Solid objects are formed in an imagewise layering process in which components of a dispersion are homogenized to form an alloy. imagewise exposure of the layers to radiation to form an alloy permits separation of the exposed, homogenized regions from non-exposed, non-homogenized regions. As each layer is formed and imagewise homogenized, contiguous layer regions are bonded together to form a homogenized, three-dimensional object which may be separated from surrounding dispersion.
|
0. 44. A process for producing a homogenized coating from a dispersion of polymer A and polymer and/or monomer b components, comprising the steps of;
a) providing the dispersion containing components A and b; b) forming the dispersion into a layer; c) thermally homogenizing the dispersion by applying imaging radiation to form an alloy of components A and b.
0. 25. A process for producing a homogenized, three-dimensional, integral object by imagewise thermal radiation of a dispersion, comprising the steps of;
(a) providing the dispersion containing components A and b; (b) homogenizing the dispersion by applying a thermal radiation exposure in a series of lines defining an image; (c) repeating steps a-b with subsequent application of dispersion and exposure, such that each new homogenized region becomes integral with the previous homogenized region to form the homogenized, three-dimensional, integral object.
20. A process for producing a homogenized, three-dimensional, integral object of components A and b, comprising the steps of:
a) providing a layer of liquid component b; b) homogenizing components A and b by adding solid or liquid component A in an imagewise manner to a surface of the layer of liquid component b for forming an alloy layer of components A and b, which alloy layer hardens upon homogenization; c) repeating steps a)-b) by applying each successive alloy layer of homogenized region onto the previous alloy layer, such that each new homogenized region becomes integral with the previous homogenized region to form the homogenized, three-dimensional, integral object.
1. A process for producing a homogenized, three-dimensional, integral object by imagewise thermal radiation of a dispersion, the dispersion containing components A and b, comprising the steps of:
a) providing the dispersion containing components A and b; b) forming the dispersion into a layer; c) homogenizing the dispersion by applying imagewise thermal radiation to form an alloy of components A and b; and repeating steps a)-c) by applying each successive layer of the dispersion onto the previous layer of the dispersion, such that each new homogenized region becomes integral with the previous homogenized region to form the homogenized, three-dimensional, integral object.
0. 34. A process for producing a homogenized, three-dimensional, integral object by imagewise radiation of a dispersion, the dispersion containing components A and b, comprising the steps of:
a) providing the dispersion containing components A and b; b) forming the dispersion into a layer; c) thermally homogenizing the dispersion by applying imagewise radiation to form an alloy of components A and b; and d) repeating steps a)-c) by applying each successive layer of the dispersion onto the previous layer of the dispersion, such that each new homogenized region becomes integral with the previous homogenized region to form the homogenized, three-dimensional, integral object.
0. 51. A method for forming an integral object from a composition in a layer-by-layer process wherein properties within said object are changed, said process comprising the steps:
providing a layer of composition; thermally changing the properties of regions of the layer of composition by exposing the composition to imaging radiation and repeating steps a-b with subsequent applications of composition and exposure, such that a portion of each new imaged composition region becomes integral with the previous imaged composition region to form an integral three dimensional object; wherein the properties within said integral object are changed by varying the imaging radiation time, temperature, and/or intensity.
0. 32. A method for forming an integral object from a composition in a layer-by-layer process wherein properties within said object are changed, said process comprising the steps:
providing a layer of composition; homogenizing said composition; changing the properties of regions of the layer of composition by exposing the composition to imaging radiation and repeating steps a-b with subsequent applications of composition and exposure, such that a portion of each new imaged composition region becomes integral with the previous imaged composition region to form an integral three dimensional object; wherein the properties within said integral object are changed by varying the imaging radiation time, temperature, and/or intensity.
2. The process as claimed in
3. The process as claimed in
5. The process as claimed in
6. The process as claimed in
7. The process as claimed in
13. The process as claimed in
14. The process of
16. The process as claimed in
17. The process of
18. The process as claimed in
19. The process as claimed in
21. The process as claimed in
22. The process as claimed in
23. The process as claimed in
24. The process as claimed in
0. 26. The process of
0. 27. The process of
0. 28. The process of
0. 29. The process of
0. 30. The process of
0. 31. The process of
0. 33. A method according to
0. 35. A process according to
0. 36. A process according to
0. 37. A process according to
0. 38. A process according to
0. 39. A process according to
0. 40. A process according to
0. 41. A process according to
0. 42. A process according to
0. 43. A process according to
0. 45. A process according to
0. 46. A process according to
0. 47. A process according to
0. 48. A process according to
0. 49. A process according to
0. 50. A process according to
|
The invention relates to a process of making models, molds, near net shape parts, and other integral objects using an imagewise exposure of a dispersion of components to radiation. The process is based on homogenizing the components of the dispersion to form an alloy which have properties different from the properties of the dispersion or its individual components.
Layer-by-layer solid imaging techniques, including stereolithography and selective laser sintering, have been used to produce models, mold patterns, and near net shape production parts. Stereolithography provides high accuracy and excellent surface finish, but does not normally allow for productions of objects in engineering materials such as nylon or ABS. Selective laser sintering can produce objects in nylon or polycarbonate but cannot produce objects of full density, and generally produces objects having low surface quality.
U.S. Pat. No. 5,354,414 describes imagewise formation of an integral object which can be separated from the non-imaged regions. Processes of brazing, soldering and welding are disclosed for producing the integral object.
U.S. Pat. No. 4,575,330 describes generation of three-dimensional objects by creating a cross-sectional pattern of the object on the surface of a fluid medium. The physical state of the medium is altered to form successive cross-sectional layers and provide a step-wise laminar buildup of the desired object. As an example of a suitable change in physical state, the patent discloses free-radical curing of acrylate.
U.S. Pat. No. 5,474,719 describes a solid imaging process wherein high viscosity liquids are viscosity-reduced during coating and allowed to increase in viscosity during imaging steps. In particular, the compositions contain a photohardenable monomer and a photoinitiator, and the photohardening methods suggested involved free-radical polymerization, cationic polymerization, anionic polymerization, condensation polymerization, addition polymerization, and the like.
U.S. Pat. No. 4,938,816 describes a process for selectively sintering a layer of powder to produce a part comprising a plurality of sintered layers. The bulk density of the powder is increased prior to sintering or melting the powder by exposure. Attaining high bulk density of powders for sintering is difficult, however, and requires the use of substantial pressures.
It is known in the art that certain advantages are associated with providing at least one above solidus temperature component in a dispersion to be sintered. The advantages are, for example, improved wetting between the components, reduction of friction between the components to allow for greater densification, capillary forces which draw the components together and drive densification, and greater molecular diffusion between components during sintering. See, for example, R. M. German, Liquid Phase Sintering, Plenum Press, New York, 1985; and Eremenko et al, Liquid Phase Sintering, Plenum Publishing Corp., New York, 1970. These disclosures do not teach imagewise layer-by-layer formation of three-dimensional integral articles.
The invention comprises a process for producing three-dimensional integral objects by imagewise radiation of a dispersion of components A and B, comprising the steps of:
a) providing a dispersion of component A and component B;
b) forming the dispersion into a layer;
c) homogenizing the dispersion by the application of imagewise radiation to form an alloy of components A and B; and
d) repeating steps a)-c) by applying each successive layer of dispersion onto the previous layer, such that each new homogenized region becomes integral with the previous homogenized region to form a homogenized, integral, three-dimensional object.
Components A and B may be polymers, metals, ceramics, or combinations of these materials. The components A and B are capable of alloying, when exposed to imagewise radiation, to form an alloy of the two components A and B which is characterized by physical and/or chemical properties which are distinct from the physical and/or chemical properties of the dispersion of components A and B. The components are combined into intimate contact to form the dispersion, preferably with one component being in a liquid state or above solidus state, prior to homogenization. Following homogenization by imagewise exposure, the homogenized alloy article may be separated from the unexposed dispersion based on the difference in physical and/or chemical properties. For example, the homogenized alloy of components A and B may have a melting point different from the melting point of component A, the melting point of component B, or the melting point of an intimate dispersion of components A and B.
The term "homogenized" or "homogenization", for the purposes of this disclosure, will refer to the formation of an alloy between the substances which are homogenized. This requires sufficient molecular or elemental mixing between the components to result in properties, either physical or chemical or both, which are different from the properties of the individual components in intimate contact in the form of a dispersion. The difference in properties of the alloy is preferably sufficient in itself to permit separation of the alloyed components from non-alloyed, surrounding regions of the dispersed components following imagewise exposure. In a particularly preferred embodiment, the alloyed (homogenized) material has a different melting point than the dispersion of components A and B, and thus, the alloyed three-dimensional article can be separated from the surrounding dispersion based on the difference in melting point.
Components which can be alloyed from a dispersion of components in the manner described, and which may be used as component A and component B in the practice of the invention, include polymers, metals, and ceramics. In some instances, nonmetal elements may be alloyed with metals. Preferred alloys formed by homogenization include polymer/polymer alloys, metal/metal alloys, ceramic/ceramic alloys, polymer/metal alloys, and metal/ceramic alloys. Choice of the particular material combination to be used depends on the nature and intended us of the three-dimensional part or object being produced. From within these classes of materials, the components A and B should be selected so as to be: capable of alloying under the exposure of imagewise radiation within a practical range of intensity; the alloy must have physical and/or chemical properties distinct from the properties of an intimate dispersion of A in B or B in A; and the alloy of A and B should preferably be separable from unalloyed dispersion of A and B based on the difference in physical and/or chemical properties.
The components may consist of polymers, which can be dispersed together and alloyed by the application of radiation. In a preferred embodiment, a first particulate polymer (A) is dispersed in a second, liquid polymer (B) to form an intimate dispersion. Application of imaging radiation causes the particulate polymer to assume a different form in the liquid polymer, which changes the conformation of the particulate to allow for more intimate interaction between the first polymer and the liquid polymer. This interaction of the two polymers forms a polymer alloy having properties (for example melting point) different from polymer A, polymer B, and the intimate dispersion of polymer A in polymer B. The homogenization to form an alloy between polymers is a non-polymerization interaction, and polymerization techniques (free radical, condensation, and like mechanisms between monomers and/or oligomers and optionally initiators) are excluded from the definition of "homogenization" as used herein. The interaction between polymers upon imagewise exposure to radiation is primarily noncovalent, involving hydrogen bonding, n-pi complexing, pi-pi complexing, or dipole interactions, although incidental grafting, cross-linking or the like which may occur between the polymers is not excluded.
The components may consist of metals or ceramics which, when contacted with appropriate imaging radiation of appropriate intensity, form a metal or ceramic alloy having properties distinguishable from the properties of the components. For example, powdered bismuth and powdered magnesium can be combined, in the ratios of about 30 atomic percent bismuth to about 70 atomic percent magnesium, as an intimate powder dispersion. Although the components are in intimate contact, the bismuth powder and the magnesium powder retain their characteristic, individual properties. Even if the bismuth powder (melting point 268.5°C C.) is melted sufficiently to wet the magnesium powder (melting point 650°C C.) and thus increase the intimate contact between the components, each component in the dispersion still retains its essential and unique properties. However, if the magnesium powder is also melted and mixing results between the melted bismuth and magnesium, then either the intermetallic compound Mg3Bi2 (melting point 823°C C.) is formed, or upon more intense radiation, a higher melting point alloy is formed. It will thus be understood that homogenization, in the case of metals and ceramics, is different from conventional sintering techniques, wherein powders are heated to essentially fuse or bond the particulates at their outermost points of contact into a solid mass. This also distinguishes the homogenization process of the invention from selective laser sintering (SLS) techniques. Thus, it will be understood that "homogenization" for purposes of the invention requires intimate mixing of at least two components with resultant formation of an alloy between the components, which cannot be achieved using conventional sintering techniques. Moreover, in the case of sintering, the sintered object cannot be separated from a surrounding powder bed based on melting temperature, whereas convenience of separation is an advantage associated with certain embodiments of the present invention.
Techniques similar to sintering are "brazing", welding and soldering. Brazing is a metal joining process wherein a nonferrous filler metal wets a base metal when molten in a manner similar to a solder and its base metal. There is a slight diffusion of the filler metal into the hot, solid base metal, or a surface alloying of the base and filler metals. A surface bond is formed between materials that does not cause changes in physical properties in the individual components except at the surface. Brazing, welding and soldering are also different from homogenization as described herein.
It should be noted that homogenization does not require complete mixing. It is recognized, for example, that solidified alloys may contain crystals or phases of varying composition. In the context of the present invention, homogenization progresses to the extent that the homogenized regions forming the three-dimensional integral object have different properties, and normally can be separated from the non-homogenized surround regions based on those different properties.
Suitable polymer materials for components A and B are disclosed generally in the following disclosures, which are incorporated herein by reference. Polymer alloys are disclosed in Battelle, "Report on Major Developments in Polymer Blends", Vols. 1-3, Columbus Division, Columbus, Ohio, (1986); and Barlow et al., Polymer Blends and Alloys, A Review of Selected Considerations, Polymer Engineering and Science, 21: 985 (1981). Polymers used as component A or B may comprise pure polymer or may comprise polymers and related monomers and solvents. In the polymer alloys (sometimes called polymer blends) the repeating functional units of one polymer interact with the repeating units of the other polymer(s) in a manner which renders the polymers miscible and makes the alloy thermodynamically stable upon imaging. As noted, such interactions are primarily noncovalent. The polymer alloys have different properties than the individual polymers or the polymers in dispersion, such properties including, for example, melting temperature, glass transition temperature, heat distortion temperature, and the like. Exemplary of polymer pairs suitable for components A and B of the invention are the following: polycaprolacetone/poly(vinylchloride); polycaprolactone/Saran; polycaprolactone/bisphenol A polycarbonate; poly(vinyl methyl ether)/phenoxy; poly (ethylene oxide)/phenoxy; poly(ethylene oxide)/poly (acrylic acid); BPA polycarbonate/PHFA; polystyrene/polyphenylene oxide.
Metallic alloys are disclosed in, for example, Hansen, "Constitution of Binary Alloys", McGraw-Hill (1958); and A.S.M. Metals Reference Book, ASM International, Materials Park, Ohio (1993).
Preferred ceramic/ceramic and ceramic/metal alloys are disclosed in "Phase Diagrams for Ceramicists", Vols. 1-8, The American Ceramic Society, Columbus, Ohio.
Material pairs selected from within the materials disclosed in these references should be selected to achieve the criteria described above, primarily, alloy formation upon imagewise exposure to radiation.
In a currently preferred embodiment of the invention, the components A and B exhibit properties in accordance with the phase diagram shown in FIG. 2.
Phase diagrams such as
With reference to
50 parts of component B (Alloy A1B1 containing 30% gallium and 70% aluminum)
50 parts of solid component A (powdered aluminum)
The dispersion A1B1+(S)A would begin to form a liquid phase if heated to above 26.2°C C. The amount of liquid can be calculated based upon tie-line calculations well known in the art. Above this temperature, the dispersion (L)A1B1+(S)A could be coated into a layer. Next, the layer could be imagewise homogenized forming an alloy region A2B2 having a composition of 85% aluminum and 15% gallium. This region A2B2 (assuming complete homogenization of the aluminum and gallium) would have a melting point of over 300°C C. The difference between the homogenized alloy A2B2 melting point and the melting point EuB of the dispersion (L)A1B1+(S)A would allow separation of the homogenized region A2B2 from surrounding dispersion(L) A1B1+(S)A.
In forming objects using alloys of aluminum and gallium, those skilled in the art would recognize that the liquidus curve extends up to 99.2% by weight of gallium. This reduces the amount of liquid formed (based upon tie-line estimates) in the liquid component (L)A1B1+(S)A so that higher temperatures T1 should be used during coating. Alternatively, coating pressures, such as the use of a heated roller, could be used to aid the formation of the dispersion (L)A1B1+(S)A into a layer.
Apparatus for carrying out imagewise formation of three dimensional parts are known in the art, and are described, for example, in U.S. Pat. Nos. 5,354,414; 5,474,719; 4,575,330; 4,938,816; and 5,014,207. Preferred apparatus is described below in connections with drawing FIG. 1.
The system illustrated in
The parts 109 and 109' as shown are cantilevered sections and other unsupported sections as depicted in FIG. 1. The parts formed may be solid parts, or may be partially hollow. There are no size limitations on the parts which can be formed other than the capacity of the equipment and the fineness of the dispersion 106.
A further preferred means of carrying out the invention is described with reference to both FIG. 1 and
Next the piston 102 is moved down the distance of one layer creating a cavity between the surface of dispersion 106' or the layer 108 and 108' and the platform surface 101'. New dispersion 105 is spread into this cavity creating an additional layer of coated dispersion 106. This layer of dispersion 106 is scanned imagewise with beam 107 such that all the components in the dispersion 106 are heated to temperature T2 causing melting and homogenization in the image regions 108 and 108'. The new image regions 108 and 108' are allowed to cool until new solid homogenized alloy regions (S)A2B2108 and 108' are formed. These regions 108 and 108' preferably adhere to the previous alloy (S)A2B2 regions forming part of the integral objects 109 and 109'. The piston 102 is then lowered and all the coating and imagewise homogenization steps are repeated until complete integral objects 109 and 109' have been formed.
Upon completion of fabrication of integral objects 109 and 109', the piston 102 is raised. Dispersion 106, maintained at temperature T1, is allowed to flow away thereby separating the dispersion 106 from the integral objects 109 and 109'. If necessary, dispersion is removed from the object by washing, solvent, heating, or the like.
As an alternative to the above, only the doctor blade 104 and the dispersion 105 are heated to a temperature T1 while the remainder of the equipment shown in
For some components A and B there may be a significant difference in density making the dispersion 106 unstable such that the liquid phase (L)A1B1 and the solid particles (S)A separate by gravity into separate layers. Such separation can be handled in different ways. One way would be to maintain the coated dispersion 106 at a temperature below EuB or solid so separation cannot occur or even if separation occurred it would happen layer by layer. The focused beam 107 could still be used to melt both the low melting component and the solid particle component to perform imagewise homogenization. Another way would be to use solid particles (S)A which are a higher melting alloy, an alloy of A and B (e.g. A1'B1' as shown in
However, it is most preferred that the lower melting component(L)A1B1 be comprised of a significant amount of component A. This has two advantages, there is less of a density difference and less of component A need be present in order to enrich the alloy to a higher melting composition. Such a lower melting component (L)A1B1 would have a composition comprising component B in a % slightly more than intercomponent compound AB as shown in FIG. 2.
Another method to carry out the process of the instant invention is shown in FIG. 3. The apparatus of
As a further variation of the embodiment of
Still another embodiment involves the addition of a material component A in either solid or liquid form, in an imagewise fashion, to the surface of a liquid phase component (L)A1B1 contained in a vat or a piston/cylinder cavity. In the regions where the material component A is placed, homogenization would result forming an alloy (S)A2B2 having a higher melting temperature than the temperature of surrounding liquid component (L)A1B1. The homogenized regions would harden into layers which would be built into integral objects. The integral objects could then be separated from the surrounding liquid phase component (L)A1B1 since the objects would be solid at that temperature. The imagewise addition of material component could be accomplished using ink jet technology or powder jet technology.
In the practice of the invention the preferred property change for separation of imaged objects from non-imaged dispersion is a melting point change. The melting point change, assuming it is sufficiently large, allows a separation of the homogenized region from the unhomogenized region (unexposed to radiation) though the application of heat which causes the lower melting point region to melt away from the higher melting point region.
The layer-by-layer process as described herein allows the production of objects with property changes that exist deep within the object and with property changes of specific shape within the object. Returning to the example of the dispersion of bismuth and magnesium, it is possible to produce shaped object regions, which are homogenized such that the intermetallic compound Mg2Bi2 (melting point 823°C C.) and dispersed Mg is the primary alloy, within an object which has greater homogenization such that an alloy having a temperature of 551°C C. is formed. For example, the homogenization time or temperature could be lower for the intermetallic compound region, such that some magnesium powder is surrounded by the intermetallic compound.
In the practice of liquid phase sintering it is known that approximately 35% volume liquid is preferred, since this volume percent allows optimum rearrangement of the solid particles in the dispersion and therefore the greatest amount of densification. However, greater or lesser amounts of liquid may be present depending on the wetting characteristics of the particles with the liquid and the solubility characteristics of the components. In addition, since the process of the present invention involves a layer-by-layer processing of the dispersion or a surface liquid phase sintering process, rather than, for example, an impregnation of liquid into a compacted powder as in a bulk liquid phase sintering process, problems related to pore growth and such can be easily relieved through the surface during processing. Thus, the optimum liquid to solid ratios for surface liquid phase sintering are much broader than those ratios recommended for bulk liquid phase sintering. It is also important to note that a liquid phase need not be present just prior to the homogenization step when practicing the instant invention. Indeed it may be preferable to have the liquid phase present only during the coating steps, during the homogenization steps, and during the object separation steps when components A and B have a degree of solubility such that over a short period of time, premature homogenization occurs, since homogenization is usually greatly enhanced when at least one component is in the liquid state. Another method to prevent premature homogenization would be to use coated particles. The coating could be such that homogenization is only possible at elevated temperatures. An example coating would be an oxidized coated solid particle A. This oxide coating would be lost at the higher homogenization temperatures and could be reduced in an atmosphere of, for example, hydrogen. Or, the oxide coating could be incorporated as a third component into the homogenized alloy article.
Furthermore, the liquid phase need not be comprised of a pure component B or a pure component A. The liquid phase may be comprised of, for example, an alloy of component A and component B at a eutectic point such that upon heating above the eutectic isothermal line EuB temperature the liquid phase does not have crystalline components AB or β. Such a condition ensures a greater amount of liquid to solid particle ratio and also reduces the amount of homogenization required to change the composition to a higher melting alloy.
There are advantages when the solid particles are comprised of an alloy of components A and B at the eutectic point on the isothermal eutectic line EuA. With such an eutectic point alloy, the temperatures needed during the homogenization step or the amount of heat given during imagewise exposure can be lower since the alloy transitions directly to a liquid without containing some crystalline content of α or AB. However, use of an eutectic point alloy as the solid particle may require that more of the solid component be provided in the dispersion prior to homogenization since a certain amount of component A must be present in the imagewise homogenized region for a higher melting point alloy to be formed. A similar type situation occurs, when starting with a lower melting alloy having a composition where the EuA line meets the α crystalline solidus curve and attempting to enrich this alloy with component A in order to form a higher melting alloy along the α solidus curve. Significant amounts of component A need to be homogenized into such an alloy. Such situations are less preferred since homogenization becomes more difficult.
For many material components and alloys, the atmosphere surrounding the process is critical. For example, some components may easily oxidize and require the use of vacuum conditions, inert gases, or reducing atmospheres in order to form the integral objects. Atmosphere can be controlled in the process or used in the alloy reaction. For example, oxygen can be used to form a ceramic alloy on the surface of a layer of liquid phase metal. Such a ceramic alloy or cermet (metal ceramic) typically has a much higher melting point than the surrounding pool of metal, allowing easy separation of an integral object. The metal component in this case could be supplied in sheet form and the oxygen could be supplied with, for example, an acetylene torch (with excess oxygen for some materials which are easily reduced with heat or with insufficient oxygen for materials which oxidize in the presence of carbon oxides) which is translated imagewise over the surface of each sheet stacked one on another. The heat from the torch would create a localized liquid phase component which would react with oxygen forming a higher melting alloy region. A new sheet would then be applied to the previous sheet and higher melting alloy region. The torch would then be translated imagewise over the surface of the new sheet forming a higher melting alloy region which would preferentially adhere to the previous alloy regions forming part of an integral object. This process would continue until all the layers of the integral object are formed. Then the sheets and the integral object would be placed in an oven (with a vacuum, inert or reducing atmosphere) such that the non-oxidized portions of the sheets are melted and allowed to flow away from the higher melting alloy integral object.
It is also possible to form regions of lower melting point by enriching a higher melting point layer with a component which, when homogenized with the higher melting point component, forms a lower melting point alloy. For example, a sheet of a higher melting point component A could be supplied. A second component B could be deposited imagewise on the surface of the sheet. The imagewise deposition of the second component could be a perimeter of the integral object to be formed or a region of greater area. The second component would be chosen such that, when the higher melting component and the second component are homogenized, a lower melting point alloy results. The second component would also be chosen such that the melting point of the sheet component would be depressed when in contact with the melted second component. The stacking of the sheets and the imagewise deposition of the second component would continue until all layers of the potential object have been applied. The stacked sheets (with the imagewise deposited second component) would then be placed in an oven at a temperature (above the depressed melting point temperature of the sheet but below the melting point of the sheet component) where the second component would melt and cause the stacked sheets to melt imagewise forming imagewise regions of relatively low melting alloy which would be drained away from the non-imaged stacked sheet regions. The non-imaged stacked sheet regions would then be heated to a temperature such the sheet layers sinter together and create an integral object. In a similar embodiment, the imagewise deposition step could be accompanied by an imagewise heat step such that a lower melting alloy results at each layer. If the temperature of the stacked sheets are above the melting point of the alloy, the alloy could be drained or removed by other means, such as by vacuum, at each layer.
Separation of the dispersion from the homogenized object can also be enhanced by using a suitable solvent. For example, the melting point of the dispersion could be lowered after the homogenized object has been formed by homogenizing the dispersion with additional low melting component or by the addition of another component capable of lowering the dispersion melting point.
Some homogenized regions and integral objects may be significantly soluble in the liquid phase component or even a solid phase component over a period of time. This condition would cause a loss of resolution in the object during manufacture since the object might dissolve in the liquid phase or the solid dispersion. In general, it is preferred that components are chosen such that the homogenized object is not significantly soluble in the dispersion of A and B. Problems in this regard can be avoided if the annealing temperature of the homogenized object is above the temperature required for separation of the homogenized object from the dispersion. For example, homogenized objects could be formed using nickel and copper as the components. Copper has a melting point of 1085°C C. and nickel has a melting point of 1455°C C. The melting point of homogenized alloys of copper and nickel would increase roughly linearly as a function of increasing nickel. However, typical annealing temperatures for copper-nickel alloys are below 870°C C. indicating substantial solid solubility of copper with nickel. Therefore it is unlikely that a dispersion could be maintained or that the dispersion could be separated from the homogenized object, since the solubility of these components and alloys is high and the homogenized object would begin to lose resolution below the melting temperature of the low melting copper component.
Although separation of an integral object from a lower melting point region has been stressed, there are useful modes of carrying out the instant invention that do not require object separation. For example, a region of an object formed in a layer-by-layer process as described herein may be enriched, with greater amounts of the same or another component, such that is has different magnetic properties than the remainder of the object. For example, a gear could be formed with a region of different magnetic susceptibility which when rotated past a magnetic sensor would create an electrical pulse like an encoder. As a further example, a turbine could be formed with an internal region of a lower melting alloy or density which would provide an automatic balancing mechanism for the turbine at its operating temperature. As another example, regions could be included in integral objects which have different hardness, ductility, electrical/thermal conductivity, elasticity, color, etc., than the remainder of the object.
The foregoing disclosure will be illustrated by the following example, which is provided as illustration and not as limitation on the scope of the invention.
The following dispersion was prepared by mixing:
300 grams of crystalline 400,000 MW polyethylene oxide, 120 mesh
700 grams of trimethylolpropane triacrylate
11 grams of fine graphite lubricant powder
The dispersion was mixed at room temperature to uniform consistency and moderate viscosity. Trimethylolpropane triacrylate is a liquid at room temperature and formed a liquid phase of the dispersion. Below approximately 43°C C., the polyethylene oxide is essentially insoluble in the trimethylolpropane triacrylate. Above this temperature, sudden homogenization ensues with the homogenized region forming a rubbery solid having a higher melting point. The graphite was added to increase the surface absorption of the laser beam energy used (Argon Ion laser operating in the visible with all visible lines predominantly 488 and 514 nm). The graphite would not be necessary if laser wavelengths having greater surface absorbance were used or if other imagewise heating methods were employed.
The surface of the dispersion was scanned with the laser beam in a series of parallel lines spaced approximately 0.002 inches apart. The diameter of the beam spot was approximately 167 μm 1/e2 and the power was 2.89 watts. The photospeed of the dispersion was obtained by pouring a portion of the dispersion in a petri-dish and exposing the surface of the dispersion in one inch square regions. Shortly after exposure, and after the region was allowed to cool, the exposed surface was removed. The bottom surface of the layer was scraped off with a spatula and the layer thickness was then measured with calipers. By scanning the surface of the dispersion at various scan speeds the photospeed of the dispersion was found to be Ec 2644 mJ/cm2 and Dp 21.7 mils. Scanning of the focused beam was achieved utilizing an X-Y mirror set which deflected the focus of the beam across the surface of the dispersion in an imagewise manner utilizing the scanning technology disclosed in U.S. Pat. No. 5,014,207. Although it is preferred to modulate the beam at the end of vectors and while drawing the vector lines, in order to provide uniform exposure, the beam was not modulated while carrying out the steps in Example I.
While approximately 7 parts of trimethylolpropane triacrylate to 3 parts of polyethylene oxide were used for making the object in Example 1, greater amounts of polyethylene oxide in a composition can be used to make objects which retain some crystallinity, and lower amounts of polyethylene oxide may be used to form objects which are more rubbery (more plasticized by the un-alloyed triacrylate). Furthermore, other acrylates or diluents and other solid polymers are useful in the practice of the instant invention so long as the diluent and the solid polymer form an alloy having a higher melting temperature than at least the melting point of the diluent allowing easy separation of the alloy object from the diluent dispersion.
Other objects, made simply by heat homogenizing 2 parts trimethylolpropane triacrylate and 1 part polyethylene oxide, were essentially insoluble in trimethylolpropane triacrylate or isopropyl alcohol and therefore these materials are suitable cleaning solvents when separating the homogenized objects from the dispersion. However, water tended to swell and soften a homogenized object made from this dispersion.
The parts 109 and 109' had cantilevered sections and other unsupported sections as depicted in FIG. 1. The size of the parts were as large as 2 inches (50 mm) square and 0.64 inches (16.3 mm) high. However, there was no identifiable limitation of size other than that of the capacity of the equipment used and the fineness of the dispersion 106. The dispersion 106 was capable of producing unsupported, cantilevered and bridging, regions in parts 109 and 109' as large as 0.4 inches (10 mm). The parts 109 and 109' were cleaned in isopropyl alcohol.
The parts produced in this example can be used in an investment casting process where the parts are used as a pattern and dipped in a ceramic slurry. The pattern with the ceramic slurry shell can then be fired, burning off the pattern and hardening the ceramic shell. In order to prevent the water in the slurry from swelling the pattern, the pattern could first be dipped in a free radical initiator bath, for example a peroxide, which would tend to cross-link the trimethylolpropane triacrylate at the surface of the part. Alternatively, the pattern could be dipped in a free-radical photoinitiator liquid such as Irgacure (1173, 2-Hydroxy-2-methyl-2-phenyl-propan-1-one; Ciba Corporation, Hawthorne N.Y.), or any liquefied free-radical photoinitiator, and then exposed to UV light in order to cross-link the outer portions of the pattern. Alternatively the pattern could be coated with, for example, a wax or a paint. During the firing process of a shell and pattern for investment casting, it is a known problem that the pattern may have a greater thermal coefficient of expansion than that of the ceramic shell. Under such conditions, the pattern may expand to such a degree that it cracks the shell before the pattern burns-off during firing. In the case of the example dispersion, the trimethylolpropane triacrylate will polymerize during the firing step and therefore the pattern will shrink. In fact, homogenized objects, made from the dispersion, were exposed to hot air from a hot air gun. The objects heated in this manner did not melt but became very stiff and then eventually charred. Alternatively, incorporation of a free-radical photoinitiator which is also thermally degradable, or a thermally degradable free-radical initiator, such as for example a Vazoo® (Cyclohexanecarbonitrile, 1,1'-azobis, available from DuPont, Wilmington, Del.) in the formulation would further ensure shrinkage, due to acrylate free-radical polymerization of the pattern during firing. In such, a case for investment casting patterns, it is preferred that the photoinitiator not form significant quantities of free-radicals due to exposure by beam 107, such as would occur when a dispersion containing a UV photoinitiator is exposed by visible or infra-red light, or that the temperature reached during the fabrication of the object 109 not be high enough to cause the thermally degradable free-radical initiator to form significant quantities of free-radicals such that the acrylate is polymerized during object formation. For other object uses, some polymerization of the acrylate as well of homogenization of the dispersion may be advantageous and preferred.
The exposures necessary to produce a layer for the dispersion in Example I were somewhat higher than normally required. Light absorbers such as graphite are often not as efficient as certain thermal dyes which can be mixed on a molecular level, which have a greater yield for conversion of photon energy to phonon energy, and which may not have a large emittance. Although graphite and some other dyes have a fairly high and somewhat uniform absorption over the UV to near infrared spectrum, it should be appreciated that often other dyes have significantly greater absorption over a narrower wavelength region and are therefore optimally associated with lasers having an emission wavelength within the absorption wavelength of the dye. Examples of other thermal dyes are listed in U.S. Pat. No. 5,193,024, with the squalarium dye SQS being preferred. Synthesis of SQS is disclosed in Kawamura (U.S. Pat. No. 4,283,475) and Gravestejin (U.S. Pat. No. 4,508,811). SQS is best used with a diode laser emitting at a wavelength of approximately 830 nm. It should also be appreciated that in some cases the dispersion itself may have a significant absorption at the emission wavelength of some lasers. In such a case, it may not be necessary to add any other absorber in order to induce localized heat and subsequent homogenization of the dispersion in an imagewise manner. Furthermore, it should be appreciated that imagewise heat can be provided form other sources, such as for example an acetylene torch which, if fitted with a small tip, can produce a flame of resolution in the range of mils, for example "The Little Torch", manufactured by Smith Equipment, Waterton, S.D. Such a flame tip can be translated over the surface of the dispersion in an imagewise fashion by, for example, the adaptation of an X-Y pen plotter such that the flame tip replaces the pen. Or, if the dispersion and the homogenized region are electrically conductive and are adapted to form a ground plane, localized heat could be provided through the use of a translated carbon electrode, of opposite polarity to the ground plane, adapted to replace the pen in an X-Y pen plotter. The degree of homogenization may be controlled by, for example, homogenization temperature or homogenization time. The imagewise homogenization may also be aided through the use of localized ultrasonic energy, for example a modulated laser beam as taught in U.S. Pat. No. 4,330,699 by Farrow.
Other embodiments will be apparent to those skilled in the art from the foregoing description.
Patent | Priority | Assignee | Title |
6913794, | Jan 14 2002 | Coherent, Inc | Diode-laser curing of liquid epoxide encapsulants |
7306758, | Mar 13 2003 | Hewlett-Packard Development Company, L.P. | Methods and systems for controlling printhead temperature in solid freeform fabrication |
7850885, | May 13 2005 | EOS GmbH Electro Optical Systems | Device and method for manufacturing a three-dimensional object with a heated recoater for a building material in powder form |
8708682, | Nov 07 2008 | MTU Aero Engines GmbH | Repair method |
Patent | Priority | Assignee | Title |
3951651, | Aug 07 1972 | Massachusetts Institute of Technology | Metal composition and methods for preparing liquid-solid alloy metal compositions and for casting the metal compositions |
4007770, | Mar 05 1975 | Amax Inc. | Semi-consumable electrode vacuum arc melting process for producing binary alloys |
4117302, | Mar 04 1974 | CATERPILLAR INC , A CORP OF DE | Method for fusibly bonding a coating material to a metal article |
4182299, | Mar 04 1974 | CATERPILLAR INC , A CORP OF DE | Engine valve |
4243867, | Mar 04 1974 | CATERPILLAR INC , A CORP OF DE | Apparatus for fusibly bonding a coating material to a metal article |
4269868, | Mar 30 1979 | Rolls-Royce Limited | Application of metallic coatings to metallic substrates |
4276366, | Oct 11 1978 | E. I. du Pont de Nemours and Company | Process of using positive and negative working imaging systems from photoactive plastisols |
4283475, | Aug 21 1979 | Fuji Photo Film Co., Ltd. | Pentamethine thiopyrylium salts, process for production thereof, and photoconductive compositions containing said salts |
4300474, | Mar 30 1979 | Rolls-Royce Limited | Apparatus for application of metallic coatings to metallic substrates |
4323756, | Oct 29 1979 | United Technologies Corporation | Method for fabricating articles by sequential layer deposition |
4330699, | Jul 27 1979 | Cobra Therapeutics Limited | Laser/ultrasonic welding technique |
4474861, | Mar 09 1983 | Smith International, Inc. | Composite bearing structure of alternating hard and soft metal, and process for making the same |
4575330, | Aug 08 1984 | 3D Systems, Inc | Apparatus for production of three-dimensional objects by stereolithography |
4606994, | Aug 05 1983 | BASF Aktiengesellschaft | Process for producing photo-cured printing plates possessing a defined hardness |
4752352, | Jun 06 1986 | CUBIC TECHNOLOGIES, INC | Apparatus and method for forming an integral object from laminations |
4752498, | Mar 02 1987 | Method and apparatus for production of three-dimensional objects by photosolidification | |
4818562, | Mar 04 1987 | Westinghouse Electric Corp. | Casting shapes |
4845335, | Jan 28 1988 | Stovokor Technology LLC | Laser Bonding apparatus and method |
4938816, | Oct 17 1986 | BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, 201 WEST 7TH STREET, AUSTIN, TX 78701; BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, 201 WEST 7TH STREET, AUSTIN, TX 78701 | Selective laser sintering with assisted powder handling |
4944817, | Oct 17 1986 | BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, 201 WEST 7TH STREET,AUSTIN, TX 78701 | Multiple material systems for selective beam sintering |
4961154, | Jun 03 1986 | OBJET GEOMETRIES, LTD | Three dimensional modelling apparatus |
5006364, | Aug 24 1989 | DSM IP ASSETS B V | Solid imaging method utilizing compositions comprising thermally coalescible materials |
5014207, | Apr 21 1989 | DSM IP ASSETS B V | Solid imaging system |
5017317, | Dec 04 1989 | Board of Regents, The University of Texas System | Gas phase selective beam deposition |
5053195, | Jul 19 1989 | Microelectronics and Computer Technology Corp. | Bonding amalgam and method of making |
5076869, | Oct 17 1986 | Board of Regents, The University of Texas System | Multiple material systems for selective beam sintering |
5098469, | Sep 12 1991 | General Motors Corporation | Powder metal process for producing multiphase NI-AL-TI intermetallic alloys |
5143817, | Dec 22 1989 | DSM IP ASSETS B V | Solid imaging system |
5147587, | Oct 17 1986 | Board of Regents, The University of Texas System | Method of producing parts and molds using composite ceramic powders |
5156697, | Sep 05 1989 | BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, AN INSTITUTION OF TEXAS | Selective laser sintering of parts by compound formation of precursor powders |
5182170, | Sep 05 1989 | Board of Regents, The University of Texas System | Method of producing parts by selective beam interaction of powder with gas phase reactant |
5193024, | Oct 31 1990 | DSM, N V | Liquid/vapor optical modulator |
5260009, | Jan 31 1991 | Texas Instruments Incorporated | System, method, and process for making three-dimensional objects |
5314003, | Dec 24 1991 | Microelectronics and Computer Technology Corporation | Three-dimensional metal fabrication using a laser |
5354414, | Oct 05 1988 | CUBIC TECHNOLOGIES, INC | Apparatus and method for forming an integral object from laminations |
5393613, | Dec 24 1991 | Microelectronics and Computer Technology Corporation | Composition for three-dimensional metal fabrication using a laser |
5418350, | Jan 07 1992 | ELECTRICITE DE STRASBOURG S A ; Institut Regional de Promotion de la Recherche Appliquee | Coaxial nozzle for surface treatment by laser irradiation, with supply of materials in powder form |
5474719, | Feb 14 1991 | DSM IP ASSETS B V | Method for forming solid objects utilizing viscosity reducible compositions |
5622216, | Nov 22 1994 | SEMI-SOLID TECHNOLOGIES, INC | Method and apparatus for metal solid freeform fabrication utilizing partially solidified metal slurry |
5732323, | Sep 21 1994 | ELECTRO OPTICAL SYSTEMS FINLAND OY | Method for fabricating dimensionally accurate pieces by laser sintering |
5745834, | Sep 19 1995 | TELEDYNE SCIENTIFIC & IMAGING, LLC | Free form fabrication of metallic components |
5837960, | Nov 30 1995 | Los Alamos National Security, LLC | Laser production of articles from powders |
6027699, | Jul 28 1997 | Lockheed Martin Energy Research Corp. | Material forming apparatus using a directed droplet stream |
6046426, | Jul 08 1996 | Sandia Corporation | Method and system for producing complex-shape objects |
6133336, | Sep 09 1995 | 3D Systems, Inc | Process for forming a colored three-dimensional article |
GB2227964, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 27 2004 | LAWTON, JOHN A | IMAGECUBE, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014926 | /0861 |
Date | Maintenance Fee Events |
Mar 07 2003 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 10 2006 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 10 2008 | LTOS: Pat Holder Claims Small Entity Status. |
Nov 11 2010 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Oct 15 2005 | 4 years fee payment window open |
Apr 15 2006 | 6 months grace period start (w surcharge) |
Oct 15 2006 | patent expiry (for year 4) |
Oct 15 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 15 2009 | 8 years fee payment window open |
Apr 15 2010 | 6 months grace period start (w surcharge) |
Oct 15 2010 | patent expiry (for year 8) |
Oct 15 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 15 2013 | 12 years fee payment window open |
Apr 15 2014 | 6 months grace period start (w surcharge) |
Oct 15 2014 | patent expiry (for year 12) |
Oct 15 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |