A synchronous rectifier for use with a clamped-mode power converter uses in one embodiment a hybrid rectifier with a MOSFET rectifying device active in one first cyclic interval or the conduction/nonconduction sequence of the power switch and a second rectifying device embodied in one illustrative embodiment as a low voltage bipolar diode rectifying device active during an alternative interval to the first conduction/nonconduction interval. The gate drive to the MOSFET device is continuous at a constant level for substantially all of the second interval which enhances efficiency of the rectifier. The bipolar rectifier device may also be embodied as a MOSFET deice. The subject rectifier may be used in both forward and flyback power converters.

Patent
   RE37889
Priority
Apr 29 1993
Filed
Oct 27 1999
Issued
Oct 22 2002
Expiry
Apr 29 2013
Assg.orig
Entity
Large
12
6
all paid
0. 5. A switching mode power converter, comprising:
a power transformer including a magnetizing inductance requiring periodic recycling;
a first power stage for converting a dc input in a periodic pulsed voltage applied to a primary winding of the transformer, including;
a clamping circuit for limiting a voltage of the transformer during the periodic recycling at a substantially constant amplitude and extending the voltage duration to maintain a constant voltage for substantially an entire extent of periodic recycling;
a second power stage for rectifying an output of a secondary winding of the transformer and applying it to a lead to be energized, including;
a synchronous rectifier including a first rectifying device with a control gate connected to be responsive to a signal across the secondary winding such that the synchronous rectification device conducts a load current during the periodic recycling when the clamping circuit is active, and
a second rectifying device connected for enabling conduction of the load current when the first rectifying device is nonconducting.
0. 1. In a power converter, comprising:
an input for accepting a dc voltage;
a power transformer including a primary and secondary winding;
a power switch for periodically connecting the input to the primary winding;
an output for accepting a load to be energized;
clamping means for limiting a voltage and extending the voltage's duration across the secondary winding at a substantially constant amplitude during substantially an entire extent of a clamping interval of a cyclic period of the power converter;
a rectifier circuit connecting the secondary winding to the output; and including:
a synchronous rectification device with a control terminal connected to be responsive to a signal across the secondary winding such that the synchronous rectification device conducts a load current during substantially the entire extent of the clamping interval; and
a rectifying device connected for enabling conduction of the load current during a second interval other than the clamping interval.
0. 2. In a power converter, comprising
an input for accepting a dc voltage;
a power transformer including a primary and secondary winding;
a power switch for periodically connecting the input to the primary winding during a second interval of a cyclic period;
an output for accepting a load to be energized;
clamping means for limiting a voltage and extending the voltage's duration across the secondary winding at a substantially constant amplitude during substantial an entire extent of a clamping interval of a cyclic period of the power converter; a rectifier circuit connecting the secondary winding to the output; and including:
a first synchronous rectification device with a control terminal connected to be responsive to a signal across the secondary winding such that the synchronous rectification deice conducts a load current during substantially the entire extent of the clamping interval, and
a second synchronous rectification device with a control terminal connected to be responsive to a signal across he secondary winding such that the second synchronous rectification device conducts the load current during substantially and entire extent of the second interval other than the clomping interval.
0. 21. A method of operating a power converter, comprising:
providing a power transformer having a plurality of windings;
coupling a synchronous rectification device, having a control terminal, to at least one of said plurality of windings;
coupling a clamping circuit to said at least one of said plurality of windings; and
limiting a voltage applied to said control terminal with said clamping circuit such that said synchronous rectification device is active for substantially all of a clamping interval.
0. 31. A method of operating a power converter, comprising:
providing a power transformer having a plurality of windings;
coupling a synchronous rectification device, having a control terminal, to at least one of said plurality of windings;
coupling a clamping circuit to said at least one of said plurality of windings; and
limiting a voltage applied to said control terminal with said clamping circuit such that said synchronous rectification device conducts a load current for substantially all of a clamping interval.
0. 41. A method of operating a power converter, comprising:
providing a power transformer having a plurality of windings;
coupling a synchronous rectification device, having a control terminal responsive to a drive signal, to at least one of said plurality of windings;
coupling a clamping circuit to said at least one of said plurality of windings; and
limiting said drive signal applied to said control terminal with said clamping circuit such that said drive signal is continuous for substantially all of a clamping interval.
0. 11. A method of operating a power converter, comprising:
providing a power transformer having a plurality of windings;
limiting a voltage across at least one of said plurality of windings with a clamping circuit during a clamping interval of said power converter; and
rectifying said voltage with a synchronous rectification device having a control terminal responsive to a signal across at least one of said plurality of windings such that said synchronous rectification device is active for substantially all of said clamping interval.
0. 51. A method of operating a power converter, comprising:
accepting a dc voltage at an input of said power converter;
providing current to a load coupled to an output of said power converter;
transforming a voltage from said input to said output with a power transformer having at least one primary winding and at least one secondary winding;
periodically connecting said input to said at least one primary winding during a first cyclic interval of said power converter;
limiting said voltage across said at least one secondary winding with a clamping circuit during a clamping interval of said power converter; and
rectifying said voltage with a synchronous rectification device having a control terminal responsive to a signal across said at least one secondary winding such that said synchronous rectification device is active for substantially all of said clamping interval.
0. 3. In a power converter as claimed in claim 1 or 2, comprising:
the converter connected to operate as a forward type converter.
0. 4. In a power converter as claimed in claim 1 or 2, comprising:
the converter connected to operate as a flyback type converter.
0. 6. A switching mode power converter as claimed in claim 5, further comprising:
the second rectifying device comprises a diode.
0. 7. A switching mode power converter as claimed in claim 5, further comprising:
the second rectifying device comprises a rectifying device with a control gate connected to be responsive to a signal of the secondary winding.
0. 8. A switching mode power converter as claimed in claim 6 or 7, further comprising:
The secondary winding tapped and separated into first and second winding segments, and the first rectifying device is connected to the first winding segment and the second rectifying device is connected to the second winding segment.
0. 9. A switching mode power converter as claimed in claim 6 or 7, further comprising:
the converter connected to operate as a forward type converter.
0. 10. A switching mode power converter as claimed in claim 6 or 7, further comprising:
the converter connected to operate as a flyback type converter.
0. 12. The method as claimed in claim 11 wherein said clamping circuit is directly connected to said power transformer.
0. 13. The method as claimed in claim 11 wherein said clamping circuit is coupled to a primary winding of said power transformer.
0. 14. The method as claimed in claim 11 wherein said power transformer has a center-tapped secondary winding.
0. 15. The method as claimed in claim 11 further comprising connecting a primary winding of said power transformer to an input of said power converter during a first cyclic interval of said power converter.
0. 16. The method as claimed in claim 11 further comprising a further synchronous rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 17. The method as claimed in claim 11 further comprising a rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 18. The method as claimed in claim 11 wherein said clamping circuit comprises a switching device connected in series with a capacitor.
0. 19. The method as claimed in claim 18 further comprising controlling said switching device with a control circuit.
0. 20. The method as claimed in claim 11 wherein said power converter operates in one of:
a forward mode,
a flyback mode, and
a forward/flyback mode.
0. 22. The method as claimed in claim 21 wherein said clamping circuit is directly connected to said power transformer.
0. 23. The method as claimed in claim 21 wherein said clamping circuit is coupled to a primary winding of said power transformer.
0. 24. The method as claimed in claim 21 wherein said power transformer has a center-tapped secondary winding.
0. 25. The method as claimed in claim 21 further comprising connecting a primary winding of said power transformer to an input of said power converter during a first cyclic interval of said power converter.
0. 26. The method as claimed in claim 21 further comprising a further synchronous rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 27. The method as claimed in claim 21 further comprising a rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 28. The method as claimed in claim 21 wherein said clamping, circuit comprises a switching device connected in series with a capacitor.
0. 29. The method as claimed in claim 28 further comprising controlling said switching device with a control circuit.
0. 30. The method as claimed in claim 21 wherein said power converter operates in one of:
a forward mode,
a flyback mode, and
a forward/flyback mode.
0. 32. The method as claimed in claim 31 wherein said clamping circuit is directly connected to said power transformer.
0. 33. The method as claimed in claim 31 wherein said clamping circuit is coupled to a primary winding of said power transformer.
0. 34. The method as claimed in claim 31 wherein said power transformer has a center-tapped secondary winding.
0. 35. The method as claimed in claim 31 further comprising connecting a primary winding of said power transformer to an input of said power converter during a first cyclic interval of said power converter.
0. 36. The method as claimed in claim 31 further comprising a further synchronous rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 37. The method as claimed in claim 31 further comprising a rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 38. The method as claimed in claim 31 wherein said clamping circuit comprises a switching device connected in series with a capacitor.
0. 39. The method as claimed in claim 38 further comprising controlling said switching device with a control circuit.
0. 40. The method as claimed in claim 31 wherein said power converter operates in one of:
a forward mode,
a flyback mode, and
a forward/flyback mode.
0. 42. The method as claimed in claim 41 wherein said clamping circuit is directly connected to said power transformer.
0. 43. The method as claimed in claim 41 wherein said clamping circuit is coupled to a primary winding of said power transformer.
0. 44. The method as claimed in claim 41 wherein said power transformer has a center-tapped secondary winding.
0. 45. The method as claimed in claim 41 further comprising connecting a primary winding of said power transformer to an input of said power converter during a first cyclic interval of said power converter.
0. 46. The method as claimed in claim 41 further comprising a further synchronous rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 47. The method as claimed in claim 41 further comprising a rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 48. The method as claimed in claim 41 wherein said clamping circuit comprises a switching device connected in series with a capacitor.
0. 49. The method as claimed in claim 48 further comprising controlling said switching device with a control circuit.
0. 50. The method as claimed in claim 41 wherein said power converter operates in one of:
a forward mode,
a flyback mode, and
a forward/flyback mode.
0. 52. The method as claimed in claim 51 wherein said clamping circuit is directly connected to said power transformer.
0. 53. The method as claimed in claim 51 wherein said clamping circuit is coupled to said at least one primary winding of said power transformer.
0. 54. The method as claimed in claim 51 wherein said at least one secondary winding has a center-tap.
0. 55. The method as claimed in claim 51 further comprising a voltage limiting device coupled to said synchronous rectification device.
0. 56. The method as claimed in claim 51 further comprising a further synchronous rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 57. The method as claimed in claim 51 further comprising rectification device, coupled to said power transformer, that is active during a first cyclic interval of said power converter.
0. 58. The method as claimed in claim 51 wherein said clamping circuit comprises a switching device connected in series with a capacitor.
0. 59. The method as claimed in claim 58 further comprising controlling said switching device with a control circuit.
0. 60. The method as claimed in claim 51 wherein said power converter operates in one of:
a forward mode,
a flyback mode, and
a forward/flyback mode.

In the converter shown in the FIG. 1, a conventional forward topology of the prior art with an isolating power transformer is combined with a self synchronized synchronous rectifier. In such a rectifier controlled devices are used with the control terminals being driven by an output winding of the power transformer.

A DC voltage input Vix, at input 100, is connected to the primary winding 110 of the power transformer by a MOSFET power switch 101. The secondary winding 102 is connected to an output lead 103 through an output filter inductor 104 and a synchronous rectifier including the MOSFET rectifying devices 105 and 106. Each rectifying device includes a body diode 108 and 107, respectively.

With the power switch 101 conducting, the input voltage is applied across the primary winding 110. The secondary winding 102 is oriented in polarity to respond to the primary voltage with a current flow through the inductor 104, the load connected to output lead 103 and back through the MOSFET rectifier 106 to the secondary winding 102. Continuity of current flow in the inductor 104, when the power switch 101 is non-conducting, is maintained by the current path provided by the conduction of the MOSFET rectifier 105. An output filter capacitor 111 shunts the output of the converter.

Conductivity of the MOSFET rectifiers is controlled by the gate drive signals provided by the voltage appearing across the secondary winding 102. This voltage is shown graphically by the voltage waveform 201 in FIG. 2. During the conduction interval T1 of the power switch 101, the secondary winding voltage Vas1 charges the gate of MOSFET 106 to bias it conducting for the entire interval T1. The MOSFET 105 is biased non conducting during the T1 interval. The conducting MOSFET rectifying device 106 provides the current path allowing energy transfer to the output during the interval T1. The gate of MOSFET rectifier 106 is charged in response to the input voltage Vin. All of the gate drive energy due to this voltage is dissipated.

As the poser MOSFET switch 101 turns off, the voltage Vas1 across the secondary winding 102 reverses polarity just as the time interval T2 begins. This voltage reversal initiates a reset of the transformer magnetizing inductance, resonantly discharges the gate of MOSFET rectifier 106 and begins charging the gate of MOSFET rectifier 105. As shown by the voltage waveform of FIG. 2, the voltage across the secondary winding 102 is not a constant value, but is rather a variable voltage that collapses to zero in the subsequent time interval T3, which occurs prior to the subsequent conduction interval of the power switch 101. This voltage is operative to actually drive the rectifier 105 conducting over only a portion of the time interval T2 which is indicated by the cross hatched area 202 associated with the waveform 201 n FIG. 2. This substantially diminishes the performance of the rectifier 105 as a low loss rectifier device. This is aggravated by the fact that the body diode 108 of the rectifier 105 has a large forward voltage drop which is too large to efficiently carry the load current.

The loss of efficiency of the synchronous rectifier limits the overall efficiency of the power converter and has an adverse effect on the possible power density attainable. Since the synchronous rectifier 105 does not continuously conduct throughout the entire switching period, a conventional rectifier diode (e.g. connected in shunt with rectifier 105) capable of carrying the load current is required in addition to MOSFET rectifier 105. This inefficiency is further aggravated by the gate drive energy dissipation associated with the MOSFET rectifier 106. This gate drive loss may exceed the conduction loss for MOSFET rectifier 106, at high switching frequency (e.g. >300 kHz).

The efficiency of a forward converter with synchronous rectification is significantly improved according to the invention by using a clamp circuit arrangement to limit the reset voltage and by using a low forward voltage drop diode in the rectifying circuitry. Such an arrangement is shown in the schematic of FIG. 3. In this forward power converter the power MOSFET device 101 is shunted by a series connection of a clamp capacitor 321 and a MOSFET switch device 322. The conducting intervals of power switch 101 and MOSFET device 322 are mutually exclusive. The duty cycle of power switch 101 is D and the duty cycle of MOSFET device 322 is 1-D. The voltage inertia of the capacitor 321 limits the amplitude of the reset voltage appearing across the magnetizing inductance during the non conducting interval of the MOSFET power switch 101.

The diode 323 of the synchronous rectifier, shown in FIG. 3, has been substituted for the MOSFET device 106 shown in the FIG. 1. Due to the dissipation of gate drive energy the overall contribution of the MOSFET rectifier 106 in FIG. 1 is limited. The clamping action of the clamping circuitry results in the constant voltage level 402 shown in the voltage waveform 401, across the secondary winding 102, in the time period T2. This constant voltage applied to the gate drive of the MOSFET rectifier 105 drives it into conduction for the entire T2 reset interval. In this arrangement there is no need for a bipolar or a body diode shunting the MOSFET rectifier 105. An advantage in the clamped mode converter is that the peak inverse voltage applied to the diode 323 is much less than that applied to the similarly positioned MOSFET device in FIG. 1. Accordingly the diode 323 may be a very efficient low voltage diode which may be embodied by a low voltage diode normally considered unsuitable for rectification purposes.

In the operation of the clamped mode forward converter the MOSFET switch 322 is turned off just prior to turning the MOSFET power switch on. Energy stored in the parasitic capacitances of the MOSFET switching devices 101 and 322 is commutated to the leakage inductance of the power transformer, discharging the capacitance down toward zero voltage. During the time interval T3 shown in FIG. 4, voltage across the primary winding is supported by the leakage inductance. The voltage across the secondary winding 102 drops to zero value as shown in the FIG. 4. With this zero voltage level of the secondary winding, the output inductor resonantly discharges the gate capacitance of the MOSFET rectifying device 105 and eventually forward biases the the bipolar diode 323. The delay time T3 is a fixed design parameter and is a factor in the control of the power switches 101 and 322, which may be switched to accommodate soft waveforms. This synchronous rectification circuit of FIG. 3 provides the desired efficiencies lacking in the arrangement of the circuit shown in FIG. 1

Control of the conductivity of the power switching devices 101 and 322 is by means of a control circuit 350, which is connected, by lead 351, to an output terminal 103 of the converter to sense the output terminal voltage. The control circuit 350 is connected, by leads 353 and 354, to the drive terminals of the power switches 101 and 322. The drive signals are controlled to regulate an the output voltage at output terminal. The exact design of a control circuit, to achieve the desired regulation, is well known in the art and hence is not disclosed in detail herein. This control circuit 350 is suitable for application to the converters of FIGS. 5,6,7 and 8.

A modified version of the circuit of FIG. 3 is shown in the circuit schematic of the FIG. 5. The converter of FIG. 5 is a clamped mode forward converter having two gated synchronous rectifying devices 105 and 106. In this embodiment of the synchronous rectifier the synchronized rectifying device 106 can be used without adversely affecting the converter efficiency at lower operating frequencies.

The circuit of FIG. 6 is a clamped mode forward converter having a rectifier analogous to that of FIG. 3 in using one bipolar rectifying diode. The secondary winding is tapped creating two secondary winding segments 603 and 602.

The converter FIG. 7 operates in a flyback mode. The bipolar and synchronous rectifier device are in a reversed connection from the connection of FIG. 3 to accommodate the flyback operation.

In some applications directs application of the gate drive signal directly from the secondary winding may result in voltage spikes exceeding the rating of the gate. A small signal MOSFET device 813 is connected to couple the gate drive to the MOSFET rectifying device 105. This device may be controlled by the control drive lead 815 to limit the peak voltage applied to the gate of rectifier 105. The MOSFET synchronous rectifier is then discharged through the body diode of the MOSFET device 813.

Rozman, Allen Frank

Patent Priority Assignee Title
10199950, Jul 02 2013 Vicor Corporation Power distribution architecture with series-connected bus converter
10594223, Jul 02 2013 Vicor Corporation Power distribution architecture with series-connected bus converter
11075583, Jul 02 2013 Vicor Corporation Power distribution architecture with series-connected bus converter
11705820, Jul 02 2013 Vicor Corporation Power distribution architecture with series-connected bus converter
7330360, Feb 16 2005 SAMSUNG DISPLAY CO , LTD Driving apparatus of display device and DC-DC converter
7558083, Jan 24 1997 SynQor, Inc. High efficiency power converter
7564702, Jan 24 1997 SynQor, Inc. High efficiency power converter
8023290, Jan 24 1997 SynQor, Inc. High efficiency power converter
8300432, Jun 17 2008 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Power converter utilizing a RC circuit to conduct during the rising edge of the transformer voltage
8493751, Jan 24 1997 SynQor, Inc. High efficiency power converter
9143042, Jan 24 1997 SynQor, Inc. High efficiency power converter
9502992, Jun 01 2012 TELECOM HOLDING PARENT LLC Diode substitute with low drop and minimal loading
Patent Priority Assignee Title
5066900, Nov 14 1989 Artesyn Technologies, Inc DC/DC converter switching at zero voltage
5126931, Sep 07 1990 C&D TECHNOLOGIES, INC Fixed frequency single ended forward converter switching at zero voltage
5303138, Apr 29 1993 Lineage Power Corporation Low loss synchronous rectifier for application to clamped-mode power converters
5872705, Apr 29 1993 Lineage Power Corporation Low loss synchronous rectifier for application to clamped-mode power converters
6081432, May 26 1998 Artesyn Technologies, Inc Active reset forward converter employing synchronous rectifiers
6191964, May 04 1995 Lineage Power Corporation Circuit and method for controlling a synchronous rectifier converter
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 27 1999Lucent Technologies Inc.(assignment on the face of the patent)
Dec 29 2000Lucent Technologies IncTYCO ELECTRONICS LOGISTICS A G PATENT ASSIGNMENT0283160843 pdf
Feb 22 2001LUCENT TECHNOLOGIES INC DE CORPORATION THE CHASE MANHATTAN BANK, AS COLLATERAL AGENTCONDITIONAL ASSIGNMENT OF AND SECURITY INTEREST IN PATENT RIGHTS0117220048 pdf
May 28 2003Lucent Technologies IncJPMorgan Chase Bank, as Collateral AgentSECURITY AGREEMENT0144020797 pdf
Nov 30 2006JPMORGAN CHASE BANK, N A FORMERLY KNOWN AS THE CHASE MANHATTAN BANK , AS ADMINISTRATIVE AGENTLucent Technologies IncTERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS0185900287 pdf
Feb 28 2008Tyco Electronics Logistics AGLINEAGE OVERSEAS CORP PATENT ASSIGNMENT0283230871 pdf
Feb 28 2008LINEAGE OVERSEAS CORP Lineage Power CorporationPATENT ASSIGNMENT0283230958 pdf
Date Maintenance Fee Events
Dec 24 2007REM: Maintenance Fee Reminder Mailed.
Jan 30 2008M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jan 30 2008M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.


Date Maintenance Schedule
Oct 22 20054 years fee payment window open
Apr 22 20066 months grace period start (w surcharge)
Oct 22 2006patent expiry (for year 4)
Oct 22 20082 years to revive unintentionally abandoned end. (for year 4)
Oct 22 20098 years fee payment window open
Apr 22 20106 months grace period start (w surcharge)
Oct 22 2010patent expiry (for year 8)
Oct 22 20122 years to revive unintentionally abandoned end. (for year 8)
Oct 22 201312 years fee payment window open
Apr 22 20146 months grace period start (w surcharge)
Oct 22 2014patent expiry (for year 12)
Oct 22 20162 years to revive unintentionally abandoned end. (for year 12)