unit 1 or 10, possible in combination with the transceiver's line units 5A and 5B can then include time measurement means for estimating reception time shifting, or arrival time comparison means for comparing arrival times.
When so required, a base preferably conventionally utilises the same transmitter means and antenna for transmitting, in time multiplex within the same frequency range, radio signals digitally modulated with message information to different mobiles associated with the same cell. Radio signals with message information to a given mobile are then transmitted from different base transmitters with a possible transmission time shift which is specially adjusted with regard to the position of this particular mobile. The case can arise where a base in a mobile radio system needs to transmit a radio signal with information other than message information intended for reception by several or all of the mobiles in the cell, e.g. information as to the identity of the base/cell. Such signals are preferably transmitted simultaneously without mutual time shifting, from the transceivers Bma, Bmb and Bna,, Bnb of the base in a mobile radio system according to FIG. 2. The transmission time shifting means are then controlled to a balancing state where the delay of information from the line and control unit 1 to the antenna in one transceiver Bma is equally as great as the delay of information from the line and control unit 1 to the antenna in the other transceiver Bmb. The corresponding situation can apply when a base "listens" in unoccupied combinations of time slot and frequency range for set up calls from mobiles in unknown positions relative to the transceivers of the base. The reception time shifting means 3A and 3B can then be controlled to a balancing state where the delay of the message information from the antenna in one transceiver Bna to the line and control unit 9 is equally as great as the delay of information from the antenna in the other transceiver Bnb to the line and control unit 9.
The mobiles MS1 and MS2 have adaptive equalisers, whereby the digital modulation during a modulation time interval in the radio signals transmitted from a base transmitter can be reconstructed from signals received during a reception time interval. In known cellular, digital, mobile radio systems with only one base transmitter per cell, the reception time interval of the equalisers is dimensioned according as the dispersion on the radio channel, i.e. expected time shifts between corresponding signals from a single base transmitter due to reflections. Because of the equaliser, not only the radio signal having the greatest amplitude or arriving first to the mobile station is utilised for reconstructing the digital modulation, but also other corresponding radio signals arriving with a time shift within the extent of the equaliser's reception time interval can be utilised. The mobiles in a system according to
In mobile radio systems according to
It is conceivable to use different kinds of digital modulation in a mobile radio system, whereby somewhat different relationships can exist between information transmission rate and modulation time interval. In digital modulation of the radio signals involving transmission of one symbol at a time of a sequence of uncorrelated symbols, the modulation time interval will be the time during which a single symbol is decisive for the digital modulation. For example, if a sequence of binary symbols individually and one at a time determines the modulation, the modulation time interval will be the time during which one symbol determines the modulation. This can also be expressed by saying that the modulation time interval will be the inverted value of the transmission rate in bits. In digital modulation of the signals involving two or more at a time of a sequence of digital symbols being decisive for the modulation during wholely or partly overlapping times, the modulation interval can be the time when a preceeding, but not the nearest subsequent symbol affects the modulation. For example, in digital modulation according to SE 8102802-9,
Perhaps the most usual reason for handover in conventional mobile radio systems is that a mobile moves from one area which is best served by one base to another area which is best served by another base. Of course, there may be other reasons, e.g. changed traffic conditions or changed radio reception conditions.
When three or more bases can receive radio signals from a mobile, the position of the latter can be estimated by comparison of the radio propagation times. The estimation can be imporved if more than three bases are used. Knowledge of the position of the mobile can be used by the stationary part of the mobile radio system for selecting what bases are suitable for use as new bases when handing over the responsibility. The mobile radio exchange or other stationary part of the system assigns new bases the responsibility in a manner such that communication can be maintained with good quality as the mobile travels through the cell structure.
Knowledge of the position of the mobile can also be used as a criterion for performing the handing over of responsibility. For example, if the mobile moves out of the cell which is serving it at the moment, this is an indication that a handover of responsibility should soon take place, irrespective of whether the communication quality is still good.
In different known mobile radio systems, the decision for handing over can take place in more or less different ways. Different criteria have been proposed for the decision as to if and where handover is to take place. Collection of the basis for the handover decision can take place in different ways. The distribution of tasks and the signalling in connection with handover between mobiles and the stationary part of the mobile radio system can differ from system to system. All this is well known to one skilled in the art. One not skilled in the art can obtain necessary information from the technical litterature or United States patents in the field of cellular mobile radio.
What is distinguishing for handing over the responsibility in accordance with the present invention is primarily the actual execution of handover. For the handover decision, at least in certain cases, known parameters can be used such as the signal-noise ratio for transmitting signals to and from the mobiles. The signal-noise ratio or other parameters can be measured, either solely in the stationary part of the mobile radio system e.g. by the base central or control units or solely in the mobiles by the reception and control means or in both mobiles and the stationary part. In the handover decision, the traffic conditions in different parts of the mobile radio system can be given attention, substantially conventionally, e.g. if certain bases tend to have too high traffic while adjacent bases have unoccupied capacity for further traffic.
An embodiment of the excution of handing over responsibility for the communication in accordance with the invention will now be described in connection with FIG. 2. For the sake of simplicity, it is assumed that handing over the responsibility will take place in conjunction with a mobile moving from the position of MS1 in
Sometime before the handover, the mobile is in the position of MS1 within the coverage area of the base station Bm, but outside the coverage area of the base station Bn, i.e. the radio transmission conditions for radio signals between the mobile station and Bma or Bmb are suffiently good, but the radio transmission conditions for radio signals between the mobile and Bna and Bnb are too poor.
Sometime after the handover, the mobile is in the position of MS2 within the coverage area for the base Bn, but outside the coverage area for the base Bm, i.e. the radio transmission conditions for radio signals between the mobile and Bna and Bnb are sufficiently good, but the radio transmission conditions for radio signals between the mobile and Bma and Bmb are too poor.
When the mobile has moved to position somewhere between the positions of MS1 and MS2, a handover decision is made, and this decision may be based on facts such as the radio transmission conditions and traffic within the coverage areas of the base stations. The decision is made by the mobile radio exchange or possible some other stationary part of the mobile radio system.
Before handing over the responsibility for communication with the mobile, it is tested in the stationary part of the mobile radio system whether the second base transmitter can use the same radio channel after handover for transmitting message information to the mobile as the radio channel the first base transmitter used before handover. This may also be expressed by saying that the stationary part tests whether a change of radio channel can be avoided on handover.
This testing takes place according to predetermined rules based on predetermined parameters. For example, if the base to which the responsibility is to be handed over already utilises the radio channel in question for communication with another mobile having higher priority, a change of a radio channel must take place on handover. On the other hand, if the base to which responsibility is to be handed over does not utilise the radio channel in question, and possible transmission on this radio channel would not interfere with other traffic, there is no need for changing channels on handover. Another reason for having to change channels is that the channel in question has too much interference in the cell served by the base to which responsibility is to be handed over. Other rules or reasons for, and against, changing channels will be understood by one skilled in this art.
After a decision as to handover and radio channel has been made, one of the base transmitters Bna or Bnb begins to transmit the same message information to the mobile as the base transmitters Bma and Bmb. This base transmitter is preferably transmitting on the same channel as the base transmitters Bma and Bmb. In a TDMA mobile radio system, this means that Bna or Bnb begin to transmit the same message information as Bma and Bmb on the same radio frequency and in the same time slot as Bma and Bmb. The transmission times at Bna and Bnb of the radio signals is preferably adjusted to corresponding transmission times for the signals at Bma and Bmb in accordance with what has been described above. After transmission of the message information to the mobile has been started from Bna and Bnb, the transmission of corresponding message information to the mobiles from one of the base transmitters Bma and Bmb is terminated. One of the base transmitters Bma or Bmb then transmits the same message information, e.g. speech or data, to the mobile as one of the base transmitters Bna and Bnb. Neither one of the two other base transmitters in
After of the base transmitters Bma or Bmb has ceased to transmit message information to the mobile, a further one of the base transmitters Bna or Bnb beings to send message information to the mobile. Both Bna and bnb as well as one of the other base transmitters Bma and Bmb are then transmitting the same message information to the mobile. All three transmitters preferably transmit on the same radio channel, and in a TDMA mobile radio system this means the same radio frequency and same time slot. The transmission times of Bna and Bnb and at the third base transmitter of the radio signals are preferably adjusted to each other in agreement with what has been described above.
After both Bna and Bnb have begun to transmit the same message information to the mobile as the remaining base transmitter of Bma and Bmb, the transmission of message information to the mobile is terminated from this remaining base transmitter. Both Bna and Bnb are then transmitting message information to the mobile, whereas none of the base transmitters Bma and Bmb is transmitting such information to the mobile. At this, the responsibility for communication between the mobile has been handed over from the base transmitters Bma and Bmb to the base transmitters Bna and Bnb. This may also be expressed by saying that responsibility for the communication has been handed over from the base Bm to the base Bn, i.e. an execution of handover is completed.
During the whole of the above described handover, at least two of the base transmitters send the same message information to the mobile. During certain times there are three base transmitters sending the same message information. On the other hand, all base transmitters of the affected stations never send the same information to the mobile. The risk of accidental interruption in the transmission of message information between the mobile and the fixed part of the mobile radio system will thus be small. Simultaneously, the receiving time shift at the mobile will be less than if all base transmitters were to send the same message information to the mobile. In addition, re-use of radio channels if facilitated in the mobile radio system when all affected base transmitters never send simultaneously on the same radio channel.
If, for some reason, it is necessary to change radio channels in conjunction with handing over the responsibility for communication from the base Bm to the base Bn, it is to be preferred that the channel which is to be used after handover is selected such that during a transition time the mobile can receive the same message information on both channels. In a TDMA system according to
If handing over the responsibility for communication is to take place from three or more base transmitters to more than two base transmitters, its execution will naturally be somewhat different than what has been described in connection with
A mobile radio system where at least two base transmitters are simultaneously responsible for transmitting message information to a mobile does not need to be formed according to the above, but can differ to a greater or lesser extent from the system described above. For example, it is conceivable to co-localise at least parts of the equipment in an ordinary base transmitter with parts of the equipment in the extra base transmitter for the same cell, providing that the antennas are spaced from each other. In an extreme case, it is conceivable, in principle, for all equipment excepting the antennas to be co-localised to one place, i.e. in the vicinity of one of the antennas, and that the antennas are fed by signals at radio frequency via a cable from this place. By "base transmitter" shall be accordingly understood at least a transmitter antenna for radio signals and preferably more or less of the remaining means required in a base. In a base transmitter there are preferably included at least means corresponding to the means included in a transceiver unit Bma or Bmb in FIG. 2.
To avoid misunderstanding, it is pointed out that none of the base transmitters to which responsibility shall be handed over is a slave transmitter to any base transmitter from which the responsibility shall be handed over. From
A method in accordance with the invention is of course not restricted to a given implementation of base transmitter, even if it is assumed in the example above that base transmitters can start and terminate transmission at different times.
In actual fact, a method in accordance with the invention is not restricted to mobile radio systems with two or more base transmitters per cell, and it is conceivable to apply embodiments of a method in accordance with the invention in a mobile system, the method involves, summarily explained, that the same radio channel is used both before and after handover, if possible, for transmitting message information to the mobile. A decision on handover is preferably made in the mobile radio exchange or other stationary part of the system, and the handover takes place without the mobile being formed beforehand. If the mobiles have equalizers and the system transmits message information digitally by digital modulation of radio signals, it is also preferably in this case as well that the transmission of message information is started from the base transmitter to which responsibility is to be handed over, before transmission of the same information is terminated from the base transmitter from which responsibility is to be handed over. In this case also, the same message information is transmitted during a transition period to the mobile from two base transmitters. If it is not possible to utilise the same radio channel for some reason, it is then preferable in such a system to select the different channels such that during a transition period the mobile can receive the transmissions from the different base transmitters essentially without their mutually obstructing each other. In a TDMA system with mobiles according to
A method in accordance with the invention is not limited to described embodiments or mobile radio systems according to
Raith, Alex K., Uddenfeldt, Jan E.
Patent | Priority | Assignee | Title |
7593732, | Jun 15 2004 | Nokia Technologies Oy | System and method for supporting soft handover in a broadband wireless access communication system |
7613469, | Mar 26 2002 | Nokia Technologies Oy | Positioning-triggered handover |
Patent | Priority | Assignee | Title |
2745953, | |||
3819872, | |||
4057758, | Oct 21 1974 | Nippon Telegraph & Telephone Corporation | Mobile diversity radio communication system |
4097804, | Oct 30 1975 | Kokusai Denshin Denwa Kabushiki Kaisha | Transmitting and receiving diversity system |
4112257, | Mar 24 1977 | Comprehensive automatic mobile radio telephone system | |
4152647, | Feb 23 1978 | The United States of America as represented by the United States | Rapidly deployable emergency communication system |
4211894, | Oct 14 1977 | Nippon Telegraph & Telephone Corporation | Transmitter multiplexing system for a land mobile communication system |
4222115, | Mar 13 1978 | Micron Technology, Inc | Spread spectrum apparatus for cellular mobile communication systems |
4255814, | Jul 15 1977 | Motorola, Inc. | Simulcast transmission system |
4308429, | Aug 25 1978 | Nippon Electric Co., Ltd. | Mobile telephone channel exchange system |
4383332, | Nov 21 1980 | Bell Telephone Laboratories, Incorporated | High capacity digital mobile radio system |
4398063, | Oct 24 1980 | BELL TELEPHONE LABORATORIES, INCORPORATED, A CORP OF NY | Mobile telephone interoffice handoff limiting method and apparatus |
4475246, | Dec 21 1982 | Motorola, Inc. | Simulcast same frequency repeater system |
4490830, | Jul 22 1981 | Nippon Electric Co., Ltd. | Radio signal transmission system including a plurality of transmitters for transmitting a common signal |
4516269, | Dec 10 1982 | Michigan Consolidated Gas Company | Automatic equalization for a simulcast communication system |
4596042, | Dec 21 1982 | BBC Brown, Boveri & Co., Limited | Radio transmission method for a mobile radio system |
4633519, | Mar 31 1983 | Tokyo Shibaura Denki Kabushiki Kaisha | Diversity reception system in a portable radio apparatus |
4642633, | Aug 05 1983 | MOTOROLA, INC , SCHAUMBURG, IL A CORP OF DE | Individual simulcast station control system |
4644560, | Aug 13 1982 | HAZELTINE CORPORATION, A DE CORP | Intranetwork code division multiple access communication system |
4667202, | Sep 28 1983 | Siemens Aktiengesellschaft | Mobile radio network |
4670899, | May 31 1985 | Nortel Networks Limited | Load balancing for cellular radiotelephone system |
4675863, | Mar 20 1985 | InterDigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
4696051, | Dec 31 1985 | Motorola Inc. | Simulcast transmission system having automtic synchronization |
4696052, | Dec 31 1985 | Motorola Inc. | Simulcast transmitter apparatus having automatic synchronization capability |
4697260, | Dec 22 1984 | Lucent Technologies Inc | Method of and arrangement for transmitting messages in a digital radio transmission system |
4698839, | Jun 03 1986 | Mitsubishi Electric Corporation | Mobile telephone switching office |
4715048, | May 02 1986 | HER MAJESTY IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTER OF COMMUNICATIONS | Frequency offset diversity receiving system |
4718081, | Nov 13 1986 | ERICSSON GE MOBILE COMMUNICATIONS INC | Method and apparatus for reducing handoff errors in a cellular radio telephone communications system |
4718109, | Mar 06 1986 | Motorola, Inc | Automatic synchronization system |
4723266, | Jan 21 1987 | ERICSSON GE MOBILE COMMUNICATIONS INC | Cellular communication system sharing control channels between cells to reduce number of control channels |
4737978, | Oct 31 1986 | Motorola, Inc.; Motorola, Inc | Networked cellular radiotelephone systems |
4759051, | Mar 16 1987 | A. A., Hopeman, III; Ching C., Hopeman; HOPEMAN, A A III; HOPEMAN, CHING C | Communications system |
4765753, | Mar 08 1986 | U S PHILIPS CORPORATION, A CORP OF DE | Method and apparatus for handing-over a radio connection from one radio cell to another radio cell of a digital radio transmission system |
4771448, | Nov 18 1986 | Nortel Networks Limited | Private cellular system |
4811380, | Jan 29 1988 | Motorola, Inc. | Cellular radiotelephone system with dropped call protection |
4850032, | Nov 18 1987 | Motorola, Inc. | Simulcast data communications system |
4852090, | Feb 02 1987 | Motorola, Inc. | TDMA communications system with adaptive equalization |
4856048, | Mar 02 1987 | NTT Mobile Communications Network Inc | Mobile communication system |
4901307, | Oct 17 1986 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | Spread spectrum multiple access communication system using satellite or terrestrial repeaters |
4930140, | Jan 13 1989 | Agilis Corporation | Code division multiplex system using selectable length spreading code sequences |
4955082, | Jan 14 1988 | The Tokyo Electric Power Company Ltd.; Sumitomo Electric Industries, Ltd. | Mobile communication system |
4984247, | Sep 29 1988 | ASCOM ZELCOM AG, A CORP OF SWITZERLAND | Digital radio transmission system for a cellular network, using the spread spectrum method |
5022049, | Nov 21 1989 | Unisys Corp. | Multiple access code acquisition system |
5048059, | Sep 19 1988 | Telefonaktiebolaget LM Ericsson | Log-polar signal processing |
5056109, | Nov 07 1989 | Qualcomm, INC | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
5091942, | Jul 23 1990 | Ericsson, Inc | Authentication system for digital cellular communications |
5095531, | Aug 28 1987 | Iwatsu Electric Co., Ltd. | Mobile communication position registering method and system therefor |
5101501, | Nov 07 1989 | Qualcomm Incorporated | Method and system for providing a soft handoff in communications in a CDMA cellular telephone system |
5103459, | Jun 25 1990 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | System and method for generating signal waveforms in a CDMA cellular telephone system |
5109390, | Nov 07 1989 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | Diversity receiver in a CDMA cellular telephone system |
5124698, | Apr 10 1985 | Tecnomen Oy | Method and apparatus for synchronizing radio transmitters in a paging network |
5126748, | Dec 05 1989 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | Dual satellite navigation system and method |
5128959, | Feb 22 1991 | Motorola, Inc.; MOTOROLA, INC , SCHAUMBURG, ILLINOIS A CORP OF DELAWARE | Variable bandwidth CDMA radio system |
5179571, | Jul 10 1991 | InterDigital Technology Corp | Spread spectrum cellular handoff apparatus and method |
5257283, | Nov 07 1989 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | Spread spectrum transmitter power control method and system |
5265119, | Nov 07 1989 | Qualcomm Incorporated | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
5267261, | Mar 05 1992 | QUALCOMM INCORPORATED, A CORP OF DELAWARE | Mobile station assisted soft handoff in a CDMA cellular communications system |
5267262, | Nov 07 1989 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | Transmitter power control system |
5280472, | Dec 07 1990 | Qualcomm Incorporated | CDMA microcellular telephone system and distributed antenna system therefor |
5383219, | Nov 22 1993 | Qualcomm Incorporated | Fast forward link power control in a code division multiple access system |
5437055, | Jun 03 1993 | Qualcomm Incorporated | Antenna system for multipath diversity in an indoor microcellular communication system |
5452473, | Feb 28 1994 | Qualcomm Incorporated | Reverse link, transmit power correction and limitation in a radiotelephone system |
5461639, | Nov 22 1993 | Qualcomm Incorporated | Fast forward link power control in a code division multiple access system |
5475870, | Sep 12 1994 | Qualcomm Incorporated | Apparatus and method for adding and removing a base station from a cellular communications system |
5485486, | Nov 07 1989 | Qualcomm Incorporated | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
5490165, | Oct 28 1993 | Qualcomm Incorporated | Demodulation element assignment in a system capable of receiving multiple signals |
5509035, | Apr 14 1993 | Qualcomm Incorporated | Mobile station operating in an analog mode and for subsequent handoff to another system |
5513176, | Dec 07 1990 | Qualcomm Incorporated | Dual distributed antenna system |
5519761, | Jul 08 1994 | Qualcomm Incorporated | Airborne radiotelephone communications system |
5528593, | Sep 30 1994 | Qualcomm Incorporated; QUALCOMM Incorported | Method and apparatus for controlling power in a variable rate communication system |
DE2022425, | |||
DE3012141, | |||
EP40731, | |||
EP72479, | |||
EP72984, | |||
EP274857, | |||
JP45882, | |||
JP5773539, | |||
JP58111443, | |||
JP58159083, | |||
JP59176935, | |||
JP59212041, | |||
JP6042950, | |||
JP6052131, | |||
JP61171269, | |||
JP62132444, | |||
WO8701897, | |||
WO9013187, | |||
WO9107020, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 21 1999 | Telefonaktiebolaget LM Ericsson (publ) | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 28 2003 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 09 2005 | 4 years fee payment window open |
Jan 09 2006 | 6 months grace period start (w surcharge) |
Jul 09 2006 | patent expiry (for year 4) |
Jul 09 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 09 2009 | 8 years fee payment window open |
Jan 09 2010 | 6 months grace period start (w surcharge) |
Jul 09 2010 | patent expiry (for year 8) |
Jul 09 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 09 2013 | 12 years fee payment window open |
Jan 09 2014 | 6 months grace period start (w surcharge) |
Jul 09 2014 | patent expiry (for year 12) |
Jul 09 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |